Microbiologic spectrum and susceptibility of isolates in delayed post-cataract surgery endophthalmitis

Animesh Jindal1
Avinash Pathengay1
Subhadra Jalali2
Annie Mathai3
Rajeev Reddy Pappuru2
Raja Narayan3
Jay Chhablani2
Savitri Sharma2,4
Taraprasad Das2,3
Harry W Flynn Jr5

1L V Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India; 2Srimati Kannuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, KAR Campus, Hyderabad, India; 3L V Prasad Eye Institute, Bhubaneswar Eye Institute, Bhubaneswar, Odisha, India; 4Jhaveri Microbiology Centre, L V Prasad Eye Institute, KAR Campus, Hyderabad, India; 5Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA

Abstract: The objective of this study was to evaluate the microbiological spectrum and antimicrobial susceptibility of isolates in delayed post-cataract surgery endophthalmitis. A retrospective review of 33 consecutive patients with culture proven delayed post-cataract surgery endophthalmitis was done from January 2006 to March 2013. There were 22 bacterial and eleven fungal cases. Common isolates were Streptococci (seven cases), coagulase-negative staphylococci (five), Gram-negative bacilli (seven), Nocardia (two), Aspergillus (five), Candida (five). Gram-positive cocci were most susceptible to vancomycin and gatifloxacin (91.7%). Gram-negative isolates were most susceptible to ofloxacin (85.7%). Fungi being slow growing organisms are an important cause of delayed post-cataract surgery endophthalmitis.

Keywords: delayed endophthalmitis, microbiology, antibiotic sensitivity

Introduction

Endophthalmitis is a serious vision threatening complication of cataract surgery. It can be classified into two broad categories: acute-onset and delayed-onset. According to endophthalmitis vitrectomy study, infection occurring within 6 weeks after cataract surgery was defined as acute-onset and after 6 weeks as delayed-onset.1 These two categories differ in their microbiological spectrum.2

The purpose of the current study was to investigate the spectrum of organisms causing culture proven delayed post-cataract surgery endophthalmitis and their antimicrobial susceptibilities at our center between 2006 and 2013 and compare it with available western literature.

Methods

This was a retrospective, non-comparative, consecutive case series. Microbiology records were reviewed of all the culture proven delayed post-cataract surgery endophthalmitis cases treated at L V Prasad Eye Institute, Hyderabad, India between January 2006 and March 2013. The study was approved by the institutional review board and adhered to the guidelines of the Declaration of Helsinki.

Vitreous samples from all patients had been investigated for bacteria and fungus using institutional protocol. Bacterial isolates were identified using Analytical Profile Index system until 2010 and Vitek-2 compact system (bioMérieux, Craponne, France), thereafter. The susceptibility was determined by the Kirby-Bauer disk diffusion method. Fungal species were identified based on their colony and microscopic characteristics. Susceptibilities for fungal isolates were not performed.
The microorganisms in delayed post-cataract surgery endophthalmitis are believed to be less virulent as indicated by its insidious onset and low grade of inflammation. In most of the studies published in the literature, Propionibacterium acnes were most commonly isolated from the vitreous samples. P. acnes were not isolated from any sample. One of the reasons for this could be that anaerobic culture was not done in all cases. From India, there are mostly case reports on delayed-onset post-cataract surgery endophthalmitis, but it is not possible to comment on the incidence of P. acnes in the current study. The frequency of microorganisms isolated in various geographic regions, being slow growing organisms, is consistent with other studies from the same geographic region. Fungi, being slow growing organisms, are the frequent cause of delayed-onset endophthalmitis. In the current study, fungal isolates were noted in 21.2% of the cases. Isolates included 12 (36.4%) Gram-positive cocci, one (3.0%) Gram-positive bacilli, seven (21.2%) Gram-negative bacilli, and eleven (33.3%) fungi (Table 1).

Most common isolates identified were coagulase-negative staphylococci and gram-positive cocci. The antimicrobial susceptibility of the organisms is comparable to that of the same organisms in different clinical settings and delayed-onset post-cataract surgery endophthalmitis studies are given in Table 2. The susceptibility of the organisms is comparable to that of the same organisms in different clinical settings and delayed-onset post-cataract surgery endophthalmitis studies. The susceptibility tests not performed.
endophthalmitis in the same geographic region.7,8 Gram-positive organisms are most susceptible to vancomycin and Gram-negative organisms to fluoroquinolones and ceftazidime. Low susceptibility of Gram-negative organisms to amikacin was due to \textit{B. cepacia} being the most common cause and they have been shown to be less susceptible to amikacin as compared to ceftazidime and ciprofloxacin.9

This is the first study from India on the antimicrobial spectrum and antimicrobial susceptibility of delayed post-cataract surgery endophthalmitis. Less virulent and slow growing organisms like coagulase negative staphylococci and fungi are the most common causative agents of delayed-onset endophthalmitis.

Disclosure
The authors report no conflicts of interest in this work.

References

Table 2 Microbiologic comparison of delayed-onset endophthalmitis studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates</td>
<td>33</td>
<td>26</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>\textit{Propionibacterium acnes}</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Fungal species</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gram-positive species</td>
<td>13</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Gram-negative species</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>\textit{Mycobacteria}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\textit{Nocardia}</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mixed</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>