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Abstract: Alzheimer’s disease (AD) is the most common form of dementia. Mutations in the 

genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have 

been identified as the main genetic causes of familial AD. To date, more than 200 mutations 

have been described worldwide in PSEN1, which is highly homologous with PSEN2, while 

mutations in PSEN2 have been rarely reported. We performed a systematic review of studies 

describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European 

and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 

mutations appeared not only in AD patients but also in patients with other disorders, including 

frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, 

and Parkinson’s disease with dementia. Here, we have summarized the PSEN2 mutations and 

the potential implications of these mutations in dementia-associated disorders.
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Introduction
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease of 

the brain. Pathological hallmarks of AD include intraneuronal accumulation of paired 

helical filaments composed of abnormal tau proteins and extracellular deposits of 

β-amyloid peptide (Aβ) in neuritic plaques.1 Clinically, AD can be categorized into 

two phenotypes based on the ages of onset: early-onset AD (EOAD; ,65 years) and 

late-onset AD (LOAD; .65 years), of which LOAD is the more common form world-

wide. The proportion of EOAD in all AD cases is between 5% and 10%.2 Presenilin 1  

(PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) are mostly asso-

ciated with autosomal dominant forms of EOAD.3 Apart from genetic factors, muta-

tions are environmentally related. Genetic–environmental interactions may be caused 

by variation in the age of onset, neuropathological patterns, and disease duration.4  

To date, more than 200 mutations have been described in PSEN1 throughout the 

world, but mutations in PSEN2 are extremely rare. Less than 40 mutations in PSEN2 

have been identified.5 From those, two PSEN2 mutations were detected in Korean 

patients. Unlike PSEN1, AD patients with PSEN2 mutations have a wide range in 

the age of onset, from 40 to 80 years.6 Interestingly, some reports have suggested 

that the inherited mode of AD was autosomal inheritance with variable penetrance, 

which suggests that other environmental factors might also be significant for AD 

pathogenesis.7 In addition, mutations in PSEN2 are also closely involved in other 

diseases, including EOAD, LOAD, frontotemporal dementia (FTD), dementia with 

Lewy bodies (DLBs), breast cancer, dilated cardiomyopathy (DCM). In this review, 
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we studied and summarized PSEN2, in particular, the known 

PSEN2 mutations and the potential implications of PSEN2 

in AD and in other disorders.

PSEN2 gene
In 1995, PSEN2 was initially reported as a causative gene for 

AD, following the identification of APP and PSEN1.8 The 

gene was localized to chromosome lq42.13. It consists of  

12 exons, of which exon 1 and exon 2 contain the untrans-

lated regions.

PSEN2 transcription
Transcriptional regulation
PSEN2 is driven by two separate promoter elements, P1 and 

P2, which are located in exon 1 and exon 2, respectively. The 

upstream P1 is a housekeeping promoter. PSEN2-P1 activity 

depends on a stimulating protein 1 binding site at the most  

5′ initiation site. The downstream P2 is induced by Egr-1, 

which represses PSEN2-P1 activity.9 Interestingly, a study 

showed that Egr-1 cannot regulate the PSEN2 promoter in 

mouse.10 APP influences the expression of Egr-1 by enhanc-

ing histone H4 acetylation of the Egr-1 promoter.11

Splice variant
The two isoforms of PSEN2 protein are produced by alter-

native splicing. An aberrant splice variant of PSEN2 lacks  

exon 5, which results in the insertion of five amino acids, 

SSMAG, into the protein variant, and which introduces a prema-

ture stop codon in exon 6.12 Aggregation of the PSEN2 variant  

protein was detected in the hippocampus and cerebral 

cortex of patients with sporadic AD.13 The protein variant 

also was detected in sporadic AD patients, in the frontal 

lobe of patients with bipolar disorder, and in patients with 

schizophrenia.14,15 The PSEN2 variant is upregulated under 

hypoxic conditions in cell culture, and a study has shown 

that the PSEN2 variant influences the conformation of tau 

protein in human neuroblastoma cells.12,16

PSEN2 protein
Structure
PSEN2 is located on chromosome 1, and it encodes the 

PSEN2 protein. PSEN2 is a transmembrane protein with 

448 amino acids and a molecular weight of 55 Da.17,18 It is 

predicted to span the lipid bilayer nine times.19 PSEN2 and 

PSEN1 are homologous, with a similarity of 67%.20 The 

two proteins differ at the N-terminus and at the hydrophilic 

loop, while the hydrophobic region is highly conserved. 

PSEN2 is an unstable holoprotein. It undergoes autocatalytic 

endoproteolysis within the large cytoplasmic loop domain, to 

form a stable and biologically active heterodimer. In PSEN2, 

two aspartyl residues–D263 and D366 found in the adjacent 

transmembrane regions Transmembrane domain (TM)-VI and 

TM-VII–are the active sites of the γ-secretase complex.

Location
PSEN2 has two isoforms. Isoform 1 is found in the placenta, 

skeletal muscle and heart, while isoform 2, which lacks amino 

acids 263–296, is found in the brain, heart, placenta, liver, skel-

etal muscle, and kidney. Presenilin proteins that are localized 

in neurons reside in the endoplasmic reticulum and Golgi.21

Function
Presenilin, an aspartyl protease, is a subunit of γ-secretase. 

γ-Secretase participates in the cleavage of APP, which can pro-

duce different lengths of β-amyloid peptide (Aβ). The Aβ42 

form aggregates easier than the Aβ40 form. The accumulation 

of Aβ in the brain is a pathological characteristic of AD.22 The 

process of Aβ aggregation is shown in Figure 1. PSEN2 muta-

tion might increase γ-secretase activity. Cell-based studies and 

mouse models have shown that some PSEN2 mutations cause  

an increased production of Aβ42, which is a major hallmark 

in the brains of patients with AD. Presenilin mutations are 

a major risk factor for AD.23 Several studies have indicated 

that AD-related presenilin mutations can alter intracellular 

calcium signaling, which leads to Aβ aggregation to form 

brain plaques and neuronal cell death.24,25

γ-Secretase catalyzes the intramembrane cleavage of 

integral membrane proteins. It plays an important role in 

intracellular signaling, including Notch signaling and APP 

processing. In separate studies published in 1996, Vito et al26  

and Wolozin et al27 proposed that PSEN2 is involved in 

apoptosis. A study demonstrated that wild-type and mutant 

N141I-PSEN2 trigger p53-dependent apoptosis in HEK293 

human cells and in murine neurons.28 In primary rat corti-

cal neurons, PSEN2, overexpression significantly increased 

susceptibility to staurosporine-induced apoptosis. PSEN2 

mutations can promote apoptosis. Bcl-2 can down regulate 

pro-apoptotic activities, which are induced by PSEN2.29 

A recent study suggested that overexpression of human 

mutant PSEN2 induces changes in glucose metabolism, 

which is accompanied by a decrease in insulin levels.30

PSEN2 mutations
Mutations in the presenilin genes are the main causes of famil-

ial EOAD. Similar to APP, mutant presenilins can enhance 

Aβ production and contribute to AD development, whereas  

PSEN2 plays less of a role than PSEN1. An extensive lit-

erature search for mutations in PSEN2 was conducted. As 
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of date, 38 mutations have been reported. The number of 

mutations identified in PSEN1 is greater than five times this 

number.31 Two PSEN2 mutations, Glu126fs and Lys306fs, 

are frameshift mutations, and the others are nonsynony-

mous substitutions (Table 1). PSEN2 mutations are associ-

ated with variable penetrance and a wide range in the age 

of disease onset, from 45 to 88.32,33 PSEN2 mutations are 

associated with both EOAD and LOAD. Only 17 of the 38 

are predicted to be disease-causing mutations (Figure 2). 

Ten of the mutations are not pathogenic and the others are 

still unclear. Sixteen mutations are located within trans-

membrane domains. Cell-based studies suggest that four of 

these mutations, T122P, N141I, M239I, and M239V, cause 

an increase in the amount of Aβ peptide.34 The mutations 

T122R, S130L, and M239I were found to alter calcium 

signaling.35–37 Most of these mutations were discovered in 

European and African populations. Until now, only four 

missense mutations were described in Asian populations: 

Asn141Tyr was associated with EOAD in a Chinese Han 

family;37 Gly34Ser was found in a Japanese patient;39 and 

Arg62Cys and Val214Leu were described in the Korean 

patients.6

Related diseases
It was well-known that some mutations in PSEN2 cause 

familial AD, while some PSEN2 mutations are associated 

with other disorders, including DLB, FTD, breast cancer, 

DCM, and Parkinson’s disease with dementia (PDD).

Dementia with Lewy body
DLB is a progressive degenerative disease, accounting for 

10%–20% of all dementias. The core clinical features of DLB 

are fluctuating cognition, recurrent visual hallucinations, 

and motor features of Parkinson’s disease.40 Lewy bodies, 

an abnormal aggregation of protein, are found throughout 

the brain of DLB patients and in patients with other brain 

disorders, including AD and PDD. In 2008, a PSEN2 mis-

sense mutation, a C-to-T substitution at the second position 

of codon 85 leading to an alanine to valine substitution in 

the transcribed protein, was found in a proband with the 

Figure 1 The process of Aβ aggregation.
Notes: Amyloid precursor protein (APP) is a transmembrane protein. APP processing includes non-amyloidogenic and amyloidogenic pathways. Non-amyloidogenic pathway 
(left): APP is cleaved by α-secretase in the middle of Aβ with production soluble APPα (sAPPα) and C-terminal fragment α (CTFα). Then CTFα is hydrolyzed by γ-secretase 
to generate APP intracellular domain (AICD). Amyloidogenic pathway (right): APP is cleaved by β-secretase resulting in N-terminal soluble APPβ (sAPPβ) leaving the 
C-terminal fragment β (CTFβ) which is hydrolyzed by γ-secretase to yield Aβ and AICD. Presenilin, nicastrin, anterior pharynx-defective 1 (APH-1) and presenilin enhancer 
2 (PeN-2) are the parts of γ-secretase. PSeN mutation might increase γ-secretase activity to cause plaque forming.
Abbreviations: AICD, APP intracellular domain; APP, amyloid precursor protein; APH-1, anterior pharynx-defective 1; CTFα, C-terminal fragment α; CTFβ, C-terminal 
fragment β; sAPP, soluble APP; PeN-2, presenilin enhancer 2.
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Table 1 PSEN2 mutations

Codon Mutation Exon Protein 
domain

Phenotype Pathogenicity Biological effect Country/ethnicities References

29 Arg.His eX3 N-Term AD No Unknown Mandenka 41
34 Gly.Ser eX3 N-Term LOAD Unclear No change in the Aβ42/Aβ40 

ratio
Dutch/Japan 42

62 Arg.Cys eX4 N-Term eOAD Unclear Unknown Dutch/Korea (Bagyinszky 
e, Department of Bionano 
Technology, Gachon 
University, personal communi-
cation, December 12, 2014)

42–44

62 Arg.His eX4 N-Term Sporadic 
eOAD/FTD/
LOAD/Breast 
cancer/PD/
DLB

No No change in proteolytic 
products PSeN2-CTF and 
PSeN2-NTF; no change in 
Aβ42 levels or the Aβ42/
Aβ40 ratio

Dutch/Italy/Africa/Turkey 34, 41,  
45–49

69 Pro.Ala eX4 N-Term AD Unclear Unknown Serbian 50
71 Arg.Trp eX4 N-Term LOAD/

sporadic 
LOAD/
Probable DLB/
Breast cancer/
control

Unclear No change in Aβ42 levels Dutch/Africa/Belgium/Turkey 42, 43,  
47–49, 43, 
51

85 Ala.val eX4 N-Term DLB Yes Unknown Italy 52
122 Thr.Pro eX5 HL-I eOAD Yes No change in proteolytic 

products PSeN2-CTF and 
PSeN2-NTF; increased Aβ42; 
increase Aβ42/Aβ40 ratio

Germany 31, 53, 54

122 Thr.Arg eX5 HL-I Atypical 
Dementia

Yes Reduced calcium ion release 
from intracellular stores

Italy 35, 55, 56

126 Glu.fs eX5 HL-I AD Yes Unknown Africa/Moroccan 57
126 Glu.Lys eX5 HL-I AD Yes Unknown Germany 58
130 Ser.Leu eX5 HL-I FAD/DCM/

sporadic 
LOAD

Unclear No change in proteolytic 
products PSeN2-CTF and 
PSeN2-NTF; no change in 
Aβ42 levels or the Aβ42/
Aβ40 ratio

Italy/Turkey/england 34, 47, 36, 
59–62

139 val.Met eX5 HL-I Familial LOAD Unclear Unknown Italy 63
141 Asn.Ile eX5 TM-II FAD/LOAD Yes No change in proteolytic 

products PSeN2-CTF and 
PSeN2-NTF; increased Aβ42; 
increased Aβ42/Aβ40 ratio

volga German/Spain 34, 8, 64, 
65

141 Asn.Tyr eX5 TM-II AD Yes Unknown People’s Republic of China 38
143 Leu.His eX5 TM-II AD No Unknown Bantu 41
148 val.Ile eX5 TM-II LOAD Yes No change in proteolytic 

products PSeN2-CTF and 
PSeN2-NTF; no change in 
Aβ42 levels or the Aβ42/
Aβ40 ratio

Spain 34, 66

161 Lys.Arg eX5 HL-II AD Yes Unknown French 51
163 Arg.His eX5 HL-II early cortical 

dysfunction
No Unknown Swedish 67

174 Met.val eX6 TM-III eOAD No Unknown Africa/Turkey 41, 48, 68
175 Ser.Cys eX6 TM-III FAD Yes Unknown Italy 69
191 val.Glu eX7 HL-III PDD Unclear Unknown Belgium 70
214 val.Leu eX7 TM-Iv AD Unclear Unknown Korea 6
228 Gln.Leu eX7 TM-v eOAD Yes Unknown Poland 24
231 Tyr.Cys eX7 TM-v FTD Yes Unknown Italy 71
235 Ile.Phe eX7 TM-v AD No Unknown Caribbean Hispanics 72
237 Ala.val eX7 TM-v AD Unclear Unknown UK 73

(Continued)
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Table 1 (Continued)

Codon Mutation Exon Protein 
domain

Phenotype Pathogenicity Biological effect Country/ethnicities References

239 Met.Ile eX7 TM-v eOAD/FAD Yes No change in proteolytic 
products PSeN2-CTF and 
PSeN2-NTF; increased Aβ42; 
increased Aβ42/Aβ40 ratio; 
reduced calcium release

Italy 34, 35, 37, 
74–76

239 Met.val eX7 TM-v FAD Yes No change in proteolytic 
products PSeN2-CTF and 
PSeN2-NTF; increased Aβ42; 
increased Aβ42/Aβ40 ratio

Italy 34, 51,  
64, 77

252 Ala.Thr eX7 TM-vI AD No Unknown Mandenka 41

301 Thr.Met eX9 HL-vI AD Unclear No change in Aβ42/Aβ40 
ratio

the Netherlands 78

306 Lys306fs eX9 HL-vI AD Yes Unknown Africa/Moroccan 57

334 Pro.Ala eX10 HL-vI AD No Unknown Caribbean Hispanics 72

334 Pro.Arg eX10 HL-vI AD/familial 
LOAD

No Unknown Spain 79

377 Ala.val eX11 TM-vII AD No Unknown Caribbean Hispanics 72

393 val.Met eX11 TM-vIII AD Unclear No change in Aβ42 levels or 
the Aβ42/Aβ40 ratio

Danish 80, 81

430 Thr.Met eX12 TM-IX FAD/eOAD Yes Unknown Spain 82, 83

439 Asp.Ala eX12 C-Term eOAD/FAD Yes No change in proteolytic 
products PSeN2-CTF and 
PSeN2-NTF; no change in 
Aβ42 levels or the Aβ42/
Aβ40 ratio

Spain 34, 84

Abbreviations: Aβ, β-amyloid peptide; AD, Alzheimer’s disease; eX, exon; FAD, familial Alzheimer’s disease; DCM, dilated cardiomyopathy; eOAD, early-onset AD; 
LOAD, late-onset AD; PDD, Parkinson’s disease with dementia; PSEN2, presenilin2.

clinical phenotype of Lewy body dementia. Neuropathologi-

cal examination of the proband showed a mass of cortical 

Lewy bodies and hallmark lesions of AD. In his family, this 

mutation was identified in six carriers across two generations, 

with variable clinical presentation. Except for a young family 

member that was still asymptomatic, all carriers of the A85V 

mutation developed AD, DLB, or both. None of the patients 

carried other mutations in AD-related genes. The pathological 

PSEN1 mutation, A79V, is homologous to the A85V mutation 

in PSEN2.85 Sequence phylogenetic analysis suggested that 

the A85 residue is highly conserved. The mutation is located 

on the N-terminal, cytoplasmic side, adjacent to the TM-I 

domain that might be critical for the protein function. Overall, 

it was predicted that the A85V mutation is pathogenic. In all 

family members with PSEN2 A85V, the genotype of apolipo-

protein E (ApoE) was ε3/ε3, which suggests that α-synuclein 

pathological structures are linked to PSEN2 A85V without 

affecting the ApoE ε4 allele.52 A PSEN2 mutation, R71W, 

was reported in a 73-year-old European patient with cogni-

tive impairment and extrapyramidal symptoms, which was 

likely undiagnosed for DLB. One of the proband’s brothers 

also carried the R71W mutation and suffered an unspecified 

type of dementia. The other brother was healthy and did not 

have a PSEN2 mutation. The R71W mutation was previously 

identified in AD patients predicted to be possible pathogenic.70  

A PSEN2 mutation, R62H, presented in a DLB patient, with no 

history of neurological diseases, who showed extrapyramidal 

signs was characterized by a slight left arm rest tremor, bilat-

eral upper limb postural tremor, and bradykinesia on the left 

side.86 This mutation, located in the N-terminal of PSEN2, is 

conserved between PSEN1 and PSEN2. Walker et al showed 

that the R62H mutation did not affect Aβ42 levels or the 

Aβ42/Aβ40 ratio.34 Guerreiro et al used PolyPhen-2 to show 

that the R62H variant is likely benign.41 Based on these data, 

it is highly probably that PSEN2 R62H can be characterized 

as “not pathogenic”. Since the age of onset in carriers of the 

R62H mutation is significantly earlier than in affected non-

carriers even after correcting for ApoE genotype, the R62H 

mutation may function as a disease modifier.48

Breast cancer
Breast cancer is the most common malignancy among women 

in Europe and the US. Two PSEN2 mutations, R62H and 

R71W, have been identified in patients with breast cancer. 
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The mutations are located in the hydrophilic, N-terminal 

domain. In HEK293 cells, the R62H and R71W mutations 

did not affect the levels of the PSEN2-CTF and PSEN2-NTF 

proteolytic products or the Aβ(42)/Aβ(40) ratio, but did 

influence PSEN2 stability. Full-length PSEN2 degenerated 

rapidly. In a study using transgenic Caenorhabditis elegans, 

the R62H and R71W mutations compromised PSEN2 func-

tion in Notch signaling.49 PSEN2 has several potential roles 

in cancer. Deng et al and Wolozin et al reported that PSEN2 

has pro-apoptotic activity.27,87 A study also has shown that 

PSEN2 can also adjust β-catenin levels and act in a p53-

dependent mechanism to regulate cell growth.49 In 2013, a 

study suggested a significant role for γ-secretase in breast 

cancer.88

Frontotemporal dementia
FTD, a clinical phenotype of frontotemporal lobar degen-

eration, is the second most common form of early-onset 

(,65 years) neurodegenerative disease after AD.89 It is 

mainly characterized by deterioration of behavior, person-

ality, and language abilities.89,90 The prevalence of FTD 

is between 10% and 30% of all presenile dementia.91–96 

FTD has a number of clinical phenotypes and pathological 

subtypes.3,97,98 Clinical and molecular overlaps between AD 

and FTD or FTD-like phenotypes have been reported.99 To 

date, at least four PSEN2 mutations have been found in FTD 

patients. In 2010, PSEN2 R62H was found in a 31-year-old 

patient. The patient’s healthy mother also carried this muta-

tion. The interaction of the H1 MAPT haplotype and the ApoE 

ε2 allele might function as a protective modifier against FTD, 

while the H1 MAPT haplotype unaccompanied by the ApoE 

ε2 might be a risk enhancer for FTD.43,100 These possibili-

ties imply that modifier, suppressor, and enhancer effects of 

multiple genes may be crucial for genetic analysis.

Dilated cardiomyopathy
DCM is a heart muscle disease in which the heart becomes 

enlarged and cannot pump blood efficiently. DCM usually 

leads to heart failure. The causative factor for DCM has 

not been determined, but DCM in families is genetically 

linked. In 2006, the PSEN2 S130L mutation was identified 

in two Caucasian families. It is highly conserved. Several 

family members with this mutation suffered DCM and heart 

failure.36 Presenilin is expressed in multiple tissues, including 

in the heart, and it is required for cardiac development.101–104 

Calcium signaling was altered in cultured skin fibroblasts 

Figure 2 Missense mutations in PSeN2 and their pathogenicity.
Abbreviations: SNP, single nucleotide polymorphism; eX, exon.
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from carriers of the mutation. The PSEN1 D333G also was 

identified in a DCM patient. Compared to the phenotypes seen 

in carriers of PSEN1 D333G, the phenotypes are milder in 

carriers of PSEN2 S130L, and PSEN2 S130L is not associated 

with heart failure as often. Currently, it is not clear whether 

γ-secretase activity is related to DCM. The Notch family 

of proteins is one of the major transcriptional regulators of 

cardiac growth and development.105 Disordered Notch sig-

naling is associated with valvular abnormalities, syndromic 

cardiovascular disease, congenital heart disease, and myocyte 

dysfunction.106 PSEN2 knockout (PS2KO) mice grow nor-

mally without cardiac hypertrophy and fibrosis, while cardiac 

contractility improved.107 PSEN2 plays an important role in 

cardiac systolic function by modulating Ca2+ signaling.

Parkinson disease with dementia
Parkinson’s disease (PD) was first described by James Par-

kinson in 1817. PD is a chronic, progressive, neurological 

disease that results from the destruction of nerve cells in the 

basal ganglia. The disease mainly affects movement, but 

as the neurological damage progresses, the disease often 

affects mental functions. PDD is an impairment in thinking 

and reasoning that eventually affects many people with PD.  

A 77-year-old carrier of PSEN2 V191E showed the PDD 

phenotype characterized by cognitive decline, visual halluci-

nations, and confusion during the final years of the PD. This 

PSEN2 mutation is located at a highly conserved amino acid 

residue in the protein. In a study by Bram Meeus, the V191E 

mutation did not exist in more than 1,200 control individu-

als, so he predicted that V191E is a damaging mutation.70 A 

PSEN2 R163H variant has been reported in a Swedish PD 

family in who were also found a de novo α-synuclein A53T 

mutation. The proband’s mother also carried the mutation 

PSEN2 R163H, but she was healthy. Nevertheless, this 

mutation cannot be excluded with certainty as a cause of PD 

when in combination with α-synuclein.67 PSEN2 S130L was 

identified in a patient with of LOAD, and his two siblings 

were diagnosed with PD. Unfortunately, the genetic results 

from the siblings are not available. The S130L mutation was 

also detected in the proband’s two unaffected children, but 

the segregation of the disease could not be determined. The 

correlation between PD and AD is not clear.

Conclusion
This review described mutations in PSEN2 from diverse 

disorders. Mutations in PSEN2 were shown to be a rare cause 

of familial AD. Pathogenic mutations in the PSEN1, PSEN2, 

and APP gene account for 18%–50% of familial EOAD cases 

with autosomal dominant pattern of inheritance.108 PSEN 

genetic testing results could provide genetic counseling for 

patient’s family members. There is a considerable interest 

in the application of this genetic information in medical 

practice through genetic testing and counseling. PSEN2 

mutations are involved in not only AD but also in other dis-

orders, including FTD, DLB, PDD, breast cancer, and DCM. 

Why are PSEN2 mutations found in multiple diseases? Are 

these diseases related? Until now, the answer to this ques-

tion has been unclear. There are several possible reasons 

that PSEN is associated with multiple diseases. PSEN2 is 

a transmembrane protein that is a component of γ-secretase 

intramembrane protease. γ-Secretase is required to process 

several types of integral membrane proteins, and is involved 

in different signaling pathways. Mutations in PSEN2 may 

disrupt the normal pathways and lead to different disorders. 

Thus, it can be hypothesized that these disorders might share 

underlying genetic factors. On the other hand, different neu-

rodegenerative diseases show slightly different behavioral, 

language, and motor symptoms. Sometimes it is difficult to 

distinguish them clearly by clinical diagnosis. Many patients 

with both PDD and DLB have hallmark changes in the brain, 

including plaques and tangles that are associated with AD. 

These observations suggest that there may be a common 

pathogenetic mechanism in the formation of aggregated 

proteins. Therefore, mutations in PSEN2 might play a role 

in Aβ, α-synuclein, and tau aggregation.

Overall, genetic studies have already indicated that PSEN2 

may affect people with FTD, PDD, LBD, breast cancer, and 

DCM. How presenilin 2 is implicated in the pathogenesis 

of these diseases is still unclear. This question needs to be 

further explored.
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