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Abstract: The growth-associated protein, GAP-43 (also known as F1, neuromodulin, B-50), 

participates in the developmental regulation of axonal growth and neural network formation via 

protein kinase C-mediated regulation of cytoskeletal elements. Transgenic overexpression of 

GAP-43 can result in the formation of new synapses, neurite outgrowth, and synaptogenesis after 

injury. In a number of adult mammalian species, GAP-43 has been implicated in the regulation 

of synaptic transmission and plasticity, such as long-term potentiation, drug sensitization, and 

changes in memory processes. This review examines the molecular and biochemical attributes 

of GAP-43, its distribution in the central nervous system, subcellular localization, role in neurite 

outgrowth and development, and functions related to plasticity, such as those occurring during 

long-term potentiation, memory formation, and drug sensitization.

Keywords: GAP-43, protein kinase C, axons, development, regeneration, long-term potentia-

tion, memory

Molecular and biochemical characteristics
The growth-associated protein (GAP-43) is associated with presynaptic neuronal 

outgrowth and neuronal plasticity in general (Figure 1).1 The GAP-43 gene includes 

three exons.2 The first exon encodes the membrane targeting domain, the second exon 

encodes a calmodulin-binding domain and a protein kinase C (PKC) phosphorylation 

site, while the 5′-flanking sequence directs initiation of RNA transcription from several 

sites.2 Among the various tissue types and cell types that have been examined, GAP-43 

mRNA is expressed only in neurons (Figure 2A).3 Once transcribed, GAP-43 mRNA 

is stabilized by HuD,4 a neuronal-specific RNA-binding protein.5 HuD expression 

increases during brain development, nerve regeneration, and learning and memory 

(Figure 2B),6 suggesting that this protein is important for controlling gene stabiliza-

tion and would therefore also be important for maintaining elevated levels of GAP-43 

mRNA during plasticity-associated processes.7 Overexpression of HuD results in a 

selective increase in GAP-43 mRNA in hippocampal dentate granule cells, neurons in 

the lateral amygdala, and layer V of the neocortex,8 mimicking a state of high plasticity 

(Figure 2B). Experiments have shown that GAP-43 mRNA was more stable in brain 

extracts from HuD transgenic mice than in non-transgenic littermates, indicating that 

HuD can positively affect GAP-43 mRNA stability in vivo.8

The GAP-43 amino acid sequence is hydrophilic,9 with no membrane-spanning 

domains and no sites for glycosylation.10 There is a short hydrophobic amino acid 

sequence segment, indicating that the GAP-43 protein may be anchored on the cyto-

plasmic side of synaptic plasma membranes (see Figures 1 and 2A).10 Palmitoylation of 
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Cys3 and Cys4 may be responsible for localization of the 

protein on the inner surface of plasma membranes (including 

growth cones),11 with initial palmitoylation occurring at the 

endoplasmic reticulum-Golgi intermediate compartment.12

Phosphorylation of GAP-43 is a major factor in its bio-

chemical and physiological activity. The rat GAP-43 protein 

consists of 226 amino acids with a single phosphorylation site 

at Ser41 whereby PKC,13,14 and specifically, PKC-beta,15,16 

can phosphorylate the protein (Figure 1). Calmodulin has 

been shown to inhibit GAP-43 phosphorylation by PKC 

(Figure 2A)9 and when the Ser41 site is changed to aspartate 

to mimic constitutive phosphorylation, calmodulin binding 

by GAP-43 is absent.17 GAP-43 is bound by calmodulin 

when Ca2+ levels are low and is released when Ca2+ levels 

rise (Figure 2A and B),18 suggesting that calmodulin may 

act as a negative regulator of GAP-43 during periods of low 

activity in the neurons.19 One functional outcome of GAP-43 

during activity-dependent increases in Ca2+ levels, when it is 

not bound by calmodulin, may be the regulation of exocytosis 

and endocytosis and synaptic vesicle recycling20 via interac-

tions with synaptophysin,21,22 SNAP-25,23,24 and rabaptin-5 

(Figures 1 and 2B).19,25 When calmodulin dissociates from 

GAP-43, it is free to interact with CamKII, Ca2+/calmodulin-

dependent protein II, leading to phosphorylation of cofilin 

by LIM kinases and neurite outgrowth.26,27

A number of other factors have been shown to modu-

late the phosphorylation of membrane-bound GAP-43. In 

the absence of Ca2+, arachidonic acid has been shown to 

exert a modest effect on the phosphorylation of GAP-43, 

while at Ca2+ levels likely to exist in the nerve terminal 

during enhanced plasticity, arachidonic acid (Figure 2B) 

can increase the sensitivity of GAP-43 phosphorylation 

to Ca2+ and increase the maximal level of phosphorylation 

by 50%.28 The stimulatory effect of arachidonic acid and 

its synergistic interaction with Ca2+ are mediated by PKC 

(Figure 2B).28

Neuroanatomical localization
GAP-43 has been shown to be relatively neuron-specific 

(it has been detected in the plasma membranes of cultured 

neonatal rat cortical astrocytes29,30) with a high density 

in presynaptic terminals (although evidence suggests a 

potential role for GAP-43 in post-synaptic AMPA recep-

tor trafficking31) in both the peripheral and central nervous 

systems. GAP-43 is expressed ubiquitously in the central 

nervous system at high levels during the perinatal period, with 

progressively restricted expression during maturation.32–34

GAP-43 remains present in the mature central nervous 

system in structures known to exhibit high plasticity, such 

as the cerebellum (granule cells35 but not Purkinje cells36), 

neocortex, entorhinal cortex,37 hippocampus, and olfac-

tory bulb.38,39 Dense GAP-43 localization has specifically 

been shown in layer I of the cortex, the CA1 field of the 

hippocampus,40 but not granule cells,36,41 and in a subset 

of subcortical structures42 including the caudate putamen, 

olfactory tubercle,43 nucleus accumbens, bed nucleus of the 
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Figure 1 GAP-43 protein interactions during low- and high-plasticity states. 
Notes: During conditions of low plasticity, GAP-43 remains bound with CaM in the presence of low calcium (Ca2+). in conditions of high plasticity, elevated levels of Ca2+ 
dissociate CaM from GAP-43, allowing phosphorylation by PKC. in this condition, direct neurite outgrowth can be enhanced via interactions with PiP2 and enhanced 
vesicle recycling (endocytosis and exocytosis) can be enhanced vie interactions with synp, rab, and SNAP-25. enhanced neurite outgrowth is also facilitated by pGAP-43 via 
interactions with the GTP-binding protein, Go (Goα) and phosphorylation of pstath. Finally, an indirect effect on neurotic outgrowth occurs via release of CaM and pcof via 
CamKii and LiMk. 
Abbreviations: CaM, calmodulin; LiMk, LiM kinase; PiP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; synp, synaptophysin; rab, rabatin; SNAP-25, 
synaptosomal-associated protein 25; pGAP-43, phosphorylated GAP-43; pstath, phosphorylated stathmin; pcof, phosphorylation of cofilin; CamKII, Ca2+/calmodulin-
dependent protein ii.
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stria terminalis, amygdala, and medial preoptic area of the 

hypothalamus.44

Neurons containing biogenic amines such as the sub-

stantia nigra pars compacta (dopamine), the locus coeruleus 

(norepinephrine), and dorsal raphe (serotonin) exhibit intense 

GAP-43 staining.36,45,46 In cholinergic neurons, the medial 

septum, nucleus basalis magnocellularis, and the vertical 

limb of the diagonal band express intermediate levels, while 

the horizontal limb of the diagonal band and the substantia 

innominata express higher levels of GAP-43.47

Within the brainstem and spinal cord (such as spinal 

motor neurons48,49), GAP-43 is present at all vertebral lev-

els, with higher concentrations in the cervical and thoracic 

regions.50 Densely myelinated regions are low in GAP-43, 

while unmyelinated or lightly myelinated areas, such as the 

substantia gelatinosa of the spinal cord and the nucleus of 
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Figure 2 Functional aspects of GAP-43 in the neuron. 
Notes: (A) During basal synaptic transmission, the HuD protein is not bound to GAP-43, decreasing its stability and keeping protein levels low. GAP-43 bound of CaM 
precludes its plasticity-permissive functions. (B) During high-plasticity states, HuD binds to and stabilizes GAP-43 mRNA, thereby elevating protein levels. in the presynaptic 
terminal, GAP-43 phosphorylation by PKC facilitates neurite outgrowth and vesicle recycling, thereby leading to enhanced neurotransmitter release (glutamate). This 
enhanced glutamate release liberates post-synaptic AA and DAG which can facilitate pre-synaptic phosphorylation of GAP-43.
Abbreviations: AA, arachidonic acid; CaM, calmodulin; DAG, diacylglycerol; LTP, long-term potentiation; PKC, protein kinase C; SNAP-25, synaptosomal-associated protein 25.
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the solitary tract, express high levels of GAP-43.51 Electron 

microscopic examination has revealed that GAP-43 is 

localized in small myelinated and unmyelinated fibers 

and in terminals that make single axodendritic or axoso-

matic synapses.50 At this ultrastructural level, GAP-43 

labeling is most prevalent in small unmyelinated axons 

(0.12–0.15 microns in diameter) and small (0.35 microns) 

axon terminals that contain round vesicles and form asym-

metric synapses with thin spines.52

Cellular localization
GAP-43 is present throughout the neuron but at higher lev-

els in axon terminals and growth cones. GAP-43 is absent 

from dendrites and myelinated axons, as indicated by double 

labeling with antibodies against microtubule-associated pro-

tein 2 and the large neurofilament protein.43,53 When cultured 

neurons begin to extend neurites, the cell body shows diffuse 

(decreased) GAP-43 staining while the growing tip of the 

neurites (ie, growth cone) shows elevated, punctate GAP-43 

staining.14 That GAP-43 is localized to the inner surface of 

the growth cones was shown on positive immunostaining only 

after permeabilization of the plasma membrane.14 Showing its 

neuron-specificity, the GAP-43 antibody used did not label 

Schwann cells or fibroblasts.14

GAP-43 contributes to neuronal growth and nerve termi-

nal plasticity.54 GAP-43 appears critical for stimulus-induced 

nerve sprouting at the neuromuscular junction; an effect that 

may occur via promotion of F-actin accumulation.55 GAP43 

accumulates at subplasmalemmal rafts where it can regulate 

actin activity via modulation of PI(4,5)P2.56 Utilization 

of in vivo lentiviral-mediated gene silencing in the olivo-

cerebellar system to downregulate GAP-43 climbing fibers 

resulted in atrophy of climbing fibers, measured as a decrease 

in length, branching, and number of synaptic boutons.57

Relationship to development
In animal studies, expression of GAP-43 during develop-

ment appears to vary depending on brain region.58 In the 

cerebellum, GAP-43 mRNA expression appears to be criti-

cal in granule cell differentiation/migration and in parallel 

and climbing fiber axonal outgrowth and synaptogenesis.59 

During development, cerebellar GAP-43 mRNA expression 

increases from birth to postnatal day (PND)7, then gradually 

declines during maturation.59 By PND21, GAP-43 mRNA 

expression is localized to the internal granule layer and the 

inferior olive, with minimal to no hybridization in the deep 

cerebellar nuclei and none in the molecular layer (similar to 

the adult).59 In the auditory brainstem, high levels of GAP-

43 protein are evident in all subdivisions of the cochlear 

nuclear complex and the superior olivary complex at PND0.60 

Between PND8 and PND12, the GAP-43 staining pattern 

in these regions became punctate, indicating the formation 

of presynaptic endings. By PND16, the auditory brainstem 

nuclei appear mostly devoid of GAP-43 immunoreactiv-

ity, with the exception of staining localized to presynaptic 

terminals.60 In the cat visual cortex, phosphorylation of 

GAP-43 increased approximately 10-fold from PND1 

to weeks 3–13 (the critical period of synaptic plasticity) 

then decreased to 2.5-fold of PND1 by week 51.61 Protein 

quantification of GAP-43 in the cortex and hippocampus 

was elevated at PND14 and PND21 during an active period 

of synaptogenesis.62 Evidence from this study showed that 

GAP-43 is highly expressed in immature growing axonal 

terminals with decreased expression during the maturation 

process, showing an inverse relationship with synapsin or 

synaptotagmin expression.62 In the optic nerve and optic fiber 

layer of the retina, GAP-43 staining was high at PND0 then 

disappeared between PND8 and PND16.63

At the developmental cellular level, GAP-43 appears to be 

involved in neurite outgrowth via the amplification of path-

finding signals from the growth cone.64 Six days after plating 

cells, GAP-43 labeling was shown to be clustered in growth 

cones, and by 10 days cell body labeling was lost, while at 

20 days the neuritic and growth cone labeling was reduced.65 

GAP-43 expression in adult olfactory neurons resulted in 

numerous primary olfactory axons with enlarged endings, 

providing in vivo evidence for a role of GAP-43 in nerve fiber 

formation and axon morphology determination.66 The level of 

GAP-43 expression and axonal growth during development 

may be dually controlled by activity-independent transcrip-

tional processes and by activity-dependent, N-methyl-D-

aspartate (NMDA) receptor-mediated post-transcriptional 

mechanisms.67

Several factors have been shown to interact with 

GAP-43 during neurite outgrowth. In PC12 pheochromo-

cytoma cells, induction of a neuronal phenotype by nerve 

growth factor is accompanied by a marked increase in 

GAP-43 levels.68 Induction of GAP-43 by nerve growth 

factor is apparent after 3 hours of exposure and reaches 

maximal levels at 24 hours.69 GAP-43-transfected PC12 

cells show an enhanced response to nerve growth factor, 

suggesting that GAP-43 may respond to extrinsic growth 

factors to modulate neurite extension.70 Neural cell adhesion 

molecule (NCAM)-mediated fibroblast growth factor recep-

tor activation in cerebellar granule cells is associated with 

increased GAP-43 phosphorylation on Ser41 and neurite 
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outgrowth, whereas neither NCAM nor fibroblast growth 

factor was able to stimulate neurite outgrowth following 

GAP-43 gene deletion.71 Newly formed synapses show a 

dramatic decrease in palmitoylation of GAP-43 early in the 

critical period,72 which may be sufficient to stop advanc-

ing axons, suggesting a developmental switch for GAP-43 

S-palmitoylation that may be required to disengage the 

molecular machinery for axon extension.72 GAP-43 has 

been shown to amplify extracellular signals via an inter-

action with the GTP-binding protein, Go (Figures 1 and 

2B), increasing the sensitivity of Go, thereby altering the 

predilection for neuronal outgrowth.73–75

Relationship to regeneration
GAP-43 synthesis is upregulated in association with nerve 

regeneration, potentially recapitulating an early developmen-

tal program.3 While endogenous GAP-43 is downregulated 

in mouse motor nerves and neuromuscular junctions during 

the second postnatal week, it is re-expressed during regen-

eration and potentiates nerve sprouting.76 After cutting or 

crushing the sciatic nerve in adult rats in vivo, it takes 3 days 

for GAP-43 immunoreactivity to appear in the axotomized 

dorsal root ganglion cells followed by transport into the 

newly formed sprouts.77,78 The intensity of staining peaks 

at 21 days and becomes undetectable 9 weeks following 

crush injury and 36 weeks following cutting of the sciatic 

nerve.78 Downregulation of GAP-43 was reported to result in 

a significant decrease in newly formed branches in climbing 

fibers after laser axotomy. GAP-43 mRNA downregulation 

also hampered the generation of reactive sprouts, showing a 

requirement for GAP-43 in promoting the initiation of axonal 

regrowth after axotomy.79

GAP-43 mRNA and protein increase following periph-

eral deafferentation of the olfactory epithelium and after 

olfactory bulbectomy, and are associated with formation of 

immature olfactory receptor neurons.80 GAP-43 immunore-

activity was shown to be increased 3 weeks after binocular 

retinal lesions in adult cats in the part of the dorsal lateral 

geniculate nucleus that represents this region of the retina.81 

Following axotomy in the medial forebrain bundle, GAP-43 

immunoreactivity is associated with catecholaminergic and 

serotonergic axonal sprouts that regenerate around the surgi-

cal lesion.82 Removal of cochlear neurons in adult rats leads 

to emergence of GAP-43 immunoreactivity in varicose fibers 

of the ipsilateral ventral cochlear nucleus and cell bodies of 

the lateral superior olive.83 Following stroke, optogenetic 

neuronal stimulation in the ipsilesional primary motor cor-

tex promotes functional recovery associated with improved 

cerebral blood flow and increased expression of numerous 

activity-dependent neurotrophins, such as brain-derived 

neurotrophic factor, nerve growth factor, and GAP-43.84

In the adult rat brain, levels of GAP-43 immunoreactivity 

in layer IV of the barrel receptor field are moderate in the 

interbarrel septa and low within the barrels themselves.85 

Changes in the pattern of GAP-43 immunoreactivity were 

analyzed 1–8 weeks after unilateral vibrissectomy to exam-

ine the effect and time course of removal of all but the C3 

vibrissa on GAP-43 immunoreactivity. The C3 area that was 

GAP-43-immunonegative showed a decrease in total area 

from 8.4% 1 week after vibrissectomy to a 12% decrease 

8 weeks after surgery relative to the control ipsilateral cortex. 

This suggests a GAP-43-mediated axonal sprouting process 

within the barrel cortex, whereby GAP-43-positive terminals 

encroach on areas of GAP-43 absence.85 In a second study, 

GAP-43 mRNA was analyzed in the barrel cortex in adult 

rats that underwent unilateral vibrissectomy with sparing 

of the C3 vibrissa.86 GAP-43 levels were elevated by 25% 

compared with the non-lesioned side for 6 days following 

surgery, then decreased to 88% at 7 days and returned to 

control levels by 14 days.86

Reports have revealed alterations in the pattern of GAP-43 

protein levels in the hippocampus during reactive synapto-

genesis following lesions of the perforant pathway.70 Changes 

in the synthesis and transport of GAP-43 in entorhinal cortex 

neurons and the perforant pathway were assessed during 

lesion-induced sprouting and reactive synaptogenesis.87 

Following unilateral entorhinal cortex lesions in adult rats, 

there was a 2-fold (100%) increase in transport of newly 

synthesized GAP-43 to the contralateral or “sprouting” hip-

pocampus. This upregulation occurred between 6 and 15 days 

after damage and coincided with the growth of presynaptic 

terminals during sprouting.87

Aside from structural/neuronal damage leading to reac-

tive axonal sprouting and associated elevations in GAP-43, 

the excitotoxicity process can lead to GAP-43-dependent 

sprouting independent of neuronal damage. In one such 

study,88 hypersynchronous activity in the hippocampus led to 

expression of GAP-43 mRNA in dentate gyrus granule cells 

followed by reactive sprouting in the granule cell axons (also 

known as mossy fibers). Twelve hours after subcutaneous 

injection of kainate, GAP-43 mRNA expression was evident 

in granule cells (where expression is normally absent in 

the adult brain), and 2 days after treatment (up to 40 days), 

GAP-43 protein immunoreactivity and mossy fiber sprout-

ing within the supragranular layer were observed. As stated, 

these events are similar to those seen after neuronal damage 
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leading to axonal regeneration, with one difference being that 

granule cell axons were not damaged by kainite.88

Relationship to long-term 
potentiation (LTP)
One cellular process underlying synaptic plasticity is LTP, 

which has been shown to engage, and be intricately related 

to, alterations in GAP-43 levels and phosphorylation.89 In 

the intact rat hippocampus, there was a selective increase 

in the in vitro phosphorylation state of GAP-43 5 minutes 

after induction of LTP that was directly related to the change 

in synaptic efficiency.90 Low-frequency, non-potentiating 

stimulation resulted in no change in GAP-43 phosphoryla-

tion. In vivo phosphorylation of GAP-43 was increased in 

the synaptic membranes of the mossy fiber CA3 pyramidal 

neurons at 1 and 5 minutes after tetanic stimulation, but 

not at 60 minutes, suggesting a role for GAP-43 phospho-

rylation in the induction but not maintenance of LTP at the 

mossy fiber synapse.91 This GAP-43 phosphorylation was 

shown to occur independent of the NMDA receptor, to be 

mediated by PKC, and to be inhibited in the presence of 

calmodulin.91 Dorsal hippocampal tissue extracted from 

animals 3 days following induction of LTP in granule cells 

by stimulation of the perforant pathway showed enhanced 

phosphorylation of GAP-43 compared with tissue from low-

frequency stimulated controls.92 Perforant path LTP in the 

intact mouse hippocampal dentate gyrus increased GAP-43 

mRNA in hilar cells 3 days after tetanus, but not in granule 

cells.93 The LTP-induced GAP-43 mRNA elevation in hilar 

cells was positively correlated with the level of potentia-

tion and blocked by pretreatment with the NMDA receptor 

antagonist, DL-aminophosphonovalerate.93 The phospho-

rylation state of GAP-43 was monitored after induction of 

LTP in the CA1 field in rat hippocampal slices and revealed 

increased phosphorylation 10–60 minutes following LTP 

induction but not after 90 minutes.94 The increased GAP-43 

phosphorylation was not observed when LTP was blocked 

with DL-aminophosphonovalerate or when tetanic stimula-

tion failed to induce LTP.94,95 At 1 hour, but not at 2 hours 

after LTP, GAP-43, and PKC-gamma mRNA hybridization 

were increased.96 A related study showed decreased levels 

of GAP-43 gene expression in the CA3 subfield and both 

PKC-beta and PKC-gamma 3 days after LTP induction.97 

Alterations in GAP-43 mRNA and PKC-gamma were highly 

correlated. The authors suggested that lowered expression of 

GAP-43 at 3 days would reduce potential growth, leading to 

synaptic stabilization in stimulated pathways.97 Injection of 

monoclonal antibodies that inhibited PKC phosphorylation 

of GAP-43 was shown to prevent induction of LTP in CA1 

pyramidal neurons in rat hippocampal slices.98

Overexpression of a constitutively phosphorylated form 

of GAP-43 results in an enhancement of LTP in hippocam-

pal slices in the CA1 region associated with an increase in 

presynaptic paired-pulse facilitation.99 LTP enhancement 

was not observed in transgenic mice overexpressing a non-

phosphorylatable form of GAP-43 nor in GAP-43-deficient 

mice.99 Others have suggested that presynaptic phosphoryla-

tion of GAP-43 may be affected by retrograde messengers 

produced postsynaptically following NMDA receptor 

activation that diffuse to activate PKC.100 In this regard, 

application of arachidonic acid at concentrations that produce 

LTP significantly increased translocation of PKC immuno-

reactivity from cytosol to membrane and phosphorylated 

GAP-43 observed in hippocampal synaptosomes, suggesting 

that arachidonic acid may contribute to LTP maintenance 

by activation of presynaptic PKC and phosphorylation of 

GAP-43 (Figure 2B).100

Relationship to memory storage
Given the relationship of GAP-43 with LTP, it is of no 

surprise that changes in levels of GAP-43 (whether decre-

ments or increments) have been shown to be associated 

with memory storage processes in adult animals. In one 

such example, heterozygous GAP-43 knockout mice with 

GAP-43 levels reduced by one half showed impaired memory 

for a shock-paired context.101 In this study, there were no 

decrements in cued shock-conditioning nor decrements 

on tests of nociceptive or auditory perception, indicating 

that the contextual memory impairment was not based on 

impaired sensory or performance factors.101 Using a similar 

behavioral procedure (contextual fear conditioning), sus-

tained phosphorylation of GAP-43 in the hippocampus was 

noted for 1.5–72 hours after training.102 At early time points 

after contextual fear conditioning training (15–90 minutes), 

PKC-alpha and PKC-gamma translocated to the membrane, 

while PKC-betaII and PKC-epsilon moved more transiently 

(15–30 minutes) to the cytosol.102

Three lines of transgenic mice have been developed, 

each with a particular manipulation of the PKC phospho-

rylation site:103 G-Phos overexpresses the phosphorylatable 

and dephosphorylatable form of chick GAP-43 (the native 

protein; no mutation); G-Perm overexpresses chick GAP-43 

that is permanently pseudophosphorylated; and GNonP 

overexpresses nonphosphorylatable GAP-43. The overall 

behavioral memory functions associated with each of these 

lines has been reported;104 G-Phos mice showed enhanced 
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spatial flexibility on a water maze task; G-Perm mice showed 

memory persistence as evidenced by their inability to extin-

guish a classically conditioned fear response; and G-NonP 

mice showed retention deficits in their ability to recall spatial 

information on a water maze task. In another study, G-Phos 

mice alone were more fully tested for their ability on the water 

maze spatial task.105 These G-Phos mice could be divided at 

the behavioral level into “spatial bright” and “spatial dull” 

groups based on their water maze task performance and 

GAP-43 protein levels in the hippocampus. G-Phos dull 

mice showed both acquisition and retention deficits on the 

fixed hidden platform task, but were able to learn a visible 

platform task while G-Phos bright mice showed memory 

enhancement relative to wild-type on a more difficult movable 

hidden platform spatial memory task. In the hippocampus, the 

G-Phos dull group showed a 50% greater transgenic GAP-43 

protein level and a 2-fold elevated transgenic GAP-43 mRNA 

level than that measured in the G-Phos bright group. While 

overexpression of GAP-43 would normally be predicted to 

enhance memory function, in the case of G-Phos dull mice, 

it could be the case that high levels of GAP-43 protein 

aggregate in presynaptic terminals leading to impoverished 

synaptic vesicle recycling, deficient neurotransmitter release, 

and impaired memory function.

Two other studies have examined the relationship of 

GAP-43 levels with neuronal restructuring after memory 

formation. In the first study, rats that were tested for their 

retention of a spatial memory task after a 30-day delay exhib-

ited increased GAP-43 labeling in the anterior cingulate cortex 

as compared with the 1-day retention group.106 In a second 

study, mice were trained for 5 days on one of three different 

versions of the water maze task. High-resolution magnetic 

resonance imaging analysis revealed structural expansion in 

the hippocampus of mice trained on the spatial version of the 

task that was correlated with GAP-43 protein staining.107

Relationship to drug-induced 
synaptic plasticity
Changes in phosphorylation of GAP-43 have been demon-

strated in other forms of behavioral plasticity, such as those 

associated with drug use.108 Following one injection of 

amphetamine, GAP-43 phosphorylation was increased in rat 

striatum and persisted for 1 week.109 In cultured PC12 cells, 

repeated intermittent amphetamine treatment (5 minutes a 

day for 5 days) induced neurite outgrowth that was associated 

with an increase in the level of GAP-43 staining.110 A single 

exposure to cocaine 20 mg/kg induced locomotor sensitiza-

tion to an injection of cocaine 10 mg/kg that was observed at 

24 hours, 48 hours, and 7 days, with an associated increase 

in mRNA GAP-43 in the shell and core subregions of the 

nucleus accumbens and in the ventral tegmental area.111 

Administration of a single intraperitoneal dose of ethanol 

(2.5 g/kg, 15% in saline) resulted in a decrease in GAP-43 

mRNA level 2 hours after administration, with subsequent 

decreased GAP-43 and phosphorylated GAP-43 immuno-

reactivity 4 hours after administration in the perforant and 

mossy fiber pathways.112

Conclusion
Activity of GAP-43, whether mRNA elevations or phospho-

rylation of the protein, is intricately involved in presynaptic 

plasticity as occurs during developmental outgrowth of 

neurites, elevated following neuronal injury in the course of 

axonal regeneration, and tightly linked with memory pro-

cesses for the period of reorganization of neural networks. 

These functions are in part due to regulation and distribution 

of GAP-43 mRNA at the molecular level and PKC-dependent 

phosphorylation at the biochemical level. Utilization of this 

knowledge may open up future directions for targeted treat-

ments of developmental disorders, memory dysfunction, and 

neuronal injury.
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