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Abstract: The development of chemotherapeutic resistance is a major challenge in oncology. 

Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 

overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate 

(S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the 

progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may 

represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway 

may be an effective anticancer therapeutic strategy, particularly in the context of overcoming 

drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR 

signaling in cancer and development of SK1 inhibitors.
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Introduction
Cancer is a prominent killer. Oncologists rely heavily on chemotherapy in the fight 

against cancer. However, some patients exhibit chemotherapeutic resistance, which 

makes chemotherapy ineffective, resulting in unrestrained metastasis and ultimately, 

death. Thus, there is a need to study the mechanisms underlying the development of 

chemotherapeutic resistance so that effective therapies can be developed for patients 

who show signs of chemotherapeutic resistance.

SK1 and cancer transformation
Sphingosine kinase 1 (SK1) has well-established prosurvival functions in cancer 

cells. Indeed, the transformation potential of SK1 suggests that it may function as an 

oncogene.1 The SK1 enzyme is activated by an oncogenic form of eukaryotic elonga-

tion factor 1A lacking a GDP-GTP binding domain, called PTI-1, and SK1 activation 

is required for PTI-1-induced neoplastic transformation.2

SK1 activity is increased when it is phosphorylated on its Ser225 residue by ERK-2.3 

Furthermore, phosphorylation of SK1 at Ser225 is important for its expression in the 

plasma membrane, and targeting of SK1 to the plasma membrane increases SK1’s 

capacity to promote transformation.4 Indeed, artificial targeting of tagged S225A 

SK1 mutant protein to the plasma membrane promotes transformation. CIB1, aka 

calmyrin, has also been shown to facilitate SK1 translocation to the plasma membrane 

through its involvement in a calcium-myristoyl switch.5 The Asn89 and Thr54 resi-

dues of SK1 are also important contributors to SK1’s selective affinity to the plasma 

membrane. Specific interaction with the phosphatidyl serines in these residues makes 

sphingosine available for generation of sphingosine-1-phosphate (S1P) by SK1. S1P 

released into the extracellular milieu engages with sphingosine-1-phosphate receptors 
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(S1PRs) to induce prosurvival functions.6 There are five G 

protein-coupled receptors (S1PR1–5), and these are activated 

in an autocrine/paracrine manner.

Researchers have examined the potential role of SK1 

in regulating neoplastic transformation in SK1-transfected 

NIH3T3 fibroblasts and found that SK1 transfection increases 

the transformation rate of these fibroblasts into fibrosarcoma 

cells.4 These findings are consistent with the notion that SK1 

supports cancer transformation and tumor cell survival.1 

SK1 is also required for Ras-mediated cell transformation. 

The messenger (m)RNA and protein expression levels of 

SK1 are two- to eightfold greater in various cancer tissues 

(eg, breast, lung, ovarian, stomach, and colon cancers) 

than in noncarcinoma control tissues. Moreover, growing 

evidence suggests that increased expression of SK1 is asso-

ciated with enhanced metastasis, decreased survival, and 

poor prognoses,7–9 suggesting that SK1 may be useful as a 

biomarker of prognosis.8,9 Moreover, small interfering (si)

RNA-mediated downregulation of SK1 has been reported to 

reduce migration of breast cancer cells, implicating SK1 as 

a potential therapeutic target.10,11

SK1’s role in cancer progression, 
metastasis, and apoptosis
S1P, the product of SK1, binds tumor necrosis factor 

receptor-associated factor, an E3 ubiquitin ligase that modu-

lates tumor necrosis factor-α-induced activation of NF-κB 

signaling and induces K63-mediated polyubiquitination of 

receptor-interacting protein 1, leading to IκB degradation.12 

S1P regulation of NF-κB signaling is consistent with the notion 

that SK1/S1P may be involved in cancer progression.

Growing evidence points to a role of SK1-derived systemic 

S1P in mediating tumor metastasis. A recent finding suggests 

that serum S1P (not tumor S1P) is important for metastasis to 

the lungs. In addition, the anti-S1P antibody Sphingomab™ 

has been reported to suppress lung metastasis by neutralizing 

both circulating and systemic S1P, and upregulating breast 

cancer metastasis suppressor 1 levels. Expression of breast 

cancer metastasis suppressor 1 is upregulated in cancer cells 

under conditions of systemic SK1 deficiency, through activa-

tion of the S1PR2 signaling pathway.13,14 These findings sug-

gest that the SK1 signaling pathway blockade may represent 

a promising strategy for inhibiting metastasis.

S1P stimulates fibrosarcoma cell migration via activation 

of GTPases (eg, RAC1 and CDC42).15,16 Interestingly, S1P 

facilitates the migration of S1PR3-expressing gastric cancer 

cells but suppresses the motility of cell lines with predomi-

nant SIPR2 expression.17 Meanwhile S1PR1 and S1PR3 have 

been implicated in ovarian cancer cell invasion, through 

activation of calcium mobilization and phospholipase C.18 

S1P binding to S1PR3 was shown to stimulate the accumu-

lation of phosphorylated ERK-1/2 into membrane ruffles/

lamellipodia and promote the migration of MCF-7 breast 

cancer cells.19 Elimination of SK1 resulted in reduced S1PR3 

expression and attenuated ERK-1/2 pathway stimulation, 

leading to a lesser cancer cell migration. These findings 

suggest that regulation of S1PR3 expression, in particular, 

may help control metastasis.

SK1 has also been shown to exert antiapoptotic 

effects through the BAD-BCL2 pathway, wherein mito-

chondrion-to-cytoplasm translocation of Smac/DIABLO and 

cytochrome c, which is important for apoptosis, is inhibited.20 

Additionally, SK1 has been reported to protect against the 

apoptotic effects of sphingosine/ceramide via a delayed 

BCL2-independent pathway.21 Thus, expressing high levels 

of SK1 appears to shield cancer cells from apoptosis.

SK1 and cancer prognosis
Elevation of SK1 in tumors suggests a potential prognostic 

application. Increases in SK1 protein and mRNA expression 

accompany breast cancer progression. By way of an appar-

ent negative feedback process, HER2-induced increases in 

SK1 levels result in reduced HER2 expression in estrogen 

receptor (ER)-positive breast cancer cells, thereby preventing 

S1P-induced migration of these cells.19 Meanwhile, high SK1 

expression levels in ER-negative breast cancer tumors have 

been associated with tamoxifen resistance, a higher chance of 

metastasis, and reduced survival.19,22,23 Furthermore, patients 

with ER-positive breast cancer who had high ERK-1/2 and 

cytoplasmic SK1 levels were found to experience recurrence 

10.5 years earlier, on average, than patients with low levels.22 

Therefore, clinical phenotype is an important consideration 

for the clinical application of SK1 inhibitors.

High SK1 expression has also been associated with poor 

prognosis in patients with a glioblastoma multiforme (aka grade 

4 astrocytoma) diagnosis, and SK1-knockdown can reduce 

proliferation of glioblastoma cells.24 Furthermore, SK is neces-

sary for glioma cell invasion and basal activity of the urokinase 

plasminogen activator system in glioblastoma multiforme.25 

High expression of SK1 also correlates with higher grade and 

shorter survival time in non-small cell lung cancer, gastric 

cancer, non-Hodgkin lymphoma, salivary gland carcinoma, 

esophageal carcinoma, astrocytoma, and head and neck 

squamous cell carcinoma.26–32 Interestingly, exogenous SK1 

has been reported to enhance tumor cell invasiveness despite 

the fact that it is already overexpressed in many cancers.
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Importantly, the relationship between SK1/S1P levels 

and cancer progression may differ between different forms 

of cancer. Although Gleason score and treatment failure rate 

have been found to correlate with tumoral SK1 activity in 

prostate cancer, patients with prostate cancer were found to 

have lower circulating levels of S1P in their erythrocytes than 

healthy controls.33,34 Moreover, decreased circulating S1P has 

been implicated as an early marker of cancer progression 

to hormonal unresponsiveness, and circulating S1P levels 

have been shown to correlate inversely with prostate-specific 

antigen levels and lymph node metastasis.34

Elevated SK1 and chemotherapeutic 
resistance
Overexpression of SK1 may confer the development of 

resistance to chemotherapeutics, whereas disruption of SK1/

S1P signaling may restore or improve sensitivity. The multi-

drug resistant phenotype is associated with an overexpression 

of P-glycoprotein 1 (aka multidrug resistance protein 1) in 

tumor cells. Elevated SK1 has been associated with pancre-

atic cancer cell resistance to gemcitabine and chronic myeloid 

leukemia (CML) resistance to imatinib.35,36 Conversely, SK1 

inhibition can sensitize pancreatic cancer and CML cells 

to the proapoptotic effects of gemcitabine and imatinib, 

respectively, apparently by increasing the ceramide/S1P ratio 

and thereby enabling C18-ceramide-dependent apoptosis to 

proceed.35–37 Thus, the relationship between the SK1/S1P 

pathway and sensitivity of cancer cells to chemotherapeutics 

may be due to a direct relation between bioactive sphingolipid 

levels and drug resistance. Indeed, SK1 has been shown to 

alter imatinib-induced apoptosis in primary CML cells,37 and 

resistance to etoposide- or doxorubicin-induced apoptosis 

can be restored with an SK inhibitor (eg, F-12509a), sup-

porting the notion that chemotherapeutic resistance may be 

the result of reduced ceramide accumulation and sustained 

SK1 activity.38 Attenuation of SK1/S1P signaling can also 

improve the growth-inhibitory effects of nilotinib.39 SK1 

elimination or inhibition has been shown to stimulate apop-

tosis, whereas overexpression of SK1 was shown to reduce 

caspase activity and reduce apoptosis in imatinib-sensitive 

cells.40 Likewise, daunorubicin sensitivity has been associ-

ated with low S1P and high ceramide levels, and it can be 

restored in daunorubicin-resistant cells by inhibition of SK1 

activity or siRNA repression of SK1 expression.40 Consistent 

with these findings, metastatic colon cancer biopsies have 

shown higher SK1 expression than nonmetastatic specimens, 

whereas SK1 expression is negligible to nondetectable in 

normal colon mucosa.41 Importantly, given that colon cancer 

is considered to be a COX2-regulated cancer, knockdown 

of SK1 expression with siRNA reduces expression of COX2 

and production of the COX2 product prostaglandin E2 in 

colon cancer cells.41 PC3 (androgen-insensitive) prostate 

cancer cells been shown to have upregulated SK1 levels and 

S1PR1/S1PR3 signaling, and are resistant to camptothecin 

treatment. However, these cells were shown to become sensi-

tive to camptothecin following inhibition of SK.42 Likewise, 

increased SK1 activity also appears to be related to dauno-

rubicin resistance in leukemia cells, cisplatin resistance in 

lung cancer cells, oxaliplatin resistance in colon cancer cells, 

and N-(4-hydroxyphenyl)retinamide resistance in ovarian 

carcinoma cells, as well as to docetaxel, doxorubicin, and 

tamoxifen resistance in breast cancer cells.37,43–46 Accordingly, 

knockdown or inhibition of SK1 has been reported to enhance 

drug efficacy in leukemia cells, ovarian cancer, and colon 

cancer.38,44,45 Hence, together, the aforementioned findings 

suggest strongly that SK1 plays a biologically significant 

role in chemotherapeutic drug resistance.

Different S1PRs appear to play the dominant the role in 

SK1/S1P-related chemoresistance across different cancers. 

S1PR2 mRNA was found to be elevated in nephroblastoma 

tissue relative to levels in healthy kidney tissue.47 Additionally, 

in nephroblastoma cells, it was shown that S1PR2 overex-

pression resulted in increased mRNA and protein expression 

of COX2 and, correspondingly, increased synthesis of its 

product prostaglandin E2, and these effects could be blocked 

by S1PR2 antagonism, demonstrating that S1PR2 signaling 

is a strong driver of renal cancer progression.47 Meanwhile, 

cytoplasmic expression levels of S1PR1 and S1PR3 in 

ER-positive breast cancer tumors associate negatively with 

patient survival.22 The protective influence of SK1 on prostate 

cancer cells has been shown to involve S1PR2/3 receptors, 

whereas chemoresistance can be attenuated with FTY720, a 

sphingosine analog that inhibits S1PR signaling and induces 

proteasome-mediated degradation of SK1.48

SK1/S1PR targeting in anticancer 
therapeutics
Oncological targeting of SK1/S1P is attractive due to the 

proapoptotic and antiproliferative potential of SK1 inhibition. 

Various SK1/S1P and/or S1PR agents have been developed, 

as elaborated below.

Pan-SK inhibitors
SK inhibition has been shown to reduce the viability of 

glioblastoma multiforme cells, neuroblastoma cells, several 

types of leukemia cells, and various solid tumor cell lines.49–53 
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Importantly, SK inhibitors can, not only inhibit growth of 

temozolomide-resistant49 and camptothecin-resistant cancer 

cells54 but also, can reduce proliferation and induce apopto-

sis in multidrug-resistant tumor cells,7 suggesting they may 

be able to convert chemotherapeutic-resistant tumors into 

chemosensitive tumors. N,N-dimethyl sphingosine (DMS) 

and l-threo-dihydrosphingosine (Safingol) are competitive 

SK inhibitors that have inhibitory influences on protein 

kinase C and ceramide kinase; they activate sphingosine-

mediated targets, such as casein kinase 2 and PI3K.55,56 

DMS, in particular, has been shown to suppress the growth 

of multiple cancer cell lines.57 Reported off-target effects of 

DMS include hemolysis and hepatotoxicity.58

Selective SK inhibitors
With the aim of minimizing the secondary effects of 

chemotherapy, researchers have sought and developed agents 

with more selective effects. The selective SK1 inhibitors 

SK1-I and SK1-II have each been shown to induce apop-

tosis in T-cell large granular lymphocyte leukemia cells 

but not normal cells.53 Likewise, although SK1-I potently 

induces apoptosis in leukemic cells, normal leukocytes are 

relatively spared.52 SK1-I has been shown to have efficacy 

against xenograft glioblastomas as well as orthotopic or acute 

myeloid leukemia xenograft tumors.52,59 Additionally, SK1-I 

has been shown to decrease serum S1P levels, promote cancer 

cell apoptosis, and reduce lymph node and lung metastasis 

in a murine breast cancer model.14 Combining SK1-I with a 

proteasome inhibitor has been reported to yield synergistic 

antigrowth and proapoptotic effects in imatinib-resistant 

leukemia cells, and these effects have been associated with 

downregulation of Mcl-1 and BCR/ABL.60 Meanwhile, 

SK1-II has been shown to induce proteasomal degradation 

of SK1 in androgen-sensitive prostate cancer, breast cancer, 

and human pulmonary artery smooth muscle cells.61

There is great interest in the anticancer potential of 

the synthetic sphingosine analog FTY720 (2-amino-2-

[2-(4-octylphenyl)]-1,3-propanediolhydrochloride), aka 

fingolimod. FTY720 is a competitive sphingosine inhibitor 

of SK1, and its analog (S)-FTY720 vinylphosphonate is a 

noncompetitive inhibitor of SK1. FTY720 and (S)-FTY720 

vinylphosphonate have been reported to stimulate relocal-

ization of actin away from the lamellipodia of breast cancer 

cells, suggesting these inhibitors’ possible application for 

prevention of tumor metastasis.19,62

Although the mechanism of FTY720’s anticancer effects 

has not been clarified, evidence suggests that it may work 

through both caspase-dependent and caspase-independent 

apoptotic pathways. FTY720 has been found to inhibit 

breast and colon cancer cell lines through S1PR-independent 

effects.20 Binding of FTY720-phosphate on T-lymphocytes 

to S1P1 was shown to induce S1P1 downregulation and 

lymphopenia.63 Both FTY720 and its analog (S)-FTY720 

vinylphosphonate were shown to induce proteasomal 

degradation of SK1 and apoptosis in prostate and breast 

cancer cells.48 They also prevented S1P-stimulated actin 

rearrangement in MCF-7 cells.62 FTY720 has been reported 

to increase prostate cancer sensitivity to radiation, and to 

reduce tumor growth and metastasis.64 Meanwhile, SEW2871 

(a S1PR1-specific antagonist) has been shown to suppress 

angiogenesis, indicating a receptor-dependent function.64,65 

Other S1PR1 and S1PR1/3 receptor antagonists, such as 

VPC2309, VPC4416, W146, and VPC25239, have shown 

promising results in situ.66,67

FTY720 is currently Food and Drug Administration 

(FDA)-approved for use as an immunosuppressant in 

patients with multiple sclerosis.63 However, a great deal 

more research is required to delineate the receptor-dependent 

and -independent functions of FTY-720 in the context of its 

reported inhibitory effects on cancer cell proliferation. Syn-

thetic SK1-specific inhibitors, such as 9ab, 6ag, and 12aa, 

have shown promising effects in vitro, but their efficacy has 

yet to be validated in vivo.68

Anti-S1P antibodies
Anti-S1P monoclonal antibodies that specifically neutralize 

and target S1P have been reported to be effective against 

breast MDA-MB-231, lung A549, ovarian SKOV3, and 

melanoma F16/B10 cancer models in vivo and in situ. 

Anti-S1P antibodies, which function somewhat like a 

molecular sponge to neutralize S1P signaling, have been 

reported to favor tumor regression and inhibit lung metastasis 

in xenograft and allograft models. Sphingomab (LT1002) and 

its humanized form (LT1009), not only neutralize VEGF- 

and bFGF-induced angiogenesis but also, block S1-induced 

endothelial cell tube migration and formation in numerous 

assays.69

Conclusion
An accumulation of evidence indicates that the SK/S1P/S1PR 

signaling pathway plays a crucial role in various cancers and 

in sphingolipid-mediated drug resistance. Elevated expres-

sion of SK1 leads to an oncogenic phenotype, through SK1 

effects on S1P production, and sphingosine and ceramide 

accumulation. Conversely, administration of SK1 inhibitors 

induces proteasomal degradation. Therefore, SK1 represents 
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a particularly interesting target for cancer therapy. Targeting 

the SK/S1P/S1PR signaling pathway may be an effective 

anticancer therapeutic strategy, particularly for overcoming 

drug resistance.
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