Long noncoding RNAs: from identification to functions and mechanisms

Oskar Marín-Béjar
Maite Huarte

Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, IDISNA, Navarra Institute of Health Research, Pamplona, Spain

Abstract: The complex universe of RNA transcribed by mammalian cells includes thousands of large RNA molecules that do not encode for proteins. Despite their lack of coding capacity and relatively low conservation, many large noncoding RNA molecules (lncRNAs) have been shown to be functional, adding a new level of complexity on the structural organization, function, and evolution of the genome. Here, we summarize the current knowledge of lncRNAs, starting from the methodologies that led to their identification to their genomic and evolutive features. We discuss the diverse mechanisms by which lncRNAs exert their functions, and the technical approaches for their study. Finally, we discuss the future directions of lncRNA research and the challenges involved. The advances in lncRNA research are definitely changing our conception of gene regulation.

Keywords: lncRNA, gene regulation, lncRNA function

Introduction

The central dogma of molecular biology that Francis Crick introduced in 1958 was able to answer the longstanding question of how cells are able to store and transfer information to produce the adequate functional output: the genetic information is encoded in DNA, transcribed to form messenger (m)RNA molecules, which then serve as a template to produce unique amino acid sequences that constitute individual proteins (ie, one gene, mRNA intermediate, one protein). However, as early as the 1960s, this view began to be challenged by the discovery of noncoding (nc)RNAs, which do not code for proteins, but rather function as RNA molecules – ie, ribosomal (r)RNA, transfer RNA, and small nucleolar RNAs. Another milestone in our understanding of gene function came about 15 years ago. The simple addition of double-stranded RNA control in an antisense experiment triggered a revolution in our comprehension of RNA function. Several new classes of small ncRNAs have burgeoned in the last years including small interfering RNAs (si)RNAs that deplete RNA transcript levels, Piwi-associated RNAs involved in germ cell differentiation, or micro (mi)RNAs. MiRNAs are now known to regulate multiple steps in gene expression, including RNA stability, mRNA translation, and transcriptional silencing. All these findings contributed to understand the enormous complexity and the extent of the regulatory potential of RNA.

Presumably, the most significant shift in our conception of the role of RNA in gene regulation has emerged from the recent advances in genomic technologies, which have made it possible to survey the transcriptomes of many organisms to an unprecedented degree. By utilizing these technologies, several studies have revealed that the genomes of mammals, as well as other organisms, produce thousands of long
transcripts that have no significant protein-coding capacity and are thus referred to as long (or large) noncoding (Inc) RNAs. It is now estimated that while 70% of the mammalian genome is actively transcribed, only 1%–2% of the transcriptionally active regions correspond to protein-coding genes. IncRNAs are transcripts longer than 200 nt that lack protein-coding capacity. Depending on their genomic localization relative to their neighboring protein-coding genes, IncRNAs can be classified into 1) long intergenic noncoding (linc)RNAs, when they do not overlap with any other gene; 2) intronic IncRNAs, when localized inside the intron of a gene; or 3) antisense IncRNAs, when transcribed from the opposite DNA strand overlapping with exons of a protein-coding gene. Many of the mammalian IncRNAs are transcribed by RNA polymerase II, and they are therefore strikingly similar to miRNAs: they are capped, spliced, and polyadenylated, while others are produced by RNA polymerase III or RNA polymerase I.

Despite the fact that Xist – a functional IncRNA that mediates X chromosome inactivation in mammalian female cells – was already discovered in the early 1990s, the prevailing view until recently was that long noncoding transcripts are rare, and only a handful of functional IncRNAs are represented in the genome. However, research in the past several years has documented important functions for many IncRNAs, reporting roles in normal organism development and disease (examples of IncRNAs associated with pathologies are summarized in Table 1). Some of the varied processes where IncRNAs have been shown to intervene include transcriptional regulation, dosage compensation, genomic imprinting, cellular trafficking and nuclear organization, and compartmentalization.

In this review, we summarize the current knowledge of IncRNAs, starting from the methodologies that have led to their identification, their genomic and evolutive features, and their functions and mechanisms.

Identification of IncRNAs in the genomic context

The methodologies applied for the detection and identification of IncRNAs have evolved hand in hand with the genomic technologies (Figure 1). One of the first approaches to the genome-wide identification of IncRNAs was the Functional Annotation of the Mammalian genome project (FANTOM), where >21,000 complementary DNA clones were annotated, of which 3,000 did not keep any homology with protein-coding genes and were therefore annotated as IncRNAs. In the following FANTOM projects, the annotation of IncRNAs was improved by adding the identification of transcription start sites) detected by Cap Analysis of Gene Expression.

A different method used for the identification of IncRNAs was based on the indirect determination of the transcriptional active regions of the genome. For instance, the detection of RNA polymerase II occupancy by ChIP-seq analysis has been applied as an indication of the presence of a transcriptional unit. However, this approach has some limitations, as it cannot discriminate between random RNA polymerase II binding events and the specific association with a transcribed gene, and it does not detect the regions transcribed by other RNA polymerases different to polymerase II.

Alternatively, the analysis of chromatin states has provided information about transcriptional activity genome-wide. There is a direct relationship between the transcriptional activity of RNA polymerase II and the pattern of histone post-translational modifications across the mammalian genome. It is known that H3K36me3 is linked to transcriptional elongation and it is strongly enriched across the transcribed regions of active genes, while the H3K4me3 signal is associated to the promoter of the gene, identifying the transcription start site. Analysis of these chromatin marks combined with gene expression data derived from tiling DNA microarrays have been applied to identify novel IncRNAs. Based on this principle, K4-K36 domains outside known protein-coding genes defined genomic regions encoding long lincRNAs.

More recently, the development of next-generation sequencing applied to RNA has allowed for the direct detection and assembly of entire transcriptomes. RNA sequencing (RNA-seq) offers a more reliable and high-resolution method for measuring gene expression than previous techniques. Furthermore, thanks to computational methods for transcriptome reconstruction, novel transcribed regions, as well as alternative spliced forms of annotated genes, can be identified. Based on RNA-seq analyses of multiple cell types, the ENCODE project has released one of the most complete and updated IncRNA catalogs, including more than 16,000 IncRNAs (GENCODE version 21).

The approaches described have allowed for the extension of the repertoire of IncRNAs present in the mammalian genome to more than 20,000. However, the lack of a long open reading frame is not a sufficient criterion for the classification of a transcript as noncoding. In order to predict whether the transcript may or not encode for a protein, some computational methods can be applied. Several features of bona fide protein-coding genes can be used as criteria to distinguish coding from ncRNAs. Coding regions 1) tend
Table 1 Representative lncRNAs with role in disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Type of disease</th>
<th>LncRNA</th>
<th>Status</th>
<th>Molecular mechanism/role in disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>Breast tumor</td>
<td>GASS</td>
<td>Downregulated</td>
<td>GASS competes for binding to the DNA binding domain of the glucocorticoid receptor, acting as a molecular decoy, and effectively precludes its interaction with the chromosome. GASS expression induces growth arrest and apoptosis.</td>
<td>128,129</td>
</tr>
<tr>
<td></td>
<td>Nonmelanoma skin cancer, CRC</td>
<td>lincRNA-p21</td>
<td>Downregulated</td>
<td>In mouse cells, transcriptional repression mediated through lincRNA–hnRNP-K association to proper genomic localization of hnRNP-K, at repressed genes and regulation of p53-mediated apoptosis. In humans, lincRNA-p21 increases the sensitivity to radiotherapy of CRC. lincRNA-p21 may function as a tumor suppressor gene in UVB-induced nonmelanoma skin cancer.</td>
<td>130,131,159</td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td>LINC-PINT</td>
<td>Downregulated</td>
<td>p53 regulated lncRNA involved in gene expression repression via PRC2. Downregulated in colorectal tumor patient samples.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Liver tumor</td>
<td>HULC</td>
<td>Upregulated</td>
<td>HULC acts as a molecular “sponge”, which downregulates a series of miRNA activities, including miR-372. Inhibition of miR-372 modulates the transcriptional upregulation of HULC in HCC.</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Colon, prostate, liver, osteosarcoma, breast, lung, uterus, pancreas, neuroblastoma, and cervical tumors</td>
<td>MALAT1</td>
<td>Upregulated</td>
<td>MALAT1 is located in nuclear speckles in mouse and human cells; these structures are enriched in poly(A) RNA and are factors involved in mRNA processing, splicing, and the export of mRNA. Critical regulatory function of MALAT1 in lung cancer metastasis and cell migration.</td>
<td>133–135</td>
</tr>
<tr>
<td></td>
<td>Breast, uterus, and ovary tumors</td>
<td>SRA</td>
<td>Upregulated</td>
<td>SRA activates various nuclear receptors, such as glucocorticoid and ERs. SRC1, which has histone acetyltransferase activity, and releases HDAC, activating transcription. SRA expression in primary breast tumors can predict clinical outcomes in ER+ breast cancer patients.</td>
<td>136,137</td>
</tr>
<tr>
<td></td>
<td>Breast, colorectal tumors</td>
<td>HOTAIR</td>
<td>Upregulated</td>
<td>HOTAIR promotes selective retargeting of PRC2 and H3K27me3 of genes implicated in inhibiting breast cancer progression. HOTAIR is upregulated in breast tumors and metastases.</td>
<td>138,139</td>
</tr>
<tr>
<td></td>
<td>Prostate cancer</td>
<td>PCAT-1</td>
<td>Upregulated</td>
<td>PCAT-1 expression produces a functional deficiency in homologous recombination through its repression of the BRACA2 tumor suppressor.</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Prostate cancer</td>
<td>ANRIL</td>
<td>Upregulated</td>
<td>ANRIL is associated with PRC1 complex recruitment to the INK4b/ARF/INK4, a tumor suppressor locus by specifically binding to CBX7, which methylated H3k27 and transcriptionally silenced INK4b/ARF/INK4.</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>NSCLC</td>
<td>TUG1</td>
<td>Downregulated</td>
<td>p53-regulated TUG1 is a growth regulator, which acts in part through the control of HOXB7 expression by PRC2 gene repression.</td>
<td>142</td>
</tr>
<tr>
<td>Genetic disorders</td>
<td>HCC</td>
<td>HOTTIP</td>
<td>Upregulated</td>
<td>HOTTIP and HOXAI3 upregulation is associated with metastasis and survival in HCC patients.</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Silver–Russell, Beckwith–Wiedemann syndrome</td>
<td>KCNQ1 OT1</td>
<td>Imprinting defect</td>
<td>KCNQ1 OT1 is found in the KCNQ1 locus. This locus consists of several protein-coding genes, specifically expressed from the maternal allele, and the paternally expressed lncRNA gene KCNQ1 OT1. This lncRNA interacts with methyltransferases, G9 and PRC2, playing an important role in transcriptional repression of the KCNQ1 locus.</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Facioscapulohumeral muscular dystrophy</td>
<td>DBE-T</td>
<td>Gain</td>
<td>DBE-T recruits the trithorax group protein Ash1L to the FSHD locus driving the histone H3K36me2-active histone mark, resulting in the lost silencing of FSHD locus by polycomb repression.</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Duchenne muscular dystrophy</td>
<td>LINC-MD1</td>
<td>Downregulated</td>
<td>LINC-MD1 “sponges” miR-133 and miR-135 to regulate the expression of MAML1 and MEF2C, transcription factors that activate muscle-specific gene expression.</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Diabetes</td>
<td>HYMAI</td>
<td>Lack of imprinting</td>
<td>Abnormal imprinting of chromosome 6q24, which encompasses the cell cycle regulator, ZAC/PLAG1, and the lncRNA, HYMAI.</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Neurodegenerative disorders</td>
<td>TUNA</td>
<td>Upregulated</td>
<td>TUNA interacts with the RBPs PTBP1, hnRNP-K and nucleolin, promoting H3K4me3-active chromatin mark labeling, inducing gene expression of target genes. TUNA is highly expressed in the thalamus and striatum, supporting a possible association with this disease.</td>
<td>147</td>
</tr>
</tbody>
</table>

(Continued)
LncRNA	Molecular mechanism/role in disease	Reference
BACE1-AS | Downregulated | 148
NAT-Rad18 | Upregulated | 149
ATXN8OS | 17A overexpression enhanced the secretion of amyloid | 150
GOMAFU | elevated BACe1-AS increases BACe1 mRNA stability resulting in additional amyloid | 151
naPINK1 | Upregulated | 152
Rad18 antisense transcript downregulates the expression of DNA repair protein, Rad18. | 153
ATXN8OS | Upregulated | 154

Evolution and conservation of IncRNAs

For decades, only the highly conserved genomic regions encoding for proteins were connected with basic cell functions. The evolutionary history of IncRNAs can therefore provide insights into their functionality. While the nucleotide sequence of protein-coding exons is highly conserved across species, noncoding regions are overall poorly conserved and, if they have some pattern of conservation, it is intermittent. Nevertheless, a clear binary separation between coding and noncoding transcripts can be a hard task. Indeed, the ability of IncRNAs to encode peptides has also been experimentally tested using ribosome profiling and mass spectrometry. These studies have led to the surprising finding that some of the putative IncRNAs may encode small peptides with a low degree of conservation whose functions are still undefined. Independently of whether they may or may not encode for small peptides, it still remains to be shown how many of the thousands of IncRNAs identified are functional.

Table 1 (Continued)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Type of disease</th>
<th>LncRNA</th>
<th>Status</th>
<th>Molecular mechanism/role in disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer</td>
<td>Alzheimer</td>
<td>ATXN8OS</td>
<td>Upregulated</td>
<td>ATXN8OS results from a noncoding CUG expansion RNA; this lncRNA could be involved in toxic gain-of-function mechanisms of SC-A8 pathogenesis.</td>
</tr>
<tr>
<td>Alzheimer</td>
<td>Alzheimer</td>
<td>BACe1-AS</td>
<td>Upregulated</td>
<td>Elevated BACe1-AS increases BACe1 mRNA stability resulting in additional amyloid.</td>
</tr>
<tr>
<td>Parkinson</td>
<td>Parkinson</td>
<td>NAT-Rad18</td>
<td>Upregulated</td>
<td>17A overexpression enhanced the secretion of amyloid β and regulated GABA alternative splicing and signaling by decreasing GABA B receptor 2 transcription.</td>
</tr>
<tr>
<td>Alzheimer</td>
<td>Alzheimer</td>
<td>nRNA1</td>
<td>Upregulated</td>
<td>17A overexpression enhanced the secretion of amyloid β and regulated GABA alternative splicing and signaling by decreasing GABA B receptor 2 transcription.</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>Schizophrenia</td>
<td>COMARU</td>
<td>Upregulated</td>
<td>Overexpression enhanced the secretion of amyloid β and regulated GABA alternative splicing and signaling by decreasing GABA B receptor 2 transcription.</td>
</tr>
</tbody>
</table>

Abbreviations: IncRNA, long noncoding RNA; CRC, colorectal cancer; lincRNA, long intergenic noncoding RNA; UvB, ultraviolet B; miRNA, microRNA; HCC, hepatocellular carcinoma; polA, polymerase alpha; mRNAs, messenger RNAs.
Long noncoding RNAs

Figure 1 Prediction of lncRNA gene organization by different NGS methodologies.

Notes: H3K4me3 and H3K36me3 ChIP-seq signals indicate the position of the TSS and gene body, respectively. RNA Pol II ChIP-seq defines a wide peak along the complete gene body related to active transcription. CAGE indicates the position of the 5' cap of transcripts, while 3P seq peaks mark 3' polyadenylation sites. Total RNA-seq supports the information to reconstruct exon-intron lncRNA organization.

Abbreviations: Pol, polymerase; CAGE, cap analysis of gene expression; 3P seq, poly(A)-position profiling by sequencing; RNA-seq, RNA sequencing; EST, expressed sequence tag; RefSeq, reference sequence; NGS, next-generation sequencing; ChIP-seq, chromatin immunoprecipitation sequencing; TSS, transcription start sites; lncRNA, large noncoding RNA.

Figure 2 Increase in the number of lncRNA along animal evolution.

Notes: The number of lncRNA per species is represented in bars; data from Necsulea et al.47

Abbreviations: lncRNA, large noncoding RNA; MYA, million years ago.

For instance, in the case of Xist, the lncRNA responsible for X chromosome inactivation and dosage compensation in mammals. The Xist sequence contains several repeat domains. Among them are Rep-A, originated by an ERVB5 insertion, and Rep-C and Rep-F, originated by ERVB4 and DNA

the TE families, human endogenous retrovirus (ERV) is the most overrepresented in lncRNAs.50,51 It has been proposed that TE may have played a major role in the generation of alternative promoters, and thus of novel lncRNAs.50,52,53 The contribution of TE insertions to lncRNA function is known, for instance, in the case of Xist, the lncRNA responsible for X chromosome inactivation and dosage compensation in mammals. The Xist sequence contains several repeat domains. Among them are Rep-A, originated by an ERVB5 insertion, and Rep-C and Rep-F, originated by ERVB4 and DNA
transposon insertions, respectively. While Rep-A interacts with the polycomb repressive complex 2 (PRC2) and acts as bait for X chromosome heterochromatin formation, Rep-C is responsible for specific binding to the transcription factor YY1, which tethers Xist to the inactive X nucleation center, and Rep-F is responsible for Jarid2 binding and subsequent PRC2 recruitment. Therefore, TE not only may have provided a mechanism for the origin of new transcripts, but they also constitute functional elements of lncRNAs.

Structural features of lncRNAs

The evolutionary conservation patterns of lncRNAs have been studied in sequence terms, but it is plausible that lncRNAs are conserved at a structural level, as the structure is most likely a key determinant for lncRNA function. However, the knowledge of the structure and folding of large molecules of RNA is nearly inexistent, and probably represents one of the major limitations when studying lncRNA biology. Computational methods have been developed to predict the secondary structure of RNAs, where the most frequently used are based on free energy, phylogenetic and machine-learning approaches, or various combinations of these three. However, as of today, it is nearly impossible to predict the structure of long RNAs. For example, a lncRNA of 2,200 nt in length has approximately 10^{208} possible predicted secondary structures. Experimental structural analyses are therefore more reliable than predictions, although they are quite challenging when dealing with long RNA molecules containing flexible and locally structured domains. Nowadays, there are less than a dozen RNAs over 200 nt in size, whose structures have been solved in a crystallographic manner. For instance, thermodynamic algorithms combined with probing have been able to unveil the 16S rRNA structure. In the case of small molecules of RNA (<500 nt), the methodology of choice is selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE)-seq, which produces measurements of local nucleotide flexibility and, with subsequent data analysis, predicts RNA secondary structures. However, when dealing with larger molecules (>500 nt), the SHAPE profile often corresponds to a large number of different folds, complicating its interpretation. For example, approximately 45 RNA structure predictions are available for the steroid receptor RNA activator lncRNA, which has a length of 874 nt. An adapted experimental approach has been developed to solve the structure of longer RNAs. This approach combines the conventional SHAPE analysis of the full-length RNA with overlapping smaller fragments of the same RNA, defining the RNA in subdomains, followed by studies using in-line probing, dimethyl sulfate probing, or RNase V1 digestion. These structural analyses are, without a doubt, a crucial step to establishing the connection between lncRNA structure and function.

Experimental approaches for the functional study of lncRNAs

The elucidation of the role of lncRNAs represents a major challenge; as in most cases, it is unclear in what direction the investigation should focus. One approach to predict the putative function of lncRNAs uses “guilt-by-association”. This method associates lncRNAs with biological processes based on a common expression pattern across cell types and tissues of protein-coding genes and lncRNAs. In line with this observation, it has been shown that the promoters of lncRNAs, similarly to those of protein-coding genes, are subjected to regulation by transcription factors, which are the upstream controllers of biological pathways. In some cases, a coordinated expression between lncRNAs and neighbor protein-coding genes has also been observed. Although this correlation could indicate an activity in cis of the lncRNA, it is not higher than the correlation found for pairs of neighbor protein-coding genes.

The results of this computational approach can lead to the conclusion that the vast majority of lncRNAs are associated with specific biological functions, an observation that could be used as a starting point for hypothesis generation that can then be confirmed by experimental analyses. For this, several methodologies have been developed and adapted for the study of lncRNAs, as will be explained.

Loss-of-function studies

Loss-of-function studies are crucial in order to address the role of lncRNAs. Among all strategies used for the inhibition of RNA levels in cells, post-transcriptional silencing with small interfering RNAs is the most widely used. This approach can be applied for the depletion of lncRNAs, although in many cases it has been shown to be inefficient. It has been argued that the predominantly nuclear localization of some lncRNAs impedes their targeting by RNA interference (RNAi) machinery, which is mainly localized to the cytoplasm of the cell. Alternative approaches can be used, such as antisense oligonucleotides (ASOs) or gapmers (Figure 3), which bind to the target RNA, forming a DNA/RNA hybrid and promote RNA cleavage by RNase H, which is present in the nucleus. Other RNase H-independent antisense DNA molecules that are used to knockdown spliced lncRNAs are the morpholinos or locked nucleic acid ASOs,
which target the splice sites, blocking RNA processing into the functional spliced form. However, all these oligonucleotide-based techniques share limitations with RNAi technology (Figure 3); knockdown is incomplete, it diverges between experiments and laboratories, and it has unpredictable off-target effects. Furthermore, these techniques only provide temporary inhibition, which limits the loss-of-function analysis to a transient system.

In order to avoid these limitations, gene-targeted knock-out technology provides a powerful tool for elucidating the function of lncRNA in vivo. It has been applied for the generation of 18 lncRNA knockout mouse strains by removing the entire genomic loci containing the lncRNAs and replacing them with a lacZ reporter cassette. Beyond classical gene knockout approximations, genome editing can nowadays be performed in a fast and efficient way thanks to the development of strategies that allow for the targeting of nucleases to specific gene loci. Such techniques include programmable site-specific zinc-finger nucleases, transcription activator-like effector nucleases (TALENs), and clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas9) (Figure 3). The design of the strategy for lncRNA targeting should take into account whether the transcription of the lncRNA requires silencing, or if the entire lncRNA gene has to be deleted. The silencing can be achieved through different strategies, including the deletion of the promoter region, or the targeted interruption between the promoter and the RNA sequence through the insertion of a polyadenylation signal or by an engineered inversion of the promoter. In all these scenarios, the possible reorganization of regulatory elements in the DNA has to be taken into account to be minimized.

Gain-of-function studies

When a lncRNA exerts its functions in trans — ie, it acts distantly from the lncRNA genomic locus — the ectopic expression of the RNA may be able to mimic the function...
of the endogenous RNA. LncRNA overexpression (either transient or stable) requires the cloning of its sequence into an appropriate vector. For this approach it is important to take into account the architecture of the vector of choice, and to be aware of the possible additional sequences added to the lncRNA that may affect its structural features and result in experimental artifacts.

As an alternative to the use of expression vectors, lncRNA can be overexpressed from its endogenous locus, an approach that could be useful for both cis- and trans-acting lncRNAs. For instance, the TALEN methodology has been employed to insert a strong promoter upstream of the lncRNA CCAT1-L, which is able to drive its overexpression from the endogenous locus.79

Visualization of IncRNAs
To study IncRNA localization at the subcellular level by fluorescent in situ hybridization can provide important information regarding the cellular role of IncRNAs, indicating the number of RNA molecules present in different subcellular compartments. Currently, the most frequently used methods can be classified in two categories.80

Direct detection by tiling the sequence with multiple antisense labeled probes
This method employs a set of short single-stranded DNA oligonucleotides complementary to various regions of the target RNA, each labeled with one or more fluorescent moieties.80 This technique is able to simultaneously detect multiple RNA molecules in single cells, even in small cells such as the yeast Saccharomyces cerevisiae, using optical super-resolution microscopy and combinatorial labeling with the use of spectrally distinguishable fluorescent moieties.81

Detection by signal amplification
In order to detect lowly expressed or short RNA molecules, it may be necessary to amplify the signal. To this end, DNA polymerase and circular templates are used to locally create long, repetitive, single-stranded DNA tracts in situ, which can be targeted with short oligonucleotide probes.82 While amplification methods are capable of detecting short and low abundant RNAs, they are limited to only one fluorophore and cannot be directly applied for lncRNA quantification.

Determination of IncRNA molecular interactions
Both cis- and trans-acting IncRNAs have been shown to work in cooperation with proteins.83 Similarly, the interplay between chromatin and other RNA molecules is required for the function of some IncRNAs.84-86 The identification of the factors with which IncRNAs establish specific interactions is therefore crucial to understand the mechanism of IncRNAs. In recent years, new methodologies have been developed in order to obtain information about the binding of lncRNAs to gene loci and proteins. Several of these methods are based on the precipitation of the endogenous RNA by DNA biotinylated capture-oligonucleotides coupled with chromatin purification and high-throughput DNA sequencing. Such techniques include chromatin isolation by RNA purification (ChIRP), capture hybridization analysis of RNA targets (CHART), and RNA purification (RAP).87-89 In each of these methodologies, different data processing is used to discriminate between specific trans-DNA binding sites and trivial events.87-89 More recently, a variation of the RAP protocol named RAP-RNA has been implemented to identify RNA–RNA complexes through in vivo cross-linking, RNA capture with antisense biotinylated DNA oligonucleotides, and massive scale RNA-seq.90 The most commonly used methods, including those for the detection of lncRNA–chromatin, lncRNA–protein, and lncRNA–RNA interactions, are summarized in Table 2.

Mechanisms and functions of IncRNAs
LncRNAs are highly heterogeneous molecules and can act at multiple levels to affect gene expression. While a significant number of lncRNAs have been suggested to interact with chromatin-remodeling complexes, driving them to specific genomic loci, others have been implicated in the architectural conformation and activity of transcriptional enhancers.91,92 In other cases, IncRNAs have been shown to interfere with the transcriptional machinery, or even to maintain the structure of nuclear speckles.91,92 Furthermore, some lncRNAs have been shown to act post-transcriptionally as regulators of splicing, mRNA decay, protein translation, protein stability, or as molecular decoys for microRNAs.93 LncRNAs can be classified depending on the cellular compartment where they carry out their functions.

IncRNAs with nuclear functions
Trans-acting IncRNAs: interfacing with chromatin complexes and nuclear architecture
A significant number of nuclear IncRNAs has been shown to function in cooperation with chromatin modifiers, regulating distantly located genes at the epigenetic level. Some of these IncRNAs have been involved in transcriptional activation.
Table 2 Experimental methods for the study of lncRNAs

<table>
<thead>
<tr>
<th>Technique</th>
<th>Method</th>
<th>Bait</th>
<th>Cross-linking</th>
<th>Interaction</th>
<th>Technical concept</th>
<th>Scope</th>
<th>Output</th>
<th>Limitations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>nRIP-seq</td>
<td>Immunoprecipitation</td>
<td>Protein</td>
<td>No</td>
<td>Indirect/direct</td>
<td>Capture the transcriptome of a RBP</td>
<td>Genome wide</td>
<td>Study interactions between RBP and their targets</td>
<td>Distinguish between direct and indirect interactions</td>
<td>95</td>
</tr>
<tr>
<td>CLIP-seq</td>
<td>Immunoprecipitation</td>
<td>Protein</td>
<td>UV 254 nm</td>
<td>Direct</td>
<td>Protein–RNA covalent binding in living cells</td>
<td>Genome wide</td>
<td>Identifying protein–RNA interactions in vivo</td>
<td>Inability to identify the precise nucleotide site</td>
<td>155</td>
</tr>
<tr>
<td>PAR-CLIP</td>
<td>Immunoprecipitation</td>
<td>Protein</td>
<td>UV 365 nm</td>
<td>Direct T/C or G/A</td>
<td>Protein–RNA covalent binding more specific thanks to efficient cross-linking 4-SU or 6-SG</td>
<td>Genome wide</td>
<td>Cells labeled with 4-SU or 6-SG to proteins results in thymidine to cytidine, and guanosine to adenine, respectively</td>
<td>Reverse transcription to pass through the amino acid covalently bound to RNA at the cross-linking site. Often, cDNAs are prematurely truncated immediately before that nucleotide</td>
<td>156,157</td>
</tr>
<tr>
<td>iCLIP</td>
<td>Immunoprecipitation</td>
<td>Protein</td>
<td>UV 254 nm</td>
<td>Direct; bound to barcode sequence</td>
<td>Cleavable adaptors are ligated after reverse transcription allowing RT products to be circularized</td>
<td>Genome wide</td>
<td>Individual nucleotide resolution</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>RNA pulldown</td>
<td>Affinity</td>
<td>IncRNA</td>
<td>Optional</td>
<td>Direct</td>
<td>Aptamers (MS2, biotin) fused to lncRNAs to successfully pull down RNP complexes</td>
<td>Single interaction</td>
<td>Enrichment of low abundant targets, isolation of intact complex, compatible with immunobloting of mass spectrometry</td>
<td>Chemical modifications and fusion of affinity tags to RNA may lead to structural perturbations avoiding proper folding of the RNA required for RNA–protein interactions. Interactions produced in vitro may not reflect the true nature of complexes formed in vivo</td>
<td>98,99,159,160</td>
</tr>
<tr>
<td>In vivo capture of RBPs</td>
<td>Mass spectrometry</td>
<td>poly(A) mRNAs</td>
<td>UV 254 nm</td>
<td>Direct</td>
<td>UV cross-linking-oligonucleotide dT pulldown-mass spectrometry</td>
<td>Genome wide</td>
<td>mRNA interactome capture identifies 860 proteins that qualify as RBPs in human cells</td>
<td>Identify RBP that bind to RNA without poly(A)</td>
<td>161</td>
</tr>
<tr>
<td>ChiRP</td>
<td>Affinity</td>
<td>DNA</td>
<td>Glutaraldehyde</td>
<td>Direct</td>
<td>Biotinylated antisense DNA overlapping probes that hybridize to a target RNA to purify the endogenous RNA and its associated genomic DNA</td>
<td>Genome wide</td>
<td>LncRNA occupancy map and chromatin state maps can clarify the order of the regulatory cascade</td>
<td>Only provides information of enrichment values at each genomic locus, but not about the stoichiometry</td>
<td>87</td>
</tr>
</tbody>
</table>

(Continued)
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Method</th>
<th>Bait</th>
<th>Cross-linking</th>
<th>Interaction</th>
<th>Technical concept</th>
<th>Scope</th>
<th>Output</th>
<th>Limitations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHART</td>
<td>Affinity</td>
<td>DNA</td>
<td>Formaldehyde</td>
<td>Direct</td>
<td>Biotinylated antisense DNA probes designed in RNA-accessible domains detected by mapping assay using RNase H. Oligonucleotides hybridize to a target RNA to purify the endogenous RNA and its associated genomic DNA.</td>
<td>Genome-wide uncovering of DNA binding sites of lncRNAs. Reduces the number of false-positive interactions.</td>
<td>Only provides information on the enrichment values at each genomic locus, but not about the stoichiometry.</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>ChIRP-domain</td>
<td>Affinity</td>
<td>DNA</td>
<td>Glutaraldehyde–formaldehyde</td>
<td>Direct</td>
<td>Captures endogenous RNA-chromatin interactions in living cells using the ChIRP approach and then analyzes the RNA in separate domains to explore the function of each segment</td>
<td>Genome-wide</td>
<td>Reveals lncRNA architecture and function with precision and sensitivity</td>
<td>Only provides information on the enrichment values at each genomic locus, but not about the stoichiometry.</td>
<td>162</td>
</tr>
<tr>
<td>RAP</td>
<td>Affinity</td>
<td>AS-RNA</td>
<td>Disuccinimidyl glutarate–formaldehyde</td>
<td>Direct</td>
<td>120 nt antisense RNA overlapping biotinylated probes tiled across the entire length of the target RNA.</td>
<td>Genome-wide</td>
<td>Capture lncRNA even in the case of extensive protein–RNA interactions, RNA secondary structure, or partial RNA degradation.</td>
<td>Only provides information on the enrichment values at each genomic locus, but not about the stoichiometry.</td>
<td>89</td>
</tr>
<tr>
<td>RAP-RNA</td>
<td>Affinity</td>
<td>AS-RNA</td>
<td>Disuccinimidyl glutarate–formaldehyde–aminomethyltrioxsalen</td>
<td>Indirect/direct</td>
<td>120 nt antisense RNA overlapping biotinylated probes tiled across the entire length of the target RNA.</td>
<td>Genome-wide</td>
<td>Identify direct and indirect RNA–RNA interactions of a target lncRNA by in vivo cross-linking, RNA capture with antisense oligonucleotides and high-throughput RNA sequencing.</td>
<td>Only provides information of RNA enrichment values, but not about RNA stoichiometry.</td>
<td>90</td>
</tr>
</tbody>
</table>

Abbreviations: lncRNA, large noncoding RNA; nRiP-seq, native RNA immunoprecipitation sequencing; RBP, RNA binding protein; CLiP-Seq, Cross-linked immunoprecipitation sequencing; UV, ultraviolet; PAR-CLiP, photoactivatable-ribonucleoside-enhanced cross-linking immunoprecipitation; 4-SU, 4-thiouridine; 6-SG, 6-thioguanosine; cDNA, complementary DNA; iCLiP, individual-nucleotide resolution cross-linking and immunoprecipitation; RT, reverse transcription; mRNA, messenger RNA; poly(A), polyadenylation; ChIRP, chromatin isolation by RNA purification; CHART, capture hybridization analysis of RNA targets; RAP, RNA purification; AS, antisense.
For instance, the lncRNA Mistral (Mira) recruits the H3K4 methyltransferase MLL1 and activates the expression of the HOXA6-7 locus (Figure 4). However, the majority of the reported chromatin-interacting lncRNAs are found to bind to repressive chromatin modifiers, such as PRC2 or H3K9 methyltransferases. In several cases, the interaction of the lncRNAs with the chromatin complexes is required for the repression of specific gene loci. For example, the lncRNA HOX transcript antisense RNA (HOTAIR) is expressed from the HOXC gene cluster and represses the HOXD locus by interacting with the chromatin complexes PRC2 and LSD1. Also, Pint is a lncRNA that is able to promote PRC2-dependent repression of specific genes of the p53 pathway (Figure 4).

An emerging theme is the role that lncRNAs may play as structural elements, contributing to the nuclear architecture. Firre, a lncRNA located on the X chromosome, regulates transgenomic regions in cooperation with hnRNPU (Figure 4), a protein also previously shown to be associated with proper localization of Xist and the formation of highly structured chromatin territories. Also, the highly expressed nuclear lncRNAs, NEAT1 and MALAT1, have been related to nuclear architecture. Although their exact function remains unknown, NEAT1 has been previously shown to contribute to nuclear paraspeckle formation (Figure 4), while MALAT1 has been shown to interact with several splicing factors influencing alternative splicing of pre-mRNAs (Figure 4). In a recent study, it has been reported that both lncRNAs are co- and mutually regulated, and they are found to be associated to 314 genomic sites, connected to histone modifications associated with active chromatin. Furthermore, a different study has reported that MALAT1 interacts with many nascent pre-mRNAs at active gene loci, suggesting the possibility that MALAT1 could recruit different RNA-processing proteins to these genomic sites. Finally, it has been suggested that NEAT1

Figure 4 Mechanisms of nuclear trans-acting lncRNAs.
Notes: (A) NEAT1 is localized in nuclear paraspeckles where splicing factors are located and regulate nascent mRNAs. (B) MALAT1 is a nuclear speckle component, which interacts with nascent RNAs and splices regulatory proteins. (C) Firre is transcribed from Chr X and binds hnRNPU to interact with other genomic regions located in different chromosomes. (D) Pint interacts with PRC2 to mediate the deposition of the H3K27me3 mark to silence the expression of genes on the p53 pathway.
Abbreviations: Pol, polymerase; mRNA, messenger RNA; MALAT1, metastasis associated lung adenocarcinoma transcript 1; NEAT1, nuclear enriched abundant transcript 1; Chr, chromosome; PINT, p53 induced noncoding transcript; PRC2, polycomb repressive complex 2; lncRNA, large noncoding RNA.
and MALAT1 could act as the scaffolds that contribute to the assembly of DNA–RNA–protein interactions at specific transcribed locations. A question that remains open is whether these lncRNAs are able to directly interact with DNA or act as bridging molecules between proteins and DNA.

Cis-acting lncRNAs: genomic imprinting, dosage compensation, and enhancer functions

RNA molecules considered to act in cis are those involved in the regulation of neighbor gene expression either via direct binding and chromatin structure modification or by recruiting chromatin-associated proteins that modify the chromatin state of the vicinity region. Some of the classical examples of lncRNAs that act in cis are Airn and Kcnq1ot1, which are involved in genomic imprinting or dosage compensation.55,107,108 These two lncRNAs share some features: both are paternally expressed and repress the adjacent protein-coding gene. However, in the case of Airn, the lncRNA itself may not be required for gene silencing in cis. It has been shown that Airn can be replaced by an unrelated sequence, which still retains the same silencing activity on the neighbor gene. Transcription of the RNA, independent of its sequence, causes transcriptional interference and a lack of expression of the neighbor gene in the absence of repressive chromatin.109

In mammals, the process of dosage compensation, an epigenetic mechanism that has evolved to equalize X-linked gene expression between males and females, is regulated by the lncRNA Xist. Xist is expressed from one of the two female X chromosomes, and it induces chromatin changes on the X chromosome that is going to be inactivated; thus, the transcription of the majority of genes is silenced.110 Xist initiates X chromosome inactivation by spreading in cis across the future inactive X chromosome, recruiting PRC2, and forming a transcriptionally silent nuclear compartment enriched for repressive chromatin modifications including H3K27me3.111,112 As previously discussed, these functions of Xist (localization to chromatin and the silencing of gene expression) are mediated by distinct RNA domains: transcriptional silencing requires the A-repeat domain, which interacts with the PRC2 chromatin regulatory complex; whereas localization to chromatin requires several distinct domains and interactions with proteins associated with the nuclear matrix.55,113,114

Other nuclear cis-acting lncRNAs have been shown to carry activating functions as enhancer RNAs – ie, to promote the transcription of neighboring genes.6 Within this subset, two types of lncRNAs have been described: activating ncRNAs (ncRNA-a) and enhancer RNAs (eRNAs). ncRNA-a are included in the lncRNA category, and are expressed as independent transcription units with the typical chromatin signature of polymerase II transcripts (H3K4me3 at the promoter and H3K36me3 at the elongated region), predominantly spliced and polyadenylated.9,23,115,116 On the other hand, eRNAs are expressed from distal regulatory elements with typical enhancer chromatin marks (H3K4me1). Although responsive to stimulus-dependent activation, they contain a mixture of nonpolyadenylated and polyadenylated unspliced transcripts.27,117 While the differences between ncRNA-a and eRNAs at the biogenesis level are still unclear, at the functional level, both promote the activation of protein-coding genes localized in their vicinity.9 One study has shown that the ncRNA-a7 (also called LINC00651) promotes the formation of a chromatin loop between the long ncRNA locus and the regulated promoter, an interaction that requires the Mediator complex.118 Other studies have shown that lncRNAs could be involved in HOX gene-positive regulation, such as HOTTIP.21 HOTTIP is expressed from the 5′ end of the HOX4 locus and activates the expression of HOX4 genes by interacting with the WDR5/MLL complex through chromatin loop formation.23,94 The MLL complex catalyzes H3K4me3, the histone mark associated with active transcription.94

However, it still remains to be determined whether other RNAs with enhancer-like activity are required for the establishment of the long-range chromatin interaction, or if these interactions are independent of RNA expression.

lncRNAs with cytoplasmic functions

LncRNAs that function through RNA–RNA interactions

While several of the best-known lncRNAs exert their functions in the nucleus of the cell, other functional lncRNAs are localized in the cytoplasm and regulate gene expression at the post-transcriptional level.36,95 Some of the cytoplasmic lncRNAs have been reported to work through RNA–RNA interactions. Sequence complementarity-mediated interactions allow for the regulation of mRNA stability, transport, translation, and so on by lncRNAs. Cytoplasmic lncRNAs containing Alu short interspersed elements (SINE) have been named half-STAUI-binding site RNAs (1/2-sbsRNAs). Their mechanism of action is mediated by the repeated element, which forms imperfect complementary RNA duplexes with Alu elements of the...
3′ untranslated regions of target mRNAs and recruit the double-stranded RNA binding protein Staufen1, which targets mRNA for degradation. Thus, mRNA degradation is mediated by lncRNAs, which promote the recruitment of proteins to mRNAs that mediate their decay. In contrast, other lncRNAs, such as lncRNA–UCHL1, enhance mRNA translation. LncRNA–UCHL1 expression is induced by mTOR and shuttled to the cytoplasm where, via an antisense complementary to the UCHL1 AUG initiation codon and combined inverted SINEB2 domains, it increases UCHL1 protein synthesis.

The classic example of post-transcriptional gene regulation is that mediated by miRNAs. However, target mRNAs are not the only molecules containing miRNA-binding sites in their sequence. Also, ncRNAs, including lncRNAs, pseudogenes, and circular RNAs, compete for shared miRNAs, reducing their capability for acting on mRNAs. This functional category of ncRNAs has thus been named competing endogenous RNAs (ceRNAs). The extent of this type of regulation and the competing capability of the ceRNAs are still unknown, but some ceRNAs are preserved during evolution, denoting a regulatory role to control mRNA homeostasis and thus to enhance ceRNA crosstalk. For instance, lnc-MD1 is a lncRNA with ceRNA activity involved in muscle differentiation. It interacts with miR-133 and miR-135 to promote the upregulation of MAML1 and MEF2C, which are transcription factors targeted by these microRNAs that play a key role in muscle-specific gene expression.

lncRNAs that function through protein–protein interactions

As previously discussed, both cis- and trans-acting lncRNAs, independent of their subcellular localization, can work in cooperation with proteins by recruiting, assembling, scaffolding, or regulating their stability. LncRNAs may either contribute to or inhibit the formation of macromolecular complexes by allowing or blocking protein–protein interactions. Additionally, some lncRNAs act as regulators of protein post-translational modifications. This is the case of Inc-DC, a lncRNA unique to human dendritic cells. Depletion of Inc-DC affects the differentiation process of monocytes to dendritic cells. Lnc-DC interacts with signal transducer and activator of transcription 3 (STAT3) in the cytoplasm, and allows for STAT3 phosphorylation at Tyr705 by hindering STAT3 binding to SHP1, a protein with tyrosine phosphatase activity. STAT3 is phosphorylated and then translocated to the nucleus where it acts as a transcription factor.

In summary, lncRNAs present high functional versatility, which likely relies on their ability as long RNA molecules to acquire different structures and molecular interactions.

Conclusion and perspectives

The identification of thousands of lncRNAs involved in many aspects of gene expression has changed our perspective and understanding of basic processes of cell biology. These discoveries have also added a new level of complexity to the structural organization, function, and evolution of the genome. Interestingly, despite being functional genes, most lncRNAs present with poor conservation, even among phylogenetic closely related species. This suggests that the highly accelerated evolution of ncRNA regions could be related to the development of complex structures, such as the brain. The origin and evolution of lncRNAs will therefore be an active focus of research in this area.

Despite the rapid increase in the catalog of functions reported for lncRNAs, one of the current challenges is to identify the sequence and structural elements that allow long RNA molecules to carry out their cellular functions. Technological advances are needed to perform reliable computational predictions and experimental validation of lncRNAs’ secondary structures and putative binding partners, including other nucleic acids and proteins.

One of the most recurrent themes regarding lncRNA functionality is their involvement in transcription regulation by interacting with chromatin complexes and changing the chromatin state of the target gene loci. However, one of the questions that remains unanswered is how lncRNAs recruit the chromatin-remodeling complexes and establish interactions with DNA. The application of methodologies that identify genome-wide DNA binding sites and protein partners of lncRNAs to a larger number of lncRNAs will predictably allow us to infer the principles that govern the function of lncRNAs at this level.

Another technical advancement that will undoubtedly foster our knowledge of lncRNA functions is the possibility of performing gene editing in a fast and easy manner with the TALEN or CRISPR/Cas9 methodologies. Not only can these tools facilitate the generation of animal models, but they could also be used in combination with RNAi or ASOs to understand whether a given lncRNA is a functional molecule, or if the functionality is contained in the act of transcription or in the DNA regulatory elements of its sequence. A systematic and rigorous experimental analysis is needed to avoid incorrect conclusions that could mislead future research.
Knowing that IncRNAs are involved in the pathogenesis of many syndromes and diseases allows for the possibility of developing new therapies and diagnostic methods centered on IncRNAs. Some of the features of IncRNAs as regulatory molecules, such as their ability to modulate specific facets of cellular pathways and their highly specific expression patterns, represent opportunities for the development of less toxic and targeted therapies. Predictably, future advances in IncRNA research will clarify our current view of the noncoding genome, and it will provide scientists with new perspectives for biotechnological and clinical applications.

Acknowledgments

OMB and MH are supported by the European Research Council Starting Grant 281877 and the Spanish Ministry of Science Grants BFU2011-23485 and SRY/C11001008347XV0.

Disclosure

The authors report no conflicts of interest in this work.

References

Advances in Genomics and Genetics 2015:5

