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Abstract: New therapies for metastatic breast cancer patients are urgently needed. The long-term 

survival rates remain unacceptably low for patients with recurrent disease or disseminated 

metastases. In addition, existing therapies often cause a variety of debilitating side effects that 

severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality 

in which interest continues to build due to their ability to spare normal tissue while selectively 

destroying tumor cells. A number of different viruses have been used to develop oncolytic agents 

for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, 

reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent 

safety records and evidence of efficacy. However, the impressive tumor responses often observed 

in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic 

virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated 

in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being 

developed to target metastatic breast cancer.
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Introduction
Metastatic breast cancer is currently incurable. Advances in detection and treatment 

have improved the overall outlook for breast cancer patients in recent decades. Survival 

rates approach 100% when the disease is localized at diagnosis but are ,25% for 

patients with distant metastases.1 Despite continued improvements in patient care, 

survival rates have not changed appreciably in the past 20 years. It is therefore evident 

that metastasis to vital organs remains the key limitation in the clinical management 

of breast cancer. Currently used therapies can cause debilitating side effects and are 

limited in their effectiveness against metastases. This point is illustrated by two recent 

studies showing an increased long-term risk of heart disease in breast cancer patients 

treated with standard therapies.2,3 Additionally, patients aggressively treated with 

chemotherapy often suffer cognitive impairments sometimes referred to as “chemo 

brain”.4,5 Treatment of patients with metastatic disease is usually palliative, as aggres-

sive tumors acquire resistance to established therapies. Therefore, there is a dire need 

for therapies that avoid risks of long-term toxicities and eliminate, or at least control, 

metastatic disease. Recently, it has been proposed that the current system of clinical 

trials for metastasis be revised to allow earlier interventions of combinatorial therapies.6 

This view reflects the current prevailing notion that metastasis may be preventable if 

critical points along the metastatic cascade can be blocked. While prevention strate-

gies are a worthy pursuit, the fact remains that these strategies do not offer benefits to 
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patients with existing metastases. Tumor heterogeneity and 

the complexity of the tumor microenvironment mean that a 

“magic bullet” cure for breast cancer is unlikely. Rather, it is 

becoming increasingly clear that combinations of therapies 

will be necessary to yield therapeutic success.

Oncolytic viruses hold promise as potential therapeutics.7 

A tumor-destroying (oncolytic) virus is naturally selective or 

genetically engineered to selectively replicate in and destroy 

tumor cells while sparing normal cells.8 During transfor-

mation, tumor cells acquire a variety of defects that make 

them particularly susceptible to oncolytic viruses, including 

overexpression of certain cell surface antigens, deficiencies in 

the interferon response, resistance to apoptosis, and increases 

in nucleotide synthesis, protein synthesis, and cell cycling 

pathways.9 Through multiple cycles of tumor cell infection, 

lysis, and spread to adjacent cells, an oncolytic virus has the 

potential to spread throughout and destroy an entire tumor. 

An oncolytic virus is perhaps an ideal therapeutic strategy 

for metastatic cancer due to a multimodal mechanism of 

action. Oncolytic viruses can directly destroy tumor cells, 

destroy tumor vasculature, and provoke antitumor immune 

responses. Moreover, oncolytic viruses can be “armed” with 

anticancer transgenes to enhance efficacy or can be combined 

with existing therapies such as small molecule inhibitors, 

chemotherapy, or radiation. Though the concept of treating 

cancer with viruses is decades old, it is only in recent years 

that advances in genetic engineering have allowed the field 

to truly mature.10 A diverse array of oncolytic viral platforms 

has been described in the literature, and this is an active area 

of investigation for breast cancer and other tumor types.7,8 

Those most commonly used as oncolytic viruses include both 

DNA viruses (adenovirus, herpes simplex virus [HSV], and 

vaccinia virus) and RNA viruses (measles virus, reovirus, 

and Newcastle disease virus [NDV]). A literature search for 

“oncolytic virus” reveals that the annual number of publi-

cations in this field has approximately tripled over the past 

decade, highlighting the increasing interest in this potential 

treatment. In the context of this interest, it has been sug-

gested that oncolytic virotherapy may come to represent a 

“fourth front” in the war against cancer, to complement the 

established treatment modalities of surgery, chemotherapy, 

and radiation.11

Armed oncolytic viruses
A variety of viral types have shown an ability to replicate 

in breast cancer cells and suppress tumor growth in vivo by 

viral replication alone. However, many investigators have 

sought to enhance the efficacy of an oncolytic viral platform 

by “arming” the virus with anticancer transgenes targeting 

directly to cancer cells or the tumor microenvironment. To 

date, these efforts have largely involved the application of 

transgenes with broad anticancer activity rather than being 

specific to breast cancer. Factors chosen to target the tumor 

microenvironment have been shown to be advantageous in 

several settings. Gholami et al12 recently described a vaccinia 

virus that expresses a single chain antibody against vascular 

endothelial growth factor (VEGF). Due to the resultant 

antiangiogenic ability, this virus was shown to exhibit higher 

antitumor activity than a control virus in a murine model 

of triple-negative breast cancer. The oncolytic adenovirus 

AdEHE2F expresses two inhibitors of angiogenesis: soluble 

Flt-1 to inhibit VEGF receptor activity and a soluble extracel-

lular domain of Delta-like 4 to inhibit Notch signaling and thus 

limit endothelial maturation. This virus more effectively sup-

pressed tumor growth in two flank tumor models and extended 

survival versus a control virus, and this effect was attributed 

to both oncolysis and disruption of tumor vasculature.13 Gil 

et al14 describe an oncolytic vaccinia virus that also inhibits 

angiogenesis by targeting CXCR4. The microenvironment can 

also be targeted in a site-specific manner. In a series of studies, 

it has been shown that targeting transforming growth factor-

beta signaling enhances the ability of oncolytic adenovirus 

to limit the progression of bone metastases.15–18 Similarly, an 

adenovirus expressing soluble osteoprotegerin fused to the 

Fc portion of immunoglobulin G (IgG) is also effective at 

limiting progression of bone metastases.19

Another strategy is to enhance viral efficacy by arming 

the oncolytic platform with immune-stimulating factors. An 

oncolytic HSV (oHSV) armed with interleukin-12 (IL-12) 

more effectively inhibited the growth of breast cancer brain 

metastases than an unarmed control oHSV.20 Another oHSV, 

armed with 15-prostaglandin dehydrogenase, reduced tumor 

growth and suppressed metastasis development by promot-

ing antitumor immunity in an immunocompetent model.21 

Enhanced tumor control has also been described for oncolytic 

adenoviruses armed with IL-24 and with CD40 ligand.22,23 

Other immune-stimulating factors used to arm oncolytic 

viruses include IL-2 in an oncolytic NDV24 and an oncolytic 

measles virus armed with Helicobacter pylori neutrophil-

activating protein.25

Several investigators have sought to enhance oncolytic 

virus potency by arming viruses with factors intended 

to either increase viral replication or enhance killing of 

infected cells. An oHSV armed with inhibitor of growth 

4 exhibited enhanced replication in breast cancer cells in 

vivo.26 An oncolytic adenovirus armed with tumor necrosis 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Oncolytic Virotherapy 2015:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

65

Oncolytic agents for breast cancer

factor-related apoptosis-inducing ligand (TRAIL) was shown 

to be effective against triple-negative breast cancer cells both 

in vitro and in vivo.27 Other oncolytic adenoviruses have been 

armed with factors for modulating or targeting cellular stress 

responses, such as p53,28 heat shock transcription factor 1,29 and 

mortalin.30 Finally, genes for prodrug-converting enzymes have 

been used to arm several oncolytic viruses used in breast cancer 

studies, including vesicular stomatitis virus (VSV),31 vaccinia 

virus,32 and adenovirus.33 Overall, these studies demonstrate 

that the efficacy of an oncolytic platform can be made more 

potent by the inclusion of an anticancer transgene.

Combination therapies
Oncolytic viruses have been used in a number of combina-

torial therapeutic strategies to increase their effectiveness 

against breast cancer. Of particular interest are studies in 

which virotherapy has been combined with agents that have 

already been used in breast cancer patients. The microtubule-

targeting chemotherapeutic agent paclitaxel was shown to 

increase viral uptake and cytotoxicity of an IL-24-expressing 

adenovirus, without altering viral replication.22 Similarly, 

paclitaxel in combination with the oHSV G47∆ led to 

increased tumor cell apoptosis without changes in viral 

replication, and this yielded a synergistic inhibition of tumor 

growth in vivo.34 In another study, paclitaxel was used in a 

regimen to induce tumor cell senescence and was combined 

with oncolytic measles virus; this combination more effec-

tively mediated growth inhibition of breast cancer cells than 

either treatment alone.35 Another chemotherapeutic agent, 

doxorubicin, was used in combination with a Type-2 oHSV to 

yield enhanced tumor growth suppression in a subcutaneous 

syngeneic model36 and in combination with coxsackievirus 

A21.37 Bevacizumab, a monoclonal antibody targeted against 

VEGF, has been used in breast cancer patients with mixed 

results. However, a combination therapy of the oHSV HF10 

with bevacizumab yielded synergistic antitumor activity in 

a preclinical model.38

Several agents that have been used in clinical trials for 

breast cancer have also been demonstrated to enhance onco-

lytic virotherapy. Inhibitors of histone deacetylase (HDAC) 

enzymes can have multiple antitumor effects and are cur-

rently being investigated in clinical trials for breast cancer 

and other tumor types.39 HDAC inhibitors have been shown 

to suppress the interferon-mediated antiviral response40 and 

thus have attracted attention as a potential combination for 

virotherapy with oHSV.41–43 In accordance with these earlier 

studies, it has been shown that HDAC inhibitors increase 

oHSV replication in a panel of breast cancer cell lines but 

do not alter replication in normal breast epithelial cells, an 

effect that was attributed to inhibition of Class I HDACs in 

particular.44 Inhibitors of heat shock proteins (HSPs) are also 

in clinical trials as cancer therapeutics.45 HSP inhibition has 

been shown to enhance the cytopathic effect of an oncolytic 

measles virus in breast cancer cells without altering toxicity 

in normal cells.46 Combination of an oHSV with the chemo-

therapeutic drug mitoxantrone yielded enhanced survival in 

an immunocompetent model by enhancing the immunogenic-

ity of the dying tumor cells and increasing the infiltration of 

neutrophils and CD8+ T cells into treated tumors.47 Sunitinib 

is a receptor tyrosine kinase inhibitor that targets multiple 

intracellular pathways. In a study by Jha et al,48 the combi-

nation of sunitinib and oncolytic VSV led to the complete 

elimination of flank tumors in a syngeneic immunocompetent 

model.48 The results of this study further suggested that the 

enhanced effect was a result of the suppression of innate 

immune pathways by sunitinib. Thalidomide, which has been 

investigated for anticancer properties as a monotherapy,49 

was used in combination with a fusogenic oHSV  to enhance 

suppression of tumor growth and metastasis to the lungs in 

an immunocompetent model.50

A number of other agents in clinical use for other disease 

processes have nonetheless proved useful for improving 

the potency of oncolytic viruses against breast cancer. The 

vaccinia virus GLV-1h153 expresses a transgene for the 

human sodium iodide symporter. In an orthotopic model of 

triple-negative breast cancer, a combination therapy of the 

radionuclide 131I and GLV-1h153 was shown to increase tumor 

regression six fold versus the virus-only treatment group.51 

In addition to this therapeutic approach, the same virus was 

demonstrated via positron emission tomography to be use-

ful in combination with 124I in identifying and controlling 

residual tumor at surgical margins, in an orthotopic tumor 

model.52 The prodrug 5-fluorocytosine used in combination 

with an oncolytic VSV expressing a cytosine deaminase/

uracil phosphoribosyltransferase “suicide” transgene has 

been shown to enhance antitumor activity and improve 

survival of tumor-bearing mice.31 Finally, the hypertension 

drug losartan has been shown to inhibit collagen I synthesis 

from mammary carcinoma-associated fibroblasts in vitro and 

improve intratumoral spread of oHSV by reducing tumor 

fibrosis (results obtained in non-breast cancer models but may 

imply effectiveness in a breast cancer setting as well).53

Other investigators have demonstrated proof of prin-

ciple that agents with potential clinical application may 

be of use in future combination strategies with oncolytic 

virotherapy. In particular, combination therapies that target 
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components of the cytoskeleton can enhance the efficacy 

of certain oncolytic viruses. A small molecule inhibitor 

(Y27632) of Rho signaling enhanced measles virus rep-

lication in breast cancer cells both in vitro and in vivo, 

in a flank xenograft model.54 Irwin et al55 demonstrated 

that cell-to-cell spread of myxoma virus can be similarly 

enhanced by disrupting the cortical actin cytoskeleton, as 

shown both by chemical inhibition and by the generation 

of a mutant myxoma virus expressing the vaccinia virus 

F11 protein. Accordingly, the mutant virus exerted greater 

tumor growth inhibition in an orthotopic model versus the 

unarmed control virus, in both injected and uninjected 

tumors. Other investigators have shown that replication 

of oHSV can be enhanced in vitro by inhibitors of MEK56 

or by inhibitors of caspases.57

In total, the combination strategies summarized here illus-

trate the point that the antitumor efficacy of oncolytic viruses 

can be enhanced by a variety of other agents. However, cau-

tion must be taken to not interpret these findings too broadly. 

Whether or not a particular drug will enhance virotherapy for 

breast cancer must be carefully tested on a case-by-case basis. 

Studies of combination strategies in other cancers indicate that 

the effectiveness of a combination depends upon the cell line, 

the virus, the relative timing of each agent, and the mechanism 

of action of the compound. Comprehensive reviews of onco-

lytic viruses in combination therapies for cancer in general are 

given elsewhere,58–62 with a few examples of these complex 

interactions provided here. For instance, the combination of 

temozolomide and oHSV was synergistic in certain glioma 

cell lines but antagonistic in others.63 In thyroid cancer cells, 

paclitaxel enhanced oHSV cell killing, while doxorubicin 

mediated either additive or antagonistic effects.64 Moreover, 

whether or not a compound enhances viral replication in vitro 

does not always reflect whether or not antitumor efficacy 

in vivo is enhanced. In a pancreatic cancer model, gemcitabine 

inhibited the replication of two different oHSVs in vitro but 

nonetheless increased cytotoxicity overall. However, in vivo, 

the combination enhanced antitumor activity of one virus 

but decreased that of the other.65 In pancreatic cancer cells, 

5-fluorouracil inhibited oncolysis mediated by wild-type HSV 

but enhanced oncolysis of the oHSV NV1066.66,67 For breast 

cancer, it may be that the most effective compounds for enhanc-

ing virotherapy are yet to be identified. A high-throughput 

screen of compounds in the murine mammary carcinoma 

line 4T1 identified a novel compound that enhanced VSV 

replication in this otherwise-VSV-resistant cell line.68 A similar 

approach might be taken to identify compounds that enhance 

the effectiveness of other oncolytic viruses as well.

Systemic efficacy
The key challenge in the treatment of breast cancer is the 

targeted destruction of disseminated metastases. Initial 

preclinical virotherapy studies have generally involved 

local or regional delivery of oncolytic agents to individual 

tumor sites, an approach that would obviously not be ideal 

for situations in which patients presented with multiple or 

inaccessible lesions. Despite the challenges associated with 

systemic delivery of oncolytic viruses (liver uptake, binding 

to and inactivation by serum factors, etc), the potential util-

ity of this approach has been demonstrated for several viral 

platforms, both in terms of systemic delivery and the ability 

of locally delivered viruses to mediate systemic antitumor 

effects. Clinical application of this approach has shown it to 

be generally well tolerated in patients with multiple tumor 

types.69

Intravenous (IV) injection has been used to deliver several 

types of oncolytic viruses in breast cancer-targeted studies, 

including both viruses with native tropism and those modified 

for the purposes of targeting. Proof of principle validating IV 

delivery as a viable option for metastasis therapy has been 

shown in studies in which viruses are systemically delivered 

to primary breast tumors. IV delivery to orthotopic xeno-

grafts has been shown with both native and capsid-modified 

oncolytic adenoviruses.70,71 Jing et al72 described a measles 

virus targeted to the urokinase-type plasminogen activator 

receptor (uPAR). IV delivery of this virus mediated tumor 

growth suppression and extended survival in an orthotopic 

xenograft model. Oncolytic vaccinia virus can also be deliv-

ered IV to suppress tumor growth, as shown using the virus 

GLV-1h68 in a flank tumor model.73 In subsequent studies, 

the same virus eradicated orthotopic xenograft tumors when 

delivered IV74 or by retro-orbital injection to orthotopic 

tumors derived from breast cancer stem-like cells.75 Another 

vaccinia virus, GLV-1h153, eliminated primary tumors when 

delivered intratumorally or IV, and prevented the development 

of systemic metastases in a model of triple-negative breast 

cancer.76 As impressive as these results are, still more encour-

aging are studies in which oncolytic viruses have reduced the 

growth of metastases77 or have been delivered to established 

systemic metastases. Iankov et al78 report the delivery of a 

nontargeted oncolytic measles virus to pleural metastases by 

both direct intrapleural administration and IV administra-

tion, improving survival in treated mice. The uPAR-targeted 

measles virus mentioned above has also been used against 

systemic metastases, as survival of tumor-bearing mice was 

extended by the IV delivery of this virus in both syngeneic 

immunocompetent and xenograft models of lung metastasis.79 
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Several other oncolytic viruses have demonstrated systemic 

efficacy against lung metastases. IV delivery of a TRAIL-

armed adenovirus more effectively suppressed the growth of 

established lung metastases and led to extended survival in a 

xenograft model versus a control virus that lacked TRAIL,27 

and similar results have been observed with IV delivery of 

an IL-24-expressing adenovirus.80 Fernandez et al81 demon-

strated efficacy against established lung metastases, including 

improved survival, with both an IL-4-expressing and a thymi-

dine kinase-expressing mutant VSV following IV administra-

tion to tumor-bearing immunocompetent mice. Similarly, IV 

administration of a mutant interferon-inducing VSV inhibited 

the growth of established lung metastases, extending survival 

of mice versus mock treatment in an immunocompetent 

model.82 An oncolytic vaccinia virus expressing a CXCR4 

antagonist was designed to target tumor vasculature.14 This 

virus not only mediated greater growth inhibition and tumor 

vasculature disruption in primary tumors than a control virus 

when given IV, but also more effectively limited the growth 

of lung metastases and enhanced survival, when given either 

preoperatively or postoperatively in an experiment involving 

surgical removal of primary tumors. Moreover, mice that 

remained tumor free following treatment showed a significant 

resistance to tumor rechallenge, suggesting that therapy had 

stimulated antitumor immune activity.14 Oncolytic HSV has 

also been delivered IV, as demonstrated in a study by Wang 

et al,83 in which mice given G47∆ oHSV had nine fold fewer 

metastatic lung lesions than mock-treated mice. IV admin-

istration of coxsackievirus A21 has demonstrated activity 

against primary tumors and has been reported to eliminate 

metastases.84 Finally, IV administration of oncolytic viruses 

is not limited to delivery to the lung. In a series of studies, 

oncolytic adenoviruses expressing a soluble transforming 

growth factor-beta receptor II fused to the human IgG1 Fc 

fragment have been delivered to established bone metastases 

by IV injection. In each case, viral therapy limited the pro-

gression of bone lesions and the associated tumor-mediated 

bone destruction in both immunodeficient xenograft16,17 and 

syngeneic immunocompetent models.18 In a similar study, an 

unarmed chimeric adenovirus mutated to avoid liver uptake 

achieved comparable results with reduced liver toxicity ver-

sus an unmodified control virus.85

Local and/or regional delivery of oncolytic viruses to 

various metastatic sites has also been reported. An oHSV 

targeted to human epidermal growth factor receptor-2 (HER-

2) given intraperitoneally reduced the growth of peritoneal 

metastases. Interestingly, treated mice also exhibited reduced 

development of brain metastases.86 Intratibial delivery of an 

oncolytic adenovirus armed with a transgene consisting of 

osteoprotegerin fused to the Fc portion of IgG reduced the 

progression of established bone metastases and limited tumor-

mediated bone destruction.19 Regional delivery methods have 

been used to target brain metastases, including direct injec-

tion of an IL-12-expressing oHSV into metastatic lesions20,87 

or both intracranial and intrathecal delivery of oncolytic 

poliovirus.88 Additionally, brain metastases have been tar-

geted by intracarotid administration of the oHSV G47∆.89 In 

that study, disruption of the blood–brain barrier by the prior 

administration of mannitol was used to improve delivery of 

the oHSV and to yield a survival benefit in treated mice.

In addition to IV delivery, some oncolytic viruses have 

shown an ability to exert a systemic effect even when injected 

intratumorally, as described above for oncolytic vaccinia 

virus.76 In a bilateral orthotopic xenograft model, oncolytic 

reovirus mediated regressions in both injected and uninjected 

tumors.90 An oHSV expressing 15-prostaglandin dehydroge-

nase, when administered to primary tumors, inhibited both 

tumor growth and the formation of lung metastases in an 

immunocompetent model.21 In some cases, tumor treatment 

led to lasting antitumor immunity. The oHSV 1716 was 

used to treat primary tumors in an immunocompetent model. 

While tumor growth suppression was moderate, there was 

nonetheless an extension of survival and a reduction in the 

number of lung metastases, and treated mice resisted tumor 

rechallenge.91 Injection of the oHSV KM100 into flank 

tumors led to complete tumor regressions in the majority of 

treated animals and conferred a resistance to tumor rechal-

lenge, in an immunocompetent model.92 Israyelyan et al93,94 

constructed oHSV with either one or two mutations intended 

to induce syncytia formation among infected breast cancer 

cells. Both viruses suppressed tumor growth when injected 

intratumorally and reduced the incidence of metastases in 

multiple internal organs.94 An oncolytic adenovirus express-

ing beta-defensin-2 mediated intratumoral infiltration and 

activation of dendritic cells; treatment of primary tumors 

with this virus suppressed tumor growth and inhibited the 

formation of lung and liver metastases. Furthermore, treated 

mice were resistant to tumor rechallenge.95

Clinical studies
Several oncolytic agents have advanced to clinical trials, for a 

variety of cancers.96 Although a clinical trial specific for breast 

cancer patients has not yet been conducted, breast cancer 

patients have been included in trials involving solid tumors 

(Table 1). In a Phase I trial, patients with cutaneous or subcu-

taneous metastatic tumor deposits (including 14 breast cancer 
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patients) were given the oHSV OncoVEX GM-CSF.97 Overall, 

safety and evidence of viral efficacy (transgene expression and 

viral-associated tumor necrosis) were demonstrated. Some 

breast cancer patients showed stable disease in the injected 

lesions and/or shrinkage of both injected and adjacent unin-

jected lesions. Hemminki et al98 reported safety and potential 

efficacy in a trial for chemotherapy-refractory tumors, includ-

ing five breast cancer patients given a human telomerase 

reverse transcriptase (hTERT)-selective type 3 oncolytic 

adenovirus, and this effect was enhanced by concomitant 

trastuzumab administration. For two of these patients, the 

complete viral dose had been given through the IV route (the 

others received partial IV doses). The oHSV HF10 has been 

used in a pilot study involving direct intratumoral injection 

in six patients with recurrent breast cancer.99 A follow-up 

study showed histological evidence of viral replication and 

CD8+ lymphocyte infiltration in injected tumors.100 Perhaps 

lending support to additional clinical trials, evidence of activ-

ity of several oncolytic viruses has also been demonstrated 

in studies involving primary tumor tissue cultured ex vivo, 

including reovirus,90 adenovirus,101–105 and parvovirus H-1.106 

These studies may provide a basis for bridging the gap in effi-

cacy often observed between preclinical and clinical studies 

for oncolytic viruses.

In addition to direct administration to patients, there is 

evidence that oncolytic viruses may have an additional clini-

cal application based on their ability to eliminate contaminat-

ing tumor cells from bone marrow samples in patients given 

autologous grafts.107 Proof of principle for potential appli-

cation to breast cancer has been shown using both reovirus 

(in a study108 in which breast cancer cell lines were admixed 

with patient apheresis products) and an oHSV.109

Overcoming challenges
Many of the challenges for successful oncolytic viro-

therapy of metastatic breast cancer are the same as those 

for virotherapy in general and have been reviewed in detail 

elsewhere.7,8,110 Accordingly, the strategies devised to over-

come those challenges for other tumor types will likely be 

directly applicable or readily adaptable to the metastatic 

breast cancer setting.111 These strategies can be organized 

into three broad categories: enhancing systemic delivery, 

promoting efficient intratumoral spread (overcoming matrix 

barriers, diffusion gradients, and poor viral replication), and 

limiting the antiviral immune response. For breast cancer 

in particular, advances have been made on all these fronts. 

Despite the progress already attained with current oncolytic 

agents described in this review, vascular delivery remains 

an obstacle to successful virotherapy, as the bulk of a sys-

temically delivered viral dose is sequestered by the liver and 

spleen. Efforts to modify the infectivity of adenovirus have 

perhaps been at the forefront of oncolytic virus applications. 

In particular, the generation of chimeric adenoviruses with 

composite fiber proteins derived from multiple serotypes 

can improve systemic delivery, as shown with an Ad5/35 

chimeric virus.28 Delivery of a chimeric Ad5/3, with reduced 

liver uptake, to orthotopic tumors was further improved by 

pharmacological pretreatment of mice to ablate coagula-

tion factors, Kupffer cells, and thrombocytes.112 Another 

chimeric virus, Ad5/48, displayed reduced liver uptake and 

Table 1 Clinical trials of oncolytic viruses involving breast cancer patients

Virus designation Virus type Phase, indication* Status Reference#

OncoVexGM-CSF  
(Talimogene laherparepvec)

HSV i, solid tumors Completed PMiD 1712189497

Ad3-hTeRT-e1A Adenovirus i, solid tumors Completed PMiD 2287166798

HF10 HSV Pilot, breast Completed PMiD 1686559099

HF10 HSV Pilot, breast Completed PMiD 22193629100

Onyx-015 Adenovirus i, solid tumors Completed PMiD 17704755134

Telomelysin Adenovirus i, solid tumors Completed PMiD 19935775135

PV701 NDV i, solid tumors Completed PMiD 16638865136

PV701 NDV i, solid tumors Completed PMiD 11980996137

CAVATAK Coxsackievirus A21 i, solid tumors** Completed NCT00636558
vvDD-CDSR Vaccinia i, solid tumors** Ongoing NCT00574977
HF10 HSV i, solid tumors** Ongoing NCT01017185
ColoAd1 Adenovirus i/ii, solid tumors Recruiting NCT02028442
VCN-01 Adenovirus i, solid tumors Recruiting NCT02045602
Reolysin Reovirus ii, breast Recruiting NCT01656538
GL-ONC1 (GLV-1h68) Vaccinia i, solid tumors Recruiting NCT00794131

Notes: *Solid tumors included breast cancer patients; **these studies specifically recruited breast cancer patients among a variety of other tumor types; #NCT number is 
the identifier number on ClinicalTrials.gov.
Abbreviations: HSV, herpes simplex virus; hTERT, human telomerase reverse transcriptase; NDV, Newcastle disease virus; PMID, PubMed unique identifier number.
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greater delivery to bone metastases when given IV,  leading 

to  inhibition of tumor progression.85 Tumor uptake and pen-

etration of oncolytic adenovirus can also be improved by 

combining polymer coating of the virus to reduce hepatic 

sequestration and improve circulation half-life with focused 

ultrasonography to enhance tumor extravasation. This com-

bination led to enhanced suppression of tumor growth and 

increased survival of tumor-bearing mice.113 Finally, the 

delivery of oncolytic adenovirus using mesenchymal stem 

cells has also been described.114

Other oncolytic viruses have been targeted directly to 

receptors often overexpressed in breast cancer. Both oHSV 

and VSV mutants have been generated to target HER-2.86,115,116 

Efforts are also under way to improve the replication and 

spread of oncolytic viruses within tumors. Efficient replica-

tion has been shown to be critical for late-phase antitumor 

responses mediated by vaccinia virus.117 It has also been 

shown that breast cancer cells in three-dimensional culture 

can be more resistant to HSV-1 replication than those in tra-

ditional monolayer culture, and this was attributed to interfer-

ence of the extracellular matrix with viral spread.118 In some 

cases, tumor cells of a certain phenotype may be resistant 

to oncolytic virus replication or can acquire resistance over 

time. A study by Bazan-Peregrino et al,119 in which multiple 

adenoviral mutants were compared for effectiveness in breast 

cancer, may provide a template for identifying more effective 

oncolytic agents. Similarly, a study by Song et al,120 in colon 

and hepatic carcinoma cells, identified gene signatures asso-

ciated with tumor cell resistance to oHSV that may provide 

a guide for developing countermeasures that can enhance 

virotherapy of breast cancer.

Finally, antiviral immunity within the tumor microenvi-

ronment has been shown to be a key limitation of the effec-

tiveness of some oncolytic viruses; a study of VSV in several 

tumor cell lines, including breast cancer, demonstrated that 

macrophages present in the microenvironment stimulate a 

Type I interferon response that renders otherwise-susceptible 

tumor cells resistant to viral replication.121 However, this anti-

viral state could be reversed by pharmacological inhibition 

of JAK signaling. The interaction of oncolytic viruses with 

the immune system is complex, however. Whereas defects in 

innate immunity can promote viral replication,122 an efficient 

adaptive immune response can be an important component of 

the antitumor effect mediated by oncolytic viruses.123

Future directions
As the field of oncolytic virotherapy continues to mature, 

new oncolytic viruses are constantly being identified.124 

As an example, most studies with oHSV have thus far 

been based on an HSV-1 platform, but HSV-2 can also be 

engineered into an oncolytic virus.36,125 Furthermore, an 

oncolytic bovine herpes virus type 1 with activity against a 

range of breast cancer subtypes has also been described.126 

Likewise, while most oncolytic adenovirus constructs have 

been based upon serotype 5, a number of other serotypes 

exist as possible oncolytic platforms for breast cancer.127,128 

Recently, a method has been described in which experimen-

tal evolution was used to develop an oncolytic VSV highly 

selective for p53-deficient tumor cells. This selective process 

was shown to yield a virus more potent than the parental 

strain in a syngeneic model.129 Similarly, reverse genetics 

was used to guide the engineering of a novel measles virus 

that more effectively infects breast cancer cells.130 Novel 

oncolytic vaccinia viruses with activity against breast cancer 

are also being developed.131 Aside from the identification of 

new oncolytic viruses, modifications to existing viruses will 

also continue to improve their utility against breast cancer. 

In particular, it is likely that many future oncolytic viruses 

will include transgenes allowing the real-time monitoring of 

efficacy by noninvasive imaging.132 Eisenberg et al,133 in a 

proof-of-principle study, demonstrated the utility of using a 

green fluorescent protein-expressing oHSV to assess surgical 

efficacy, as intratumoral administration of the oHSV enabled 

the detection of axillary lymph node metastases.

Conclusion
Oncolytic virotherapy, as a field, has rapidly advanced in 

a relatively short period of time. Early efforts to destroy 

tumors by viral oncolysis alone have graduated into efforts 

in which the potency of the viral platform is enhanced by the 

inclusion of therapeutic transgenes or in combination with 

other agents. Utilizing improved viral constructs that can be 

delivered systemically will lead to effective treatments for 

metastatic breast cancer patients.
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