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Abstract: The human immunodeficiency virus protease inhibitor ritonavir has recently been 

shown to have antineoplastic activity, and its use in urological malignancies is under investi-

gation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic 

activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB 

pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the 

proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the 

amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or 

heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively 

and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and 

P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibit-

ing their degradation and efflux from cancer cells and thereby enhancing their antineoplastic 

activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system 

activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, 

due to their novel mechanisms of action, are expected to be effective against malignancies that 

are refractory to current treatment strategies. Further investigations using ritonavir are expected 

to find new uses for clinically available drugs in the treatment of urological malignancies as 

well as many other types of cancer.
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Introduction
New anticancer agents have been developed in an effort to improve treatment 

outcome in patients with advanced metastatic urological malignancies. Targeted 

therapies using tyrosine kinase inhibitors1–3 and inhibitors of the mammalian target of 

rapamycin4 have been replacing immunotherapy in the treatment of renal cancer, and 

the agents docetaxel,5 cabazitaxel,6 enzalutamide,7 and abiraterone8 have been used 

to treat castration-resistant prostate cancer. These treatments are innovative and have 

contributed to the improved survival of patients. In urothelial carcinoma, on the other 

hand, there have been no new therapeutic agents significantly improving survival; 

the cisplatin–gemcitabine combination is of limited efficacy but is still a mainstay 

in the treatment of metastatic disease.9 Because there is still no curative treatment 

for advanced urological malignancies, there is an urgent need for new agents or new 

combination therapies using agents currently available. Drug repositioning has recently 

emerged as an attractive strategy for finding candidate anticancer drugs among the 

existing drugs, and some noncancer drugs have been shown to be potent anticancer 

agents.10–12 Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor 

approved by the US Food and Drug Administration (FDA)13 and widely used for the 
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treatment of HIV infection. Its repositioning as an anticancer 

drug, however, has been suggested by the results of recent 

studies showing that ritonavir has antineoplastic effects such 

as induction of apoptosis and inhibition of inflammatory 

cytokine production, proteasome activity, and cell prolifera-

tion and survival.14 In this article, the anticancer activity of 

ritonavir and the underlying mechanism of action, as a single 

agent and in combination with other agents, are reviewed, 

with a focus on ritonavir’s possible use in treating urological 

malignancies.

Ritonavir’s mechanisms of action
Ritonavir’s mechanisms of action include inhibition of the 

proteasome; inhibition of heat shock protein 90 (HSP90), 

cytochrome P450 3A4 (CYP3A4), and P-glycoprotein; and 

modulation of immune system activity. Inhibition of the 

proteasome and HSP90 causes unfolded proteins to accumu-

late and thereby induces endoplasmic reticulum (ER) stress, 

whereas inhibition of CYP3A4 and P-glycoprotein increases 

the intracellular concentration of other drugs. Ritonavir may 

also act against malignancies by enhancing immune system 

activity (Figure 1).

Ritonavir acts as a proteasome 
inhibitor
Protein degradation by the ubiquitin–proteasome pathway 

affects the proliferation and survival of both normal and 

malignant cells,15 so proteasome inhibitors have been 

utilized in the treatment of malignancies. Bortezomib is 

widely used to treat patients with relapsed or refractory 

multiple myeloma,16,17 and carfilzomib is a new oral protea-

some inhibitor that has been approved by the FDA for the 

treatment of multiple myeloma patients who have received 

at least two prior therapies including bortezomib.18 On the 

other hand, the efficacy of proteasome inhibitors is limited 

in patients with solid tumors.19–23 In an effort to ameliorate 

bortezomib’s efficacy in urological malignancies, combina-

tion therapies using bortezomib and a histone deacetylase 

(HDAC) inhibitor, either suberoylanilide hydroxamic acid 

(SAHA)24,25 or panobinostat,26 have been investigated. These 

studies demonstrated that the combinations induced robust 

ER stress and killed cancer cells synergistically.

Although ritonavir is an HIV protease inhibitor, it has been 

shown to also act as a proteasome inhibitor. Gaedicke et al27  

focused on ritonavir’s ability to inhibit the chymotrypsin-like 

Figure 1 Schematic representation of ritonavir’s action.
Abbreviations: CYP3A4, cytochrome P450 3A4; eR, endoplasmic reticulum; HSP90, heat shock protein 90.
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activity of isolated 20S proteasomes and showed that ritonavir 

inhibited the growth of murine lymphoma cells both in vitro 

and in vivo by acting like a proteasome inhibitor. Laurent  

et al28 showed that in glioma cells, ritonavir had cytostatic and 

cytotoxic effects due to inhibition of the chymotrypsin-like 

activity of the proteasome. In that study, however, ritonavir 

failed to inhibit the tumor growth in vivo because the thera-

peutic dose level was not reached in the tumor.

Inhibition of the transcription factor nuclear factor  

(NF)-kappaB is thought to be one of the important conse-

quences of proteasome inhibition by ritonavir because protea-

some inhibitors cause the NF-kappaB inhibitor IkappaB to 

accumulate in the cell by inhibiting its proteasome-dependent 

degradation.29,30 Pati et al31 reported the antineoplastic activity 

of ritonavir evaluated in experiments using Kaposi sarcoma 

cells both in vitro and in vivo. They found that ritonavir 

inhibited NF-kappaB activity and concluded that it had 

antineoplastic effects independent of its ability to inhibit the 

HIV protease. Ritonavir was also shown to inhibit transcrip-

tional activation of NF-kappaB in adult T-cell leukemia cells, 

resulting in inhibition of the Bcl-xL, survivin, c-Myc, and 

cyclin D2 expression in them.32 Inhibition of NF-kappaB by 

ritonavir in a non-Hodgkin lymphoma was also reported.33

Ritonavir inhibits HSP90
Inhibition of HSP90 destabilizes the cancer cell’s aberrant 

protein subset34 and thereby increases unfolded proteins in 

the cell. This causes ER stress, and chronic or unresolved ER 

stress leads to apoptosis.35 Inhibition of HSP90 is therefore 

an attractive new strategy against cancer. The geldanamy-

cin derivative 17-allylamino-17-demethoxygeldanamycin 

(17-AAG) was the first HSP90 inhibitor to be used 

clinically.36 Its efficacy has been investigated in patients 

with renal cancer,37 prostate cancer,38 melanoma,39 and breast 

cancer,40 but no objective responses were seen in those stud-

ies. One of the reasons for this low effectiveness of 17-AAG 

is that the unrepaired unfolded proteins could be degraded by 

the proteasome and not accumulated in the cell. Therefore, 

both HSP90 and the proteasome would have to be inhibited to 

produce enough ER stress to cause apoptosis. Ritonavir binds 

HSP90 and partially inhibits its chaperone function,41 but 

unlike 17-AAG, it also inhibits the proteasome.27,28 Ritonavir 

would therefore theoretically be the ideal agent to induce ER 

stress. Kraus el al42 showed that ritonavir increased the level 

of ER stress induced by bortezomib enough to cause apop-

tosis in bortezomib-resistant sarcoma cells, and Sato et al43 

showed that a ritonavir–bortezomib combination enhanced 

ER stress and ubiquitinated unfolded protein accumulation 

synergistically in renal cancer cells. Interestingly, ritonavir 

was revealed to enhance 17-AAG activity by inhibiting 

the 17-AAG-induced expression of heat shock factor-1, an 

HSP transcription factor. Ritonavir thus enhances 17-AAG 

activity, leading to thorough HSP90 suppression.44

It has been reported that HSP90 interacts with Akt and 

that inhibition of Akt-HSP90 binding leads to the dephospho-

rylation and inactivation of Akt.45 Therefore, another impor-

tant consequence of HSP90 inhibition by ritonavir would be 

inhibition of the Akt signaling pathway. Ritonavir reportedly 

inhibited the Akt signaling pathway in breast cancer cells,41 

ovarian cancer cells,46 and pancreatic cancer cells.47

Ritonavir interferes with drug 
degradation mechanisms in cancer 
cells
Ritonavir inhibits CYP3A4 in liver microsomes. Ikezoe  

et al48 showed that ritonavir increased the antitumor activity 

of docetaxel in DU145 prostate cancer cells by protecting 

docetaxel from inactivation in the cells. Oostendorp et al49 

clinically tried the combination of ritonavir and docetaxel 

in patients with solid tumor. On days 1 and 8 they gave the 

patients 10 mg or 100 mg oral docetaxel and 100 mg oral 

ritonavir, either simultaneously or 60 minutes before the 

docetaxel, and this was followed by 100 mg intravenous 

docetaxel on day 15 or 22. The combination was well toler-

ated, and ritonavir was shown to significantly enhance the 

bioavailability of docetaxel. Sato et al50 showed in renal 

cancer cells that ritonavir enhances the activity of the HDAC 

inhibitor panobinostat, which is a substrate of CYP3A4.51 

Ritonavir also inhibits P-glycoprotein, a drug-efflux pump 

associated with multidrug resistance.52 Therefore, ritonavir 

could increase the concentrations of combined drugs, thus 

enhancing their activity, by inhibiting their degradation 

and efflux from the cell. A matter of great concern is that 

ritonavir could also inhibit CYP3A4 in the liver, increasing 

the serum concentrations of combined drugs and leading to 

adverse events. Hamberg et al51 conducted a clinical study 

in which panobinostat was administered in combination with 

the CYP3A4 inhibitor ketoconazole. They concluded that 

coadministration of panobinostat with CYP3A4 inhibitors 

is feasible because the observed increase in pharmacokinet-

ics parameters (maximum serum concentration increased  

1.6-fold and area under the curve increased 1.8-fold) was not 

clinically relevant. Inhibiting CYP3A4 activity thus does not 

necessarily cause severe adverse events. However, careful 

monitoring of the serum concentrations of combined drugs 

is mandatory for the patients’ safety.
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Ritonavir’s antineoplastic activity 
includes modulation of immune 
system activity
Ritonavir acts against acquired immunodeficiency syndrome 

by decreasing plasma viremia and thereby increasing CD4+ 

T-cell counts.53 Interestingly, ritonavir has also been shown 

to increase lymphocyte levels itself. Weichold et al54 found 

that it increases the viability of peripheral blood mononu-

clear cells, decreases their susceptibility to apoptosis, and 

decreases their production of tumor necrosis factor. Similarly, 

Sloand et al55 showed that ritonavir decreases CD4+ T-cell 

apoptosis by inhibiting caspase 1 expression independent 

of HIV infection, which could increase the number of 

CD4+ T cells. CD4+ T cells are important in tumor immu-

nity because they are needed to sustain the cytolytic CD8+  

T cells, which can kill cancer cells, and because they recruit 

cells of the innate immune system, such as macrophages and 

mast cells.56,57 Ritonavir is thus thought to enhance tumor 

immunity and act against cancer by increasing the number 

of CD4+ T cells.

Experimental use of ritonavir  
to treat urological malignancies
In our laboratory at National Defense Medical College we 

have been investigating the antineoplastic activity of ritona-

vir in studies focusing on its possible use to treat urological 

malignancies such as renal cancer, prostate cancer, and 

bladder cancer. Although ritonavir alone is effective in some 

cancer cell lines, it exerts very strong anticancer activity 

when combined with agents such as proteasome inhibitors 

and HDAC inhibitors. These combinations are especially 

attractive because they generally induce drastic ER stress, 

which has recently been shown to be useful in the treatment 

of malignancies.58

Ritonavir as a single agent
Using human renal cancer cell lines, we have previously 

shown in vitro that ritonavir itself induces ER stress, evi-

denced by the increased expression of the ER stress markers 

such as glucose-regulated protein 78 and HSP70 and that 

it inhibits the growth of cancer cells in a dose-dependent 

fashion.59 This ER stress and growth inhibition are thought 

to be due to the ability of ritonavir to inhibit both HSP90 and 

the proteasome. In vivo, however, ritonavir as a single agent 

significantly suppressed tumor growth in a murine allograft 

tumor model using the mouse renal cancer cell line Renca 

(Figure 2) but not in xenograft models. These results, together 

with those of the in vivo study using glioma cells,28 indicate 

that in human solid tumors the effectiveness of ritonavir as 

a single agent is limited.

Ritonavir in combination  
with proteasome inhibitors
Proteasome inhibitors inhibit the degradation of unfolded 

proteins and therefore cause them to accumulate and induce 

ER stress. Because ritonavir inhibits HSP9041 and increases 

the amount of unfolded proteins in the cell, the combination 

of ritonavir and a proteasome inhibitor is expected to cause 

drastic accumulation of unfolded proteins and, thereby, 

drastic ER stress. Figure 3 shows photomicrographs of PC-3 

human prostate cancer cells treated with the combination of 

ritonavir and the proteasome inhibitor bortezomib. The com-

bination killed PC-3 cells drastically (most of the cells are 

floating), whereas each individual agent had a minimal effect 

at the indicated concentrations. The ritonavir–bortezomib 

combination was shown in mice xenograft tumor models to 

suppress tumor growth significantly and shown in vitro to 

kill renal cancer cells synergistically.43 It also induced ER 

stress and ubiquitinated unfolded protein accumulation syn-

ergistically. A beneficial effect of combining ritonavir and 

bortezomib was also found in an in vitro study using human 

bladder cancer cells,60 where the combination decreased 

the expression of cyclin D1 and cyclin-dependent kinase 

(CDK)4 and increased the expression of p21, inhibiting 

both the expression and function of the cyclin D1/CDK4 

complex. In that study, the combination induced ER stress, 

caused ubiquitinated proteins to accumulate, and enhanced 

Figure 2 Ritonavir inhibited tumor growth significantly in vivo.
Notes: A mouse subcutaneous allograft model was established using Renca cells; 
The control group received intraperitoneal injections of DMSO while the test group 
received 50 mg/kg ritonavir; The injections were given three times a week for 
2 weeks (n=5); Mean ± SeM; *P=0.0283 (Mann–whitney U-test).
Abbreviations: DMSO, dimethyl sulfoxide; SeM, standard error of the mean.
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histone acetylation synergistically by decreasing the expres-

sion of HDACs. We have shown in vitro that ritonavir com-

bined with carfilzomib, a novel proteasome inhibitor that 

inhibits proteasomal activity irreversibly, inhibits human 

renal cancer growth synergistically by inducing ER stress 

and autophagy,61 and studies using ritonavir and the novel 

proteasome inhibitor delanzomib are currently underway at 

our laboratory.

Ritonavir in combination  
with HDAC inhibitors
The combination of ritonavir and HDAC inhibitors is also 

an attractive approach to killing cancer cells effectively. 

Levels of histone acetylation reflect the balance between the 

activities of histone acetyltransferases and HDACs,62 and 

the acetylation and deacetylation of histones play impor-

tant roles in the regulation of gene transcription.63 Their 

deacetylation, for example, tightens their interaction with 

DNA, resulting in a closed chromatin structure and inhibiting 

gene transcription.64 HDACs are associated with a number 

of cellular oncogenes and tumor suppressor genes leading 

to development of malignancy,65,66 so compounds that target 

HDACs have generated great interest as anticancer drugs.67 

HDAC inhibitors basically exert their antineoplastic activ-

ity by inducing histone acetylation, but they have another 

important mechanism of action: inhibition of HSP90. Many 

HDAC inhibitors inhibit HDAC6, and ablation of HDAC6 

induces hyperacetylation of HSP90, disrupting its chaperone 

function.68,69 Ritonavir acts not only as an HSP90 inhibitor 

and a proteasome inhibitor but also as a CYP3A4 inhibitor 

and P-glycoprotein inhibitor. It is therefore expected to 

further increase the amount of unfolded proteins due 

to HDAC inhibitors and also to enhance the activity of 

HDAC inhibitors by inhibiting their degradation or efflux 

from the cell. The combination of ritonavir and the HDAC 

inhibitor SAHA was shown to inhibit human renal cancer 

growth synergistically in vitro.59 It inhibited the expres-

sion of the inhibitor of apoptosis family members X-linked 

inhibitor of apoptosis protein and survivin and increased 

the expression of active caspase 3, thus inducing apoptosis.  

It also promoted histone acetylation, suggesting that ritonavir 

enhanced the activity of SAHA. The efficacy of ritonavir in 

Figure 3 The combination of ritonavir and the proteasome inhibitor bortezomib drastically killed PC-3 cells.
Notes: Cells were treated for 48 hours under the indicated conditions; original magnification ×40.
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combination with the HDAC inhibitor panobinostat was also 

investigated.50 That combination induced caspase-dependent 

apoptosis and inhibited human renal cancer growth both 

in vitro and in vivo by enhancing histone acetylation. This 

enhancement was thought to be in part due to CYP3A4 

inhibition by ritonavir because panobinostat has been shown 

to be a CYP3A4 substrate.51 Interestingly, the combination 

decreased the expression of HDACs, which would be another 

mechanism enhancing histone acetylation.

Ritonavir in combination  
with 17-AAG
Combining the HSP90 inhibitor 17-AAG with ritonavir is a 

reasonable approach because the combination could inhibit 

HSP90 function cooperatively. In fact, the combination of 

17-AAG and ritonavir caused apoptosis and inhibited the 

growth of human renal cancer cells effectively in vitro.44 It 

inhibited the expression of cyclin D1, CDK4, survivin, and 

X-linked inhibitor of apoptosis protein. Although 17-AAG 

inhibits HSP90, it generally increases the expression of 

HSPs,70 and this could attenuate the effect of 17-AAG. Rito-

navir was found in that study to suppress 17-AAG-induced 

HSP expression by inhibiting the expression of heat shock 

factor-1, an HSP transcription factor. Thus ritonavir enhanced 

17-AAG activity, leading to thorough HSP90 suppression.

Future perspectives
Ritonavir has been shown to be potentially active against 

cancer. Because its antineoplastic activity is much stronger 

when ritonavir is combined with specific agents, future inves-

tigations should be devoted to finding the drug combination 

with the highest efficacy. Combining ritonavir with agents 

that increase the amount of unfolded proteins in the cell 

(eg, proteasome inhibitors, HDAC inhibitors, and HSP90 

inhibitors) is a promising approach because the resulting 

combinations would be expected to increase the amount 

of unfolded proteins and thereby induce ER stress leading 

to apoptosis. Agents that are substrates of CYP3A4 and/or 

P-glycoprotein are also good candidates because their intra-

cellular concentration can be increased by ritonavir. Most 

importantly, ritonavir’s mechanisms do not act separately. 

Bortezomib, for example, is thought not only to enhance 

ER stress in combination with ritonavir but at its increased 

concentration due to ritonavir’s inhibition of CYP3A4 fur-

ther to enhance the ER stress. Clinical trials using ritonavir-

containing regimens are also important. Because ritonavir 

could affect CYP3A4 in the liver as well as in cancer cells, 

Phase I study with careful drug monitoring is mandatory. 

Furthermore, we have shown that ritonavir-containing 

regimens are effective against cancers with very different 

characteristics: renal cancer, prostate cancer, and bladder 

cancer. This suggests that ritonavir-containing regimens 

work irrespective of cancer type and that investigating the 

effects of ritonavir-containing combinations on other types 

of cancer would be a promising next step.

Conclusion
The HIV protease inhibitor ritonavir is potentially an antican-

cer agent. Its mechanisms of action include inhibition of the 

proteasome, inhibition of HSP90, inhibition of CYP3A4 and 

P-glycoprotein, and modulation of immune system activity. 

In urological cancer cells, ritonavir exerts strong anticancer 

activity when combined with proteasome inhibitors, HDAC 

inhibitors, or an HSP90 inhibitor. Further studies explor-

ing more effective drugs to be combined with ritonavir are 

underway. Ritonavir-containing regimens should also be 

clinically tried in patients with advanced urological malig-

nancies because they act by mechanisms completely different 

from those of the currently available noncurative treatments. 

Ritonavir is thus a promising anticancer agent, and investi-

gation of its use in urological malignancies as well as other 

types of cancer is strongly encouraged.

Disclosure
The author reports no conflicts of interest in this work.
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