Dietary patterns and schizophrenia: a comparison with healthy controls

Koji Tsuruga1
Norio Sugawara1
Yasushi Sato1
Manabu Saito1
Hanako Furukori2
Taku Nakagami3
Kazuhiko Nakamura1
Ippei Takahashi4
Shigeyuki Nakaji4
Norio Yasui-Furukori1

1Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan;
2Department of Psychiatry, Kuroishi-Akebono Hospital, Kuroishi, Japan;
3Department of Neuropsychiatry, Odate Municipal General Hospital, Odate, Japan;
4Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan

Background: It has been reported that the onset of schizophrenia and the physical complications after its onset are related to diet. Diet has been considered as a variable factor of the pathogenesis of schizophrenia. However, the results of studies on this relationship have been inconsistent. Nutrients are consumed as a mixture in the diet. It is difficult to study them in isolation because they may have mutually complementary effects. The aim of this study was to assess the association between dietary patterns and schizophrenia in Japan.

Methods: The subjects comprised 237 outpatients aged 30–60 years (123 males and 114 females) with diagnoses of either schizophrenia or schizoaffective disorder. The patient diagnoses were determined based on medical records. Patients were recruited between June 2011 and August 2011. As a reference group, 404 healthy volunteers aged 30–60 years (158 males and 246 females) were also included. Demographic data (age, sex, and level of education) were collected by face-to-face method interviews and self-administered questionnaires. We assessed eating habits over the last month using a validated brief self-administered diet history questionnaire. We detected dietary patterns through a principal component analysis of calorie-adjusted intake; two principal components were retained. The principal components for each dietary pattern and for each individual were divided into tertiles by principal component scores.

Results: We derived two dietary patterns by principal component analysis; namely, the “vegetable” dietary pattern and the “cereal” dietary pattern. In the “cereal” dietary pattern, the high tertile was associated with a significantly increased risk of schizophrenia (P<0.001).

Conclusion: The “cereal” dietary pattern is associated with schizophrenia. This article is the first to describe a study examining the association of dietary pattern and schizophrenia.

Keywords: schizophrenia, dietary pattern, diet

Introduction

Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide.1 Nakane et al reported that prevalence rates for schizophrenia in Japan ranged from 0.19% to 1.79% and morbidity risk rates ranged from 0.35% to 2.48%. They remarked that when compared with mean values from other countries, no significant differences were observed.2 Unsatisfactory outcomes after pharmacotherapy and physical complications in patients with schizophrenia suggest that the dopamine hypothesis and antipsychotic treatment are not sufficient approaches to understanding the etiology of schizophrenia.

Diet has been considered as a variable factor of the pathogenesis of schizophrenia. Previous studies have shown that physical complications and schizophrenia outcomes are related to diet.3 Simonelli-Muñoz et al showed that patients who have unhealthy dietary habits have a higher risk of obesity than patients with good dietary habits.

Reference(s): 1, 2, 3, 4, 5, 6
Sugawara et al suggested that dietary patterns (including a higher intake of protein, fat, n-3 polyunsaturated fatty acids, n-6 polyunsaturated fatty acids, and vitamins) may be related to a decreased prevalence of obesity in patients with schizophrenia. In addition, based on an ecological analysis of nutritional patterns, Peet determined that a higher national dietary intake of refined sugar and dairy products predicted a worse 2-year outcome of schizophrenia.

Nutrients are consumed as a mixture in the diet. It is difficult to study them in isolation because they may have mutually complementary effects. With regard to the risk of schizophrenia, dietary patterns or combinations of foods may have a stronger association than foods or nutrients separately. We hypothesized that dietary patterns may be associated with schizophrenia.

The aim of this study was to assess the relationship between dietary patterns and schizophrenia in Japan. To our knowledge, this is the first study to examine this relationship.

Methods
Participants
The subjects comprised 237 outpatients aged 30–60 years (123 males and 114 females) diagnosed with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria of either schizophrenia or schizoaffective disorder at four psychiatric hospitals in Japan. Patient diagnoses were determined based on medical records. Patients were recruited between June 2011 and August 2011. As a reference group, 404 healthy volunteers aged 30–60 years (158 males and 246 females) who participated in the Iwaki Health Promotion Project in 2011 were also included. The study was approved by the Ethics Committee of the Hirosaki University School of Medicine, Hirosaki, Japan, and all subjects signed informed consent. Demographic data (age, sex, and level of education) were collected by face-to-face method interviews and self-administered questionnaires.

Measurements
We assessed eating habits over the last month using a validated brief self-administered diet history questionnaire (BDHQ) that consisted of inquiries concerning the consumption frequency of 56 foods and beverages and nine dishes generally consumed in Japanese populations. In order to estimate the intake of calories and of selected nutrients, we used a computer algorithm for the 56 foods and beverages of the BDHQ with the Standard Tables of Food Composition in Japan.

Statistical analyses
Dietary patterns were detected through a principal component analysis. We adopted the calorie-adjusted intake that used a density method for the 52 food and beverage items (excluding four items that overlapped with others). We determined the number of principal components to retain by eigenvalues, the scree test, and the interpretability of the factors; two principal components were retained. The principal components for each dietary pattern and for each individual were divided into tertiles by principal component scores.

The subjects with and without schizophrenia were compared using unpaired Student’s t-tests for continuous variables or chi-squared tests for categorical variables. We assessed trend associations across the tertile categories of each dietary pattern using linear regression analysis for continuous variables and the Cochran–Armitage trend test for categorical variables, with ordinal values ranging from 1 to 3 assigned to the tertile categories of each dietary pattern.

A logistic regression analysis was carried out to evaluate the relationship between dietary patterns and schizophrenia. The model was adjusted for age and sex. The significance level for the results obtained in the hypothesis contrast was P<0.05. The data analysis was performed using R for Windows, Version 3.0.2 (The R Foundation for Statistical Computing, Vienna, Austria).

Results
The demographic distribution of the participants is presented in Table 1. The number of subjects of monotherapy is 156, while the number of subjects of polypharmacy (using two or more antipsychotic agents) is 95. The subjects of polypharmacy were receiving risperidone (n=51), aripiprazole (n=25), olanzapine (n=21), blonanserin (n=26), quetiapine (n=25), haloperidol (n=41), levomepromazine (n=31), and other antipsychotic agents.

We derived two dietary patterns by principal component analysis (Table 2). The first component, which loaded green

Table 1 Demographic characteristics of the subjects

<table>
<thead>
<tr>
<th></th>
<th>Control (n=404)</th>
<th>Schizophrenia (n=237)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>49.1±8.5</td>
<td>44.1±8.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex (n)</td>
<td>Male 158, Female 246</td>
<td>Male 123, Female 114</td>
<td>0.002</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>162.0±8.2</td>
<td>170.2±9.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.5±10.9</td>
<td>68.9±15.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>23.0±3.1</td>
<td>25.5±5.0</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Notes: The data are expressed as the mean ± standard deviation for categorical variables. The data were analyzed using nonpaired t-tests for continuous variables and chi-squared tests.
leafy vegetables, lettuce, cabbage, mushrooms, and fruit, was labeled the “vegetable” dietary pattern. The second component, which loaded rice, bread, and confectioneries, was labeled the “cereal” dietary pattern.

The characteristics of the dietary pattern scores categorized by tertiles are shown in Table 3. The subjects with higher scores for the “vegetable” dietary pattern were less likely to have schizophrenia and to be male. The “vegetable” dietary pattern was positively associated with the intake of proteins, carbohydrates, fats, saturated fatty acids, monounsaturated fatty acids, and n-6 fatty acids. The “cereal” dietary pattern was negatively associated with carbohydrate intake.

The odds ratios for schizophrenia according to the tertile categories of each dietary pattern score are shown in Table 4. The “vegetable” dietary pattern was not associated with an increased risk of schizophrenia. For the “cereal” dietary pattern, the high tertile was associated with a significantly increased risk of schizophrenia.

Discussion

We designed this cross-sectional study to evaluate the relationship between dietary patterns and schizophrenia in Japan. Two dietary patterns were derived; namely, the “vegetable” and “cereal” patterns. The “vegetable” dietary pattern was characterized by a high consumption of green leafy vegetables, seaweed, potatoes, and soybean products such as tofu and natto, and positively correlated with the intake of fats and proteins. A previous study demonstrated a relationship between fatty acids and schizophrenia. Therefore, we hypothesized that a dietary pattern consuming a large quantity of vegetables would be associated with a lower risk of schizophrenia morbidity. However, an apparent association was not observed between the “vegetable” dietary pattern and schizophrenia. By contrast, the “cereal” dietary pattern, which was characterized by a high consumption of rice, breads, and confectioneries and positively correlated with the intake of fats and proteins, was associated with schizophrenia. In the “cereal” pattern, schizophrenia correlated to fatty acid per calories intake.

Previous studies have demonstrated a relationship between polyunsaturated fatty acids and the pathogenesis of...
Table 3 Characteristics according to tertile categories of dietary pattern scores

<table>
<thead>
<tr>
<th></th>
<th>Vegetable dietary pattern</th>
<th></th>
<th></th>
<th>Cereal dietary pattern</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low tertile</td>
<td>Middle tertile</td>
<td>High tertile</td>
<td>Low tertile</td>
<td>Middle tertile</td>
<td>High tertile</td>
</tr>
<tr>
<td>Number of subjects</td>
<td>214</td>
<td>214</td>
<td>213</td>
<td>214</td>
<td>214</td>
<td>213</td>
</tr>
<tr>
<td>Disease (n)</td>
<td>91</td>
<td>75</td>
<td>71</td>
<td>60</td>
<td>73</td>
<td>104</td>
</tr>
<tr>
<td>Age (years)</td>
<td>47.0 ± 8.7</td>
<td>46.6 ± 8.7</td>
<td>48.1 ± 9.0</td>
<td>48.6 ± 8.5</td>
<td>46.7 ± 9.1</td>
<td>46.6 ± 8.8</td>
</tr>
<tr>
<td>Sex (male, n)</td>
<td>151</td>
<td>85</td>
<td>45</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Dietary intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>1,942 ± 818</td>
<td>1,903 ± 632</td>
<td>1,810 ± 682</td>
<td>1,848 ± 647</td>
<td>1,888 ± 601</td>
<td>1,920 ± 874</td>
</tr>
<tr>
<td>Protein (g/1,000 kcal)</td>
<td>30.4 ± 6.0</td>
<td>35.7 ± 5.3</td>
<td>40.6 ± 5.7</td>
<td>33.5 ± 7.1</td>
<td>36.7 ± 6.7</td>
<td>36.5 ± 6.8</td>
</tr>
<tr>
<td>Fat (g/1,000 kcal)</td>
<td>23.2 ± 7.2</td>
<td>27.9 ± 9.4</td>
<td>29.8 ± 7.5</td>
<td>22.0 ± 5.4</td>
<td>27.6 ± 5.5</td>
<td>31.5 ± 5.7</td>
</tr>
<tr>
<td>Carbohydrate (g/1,000 kcal)</td>
<td>144.0 ± 223</td>
<td>138.8 ± 178</td>
<td>135.3 ± 18.5</td>
<td>141.8 ± 21.6</td>
<td>139.9 ± 19.3</td>
<td>136.5 ± 18.5</td>
</tr>
<tr>
<td>Saturated fatty acid (g/1,000 kcal)</td>
<td>6.39 ± 1.26</td>
<td>7.50 ± 1.91</td>
<td>7.63 ± 1.83</td>
<td>5.41 ± 1.57</td>
<td>7.13 ± 1.52</td>
<td>8.99 ± 2.09</td>
</tr>
<tr>
<td>Monounsaturated fatty acid (g/1,000 kcal)</td>
<td>8.25 ± 2.76</td>
<td>9.89 ± 2.17</td>
<td>10.44 ± 2.41</td>
<td>7.65 ± 2.04</td>
<td>9.83 ± 2.22</td>
<td>11.10 ± 2.33</td>
</tr>
<tr>
<td>Polyunsaturated fatty acid (g/1,000 kcal)</td>
<td>5.75 ± 1.69</td>
<td>6.92 ± 1.41</td>
<td>7.73 ± 1.58</td>
<td>6.05 ± 1.59</td>
<td>7.05 ± 1.68</td>
<td>7.30 ± 1.76</td>
</tr>
<tr>
<td>n-3 polyunsaturated fatty acid (g/1,000 kcal)</td>
<td>1.05 ± 0.34</td>
<td>1.38 ± 0.39</td>
<td>1.63 ± 0.43</td>
<td>1.22 ± 0.43</td>
<td>1.45 ± 0.48</td>
<td>1.39 ± 0.43</td>
</tr>
<tr>
<td>n-6 polyunsaturated fatty acid (g/1,000 kcal)</td>
<td>4.69 ± 1.46</td>
<td>5.52 ± 1.18</td>
<td>6.08 ± 1.32</td>
<td>4.81 ± 1.29</td>
<td>5.58 ± 1.33</td>
<td>5.89 ± 1.48</td>
</tr>
</tbody>
</table>

Notes: On the basis of the Cochran–Armitage trend test for categorical variables and linear regression analysis for continuous variables, ordinal numbers 0–2 were assigned to tertiles of each dietary pattern.
people with schizophrenia raises concerns when considering the relationship of this diet with coronary heart disease. In this context, limiting fat intake in patients with schizophrenia may help prevent the onset of metabolic syndrome.

This study has some limitations. First is the cross-sectional nature of the study. We cannot refer to causal determinations to be made between dietary patterns and the onset of schizophrenia. Longitudinal studies are needed to interpret these associations and causalities. Second, the dietary data were collected using the BDHQ. The results may be influenced by potential misclassification of dietary patterns, although the validity and reliability of BDHQ have been estimated. Third, we did not examine several potential confounding factors in our study, such as income levels and interpersonal relationships among families. Income levels may be a peculiarly important factor, as the results may have been confounded by low income level. Stratification studies by income levels should be requested in the future. Fourth, in this study, the ages of the participants were limited to 30–60 years. It is known that the onset of schizophrenia commonly occurs between the ages of 10 and 20 years. Our study did not investigate the 10 to 20-year age group; therefore, we could not accurately determine whether there was a relationship between schizophrenia and fatty acids in this younger cohort. Fifth, all of the volunteer participants may have been relatively healthier than the general population because they were more interested in their own health. Thus, the members of the community who did not participate in the study may exhibit different schizophrenia morbidities. Finally, we could not completely eliminate a beta error as the cause of our inability to detect certain associations between dietary patterns and schizophrenia, as our sample size was relatively small.

Conclusion

We hypothesized that a dietary pattern comprising high amounts of vegetables would be associated with a lower risk of schizophrenia. However, no evident association was observed between the “vegetable” dietary pattern and schizophrenia.

By contrast, the “cereal” dietary pattern, which was characterized by a high consumption of rice, bread, and confectioneries and positively correlated with the intake of fats and proteins, was associated with schizophrenia. This result may provide clues regarding the pathogenesis of schizophrenia and the prevention of metabolic syndrome in schizophrenic patients. This article is the first to describe a study of dietary patterns and schizophrenia.

Acknowledgments

The authors are grateful to the volunteers who participated in this study. The authors would like to thank all of their coworkers on this study for their skillful contributions to collecting and managing the data.

Disclosure

This study was funded by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Research (JSPS 20333734), Mitsubishi Pharma Research Foundation, and Astera Schizophrenia Research Foundation and a grant from the Hirosaki Research Institute for Neurosciences. Norio Yasui-Furukori has received grant/research support or honoraria from, and been a speaker for Astera, Dainippon, Eli Lilly, GSK, Janssen-Pharma, Meiji, Mochida, MSD, Otsuka, Pfizer, Takada, and Yoshitomi. The remaining authors declare that they have no competing interests. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

Table 4 Odds ratios and 95% confidence intervals (CI) for having schizophrenia, according to tertiles of dietary pattern scores

<table>
<thead>
<tr>
<th>Dietary pattern</th>
<th>No of cases</th>
<th>Crude odds ratio (95% CI)</th>
<th>P-value</th>
<th>Adjusted odds ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable dietary pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low tertile</td>
<td>91</td>
<td>Reference</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Middle tertile (95% CI)</td>
<td>75</td>
<td>0.66 (0.46–0.96)</td>
<td>0.029</td>
<td>0.74 (0.50–1.10)</td>
<td>0.139</td>
</tr>
<tr>
<td>High tertile (95% CI)</td>
<td>71</td>
<td>0.83 (0.54–1.29)</td>
<td>0.41</td>
<td>1.10 (0.67–1.80)</td>
<td>0.701</td>
</tr>
<tr>
<td>Cereal dietary pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low tertile</td>
<td>60</td>
<td>Reference</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Middle tertile (95% CI)</td>
<td>73</td>
<td>1.19 (0.77–1.83)</td>
<td>0.435</td>
<td>1.15 (0.73–1.81)</td>
<td>0.559</td>
</tr>
<tr>
<td>High tertile (95% CI)</td>
<td>104</td>
<td>2.43 (1.67–3.56)</td>
<td><0.001</td>
<td>2.71 (1.80–4.09)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note: The model was adjusted for age and sex.

