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Abstract: Robust and accurate fat suppression is highly desirable in breast magnetic resonance 

imaging (MRI) because it can considerably improve the image quality and lesion conspicuity. 

However, fat suppression is also more challenging in the breast compared with other regions in 

the body. Technical advances have been made over time to make fat suppression more efficient 

and reliable. Combined with other innovations, breast MRI continues to be the most sensi-

tive and comprehensive diagnostic modality in the detection and evaluation of breast lesions. 

This review offers a critical comparison of various fat suppression techniques in breast MRI 

including spectral-selective excitation and saturation techniques based on the chemical shift 

difference between fat and water, the inversion recovery techniques based on the T1 relaxation 

time difference, the hybrid spectral-selective inversion recovery techniques, and the new Dixon 

fat and water separation techniques based on the phase difference between fat and water signal 

at different echo times. This review will also cover less frequently used techniques such as 

slice-selective gradient reversal. For each fat suppression technique in breast MRI, a detailed 

explanation of the technical principle, the advantages and disadvantages, the approaches for 

optimization as well as the clinical examples are included. The additional challenges of fat 

suppression in breast MRI at higher field strength and in the presence of metallic and silicone 

implants are also discussed.

Keywords: breast MRI, fat suppression, dynamic contrast enhanced imaging, diffusion weighted 

imaging, magnetic resonance spectroscopy

Introduction
The importance of breast MRI
Breast cancer is the second most common cancer in women in the US. It is also a 

leading cause of mortality among women.1 A woman living in the US have a 12.3% 

(1 in 8) lifetime risk of being diagnosed with breast cancer. Early detection as well 

as improvements in treatment have resulted in a reduction in breast cancer mortality. 

Therefore, it is very important for women to follow recommended screening guidelines 

in order to detect breast cancer at an earlier stage of the disease.2

Breast magnetic resonance imaging (MRI) is highly sensitive in detection and 

characterization of primary and recurrent breast cancer.3 In patients with known 

malignancies, breast MRI improves the assessment of the extent of disease, helps 

in preoperative staging and subsequent choice of therapy, and has been found to be 

beneficial in the assessment of response to neoadjuvant chemotherapy.4–6 Several 

studies have demonstrated higher sensitivity for breast MRI screening compared 

with mammography and breast ultrasound in high-risk women. There is evidence that 
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screening of the contralateral breast with MRI will detect 

occult malignancy in approximately 3% to 9% in women 

with newly diagnosed breast cancer.7

Overview of breast MRI
A typical breast MRI exam includes a non-fat-suppressed 

T1-weighted scan, a fat-suppressed T2-weighted (T2W) 

scan and a dynamic contrast enhanced (DCE) scan. Recent 

studies have also demonstrated the value of diffusion weight 

imaging (DWI) and magnetic resonance spectroscopy (MRS) 

in breast MRI. Although DWI and MRS offer additional 

information which could be helpful in the diagnosis and dif-

ferentiation of certain breast lesions, they are not routinely 

used in clinical breast MRI due to their limitations and 

technical challenges.

T2w of breast
T2W imaging is an essential MRI technique that can pro-

vide much information to help distinguish benign from 

malignant lesions. Lesions with greater water content 

generally appear bright on T2W images and are more 

likely to be benign than malignant. For example: benign 

lesions such as cysts appear bright on T2W images. While 

adenocarcinoma does not appear bright on T2W, some 

mucinous and necrotic breast tumors can appear bright. 

A lesion with rim enhancement can be confirmed to be a 

cyst if it is bright on T2W; similarly, fibroadenomas and 

lymph nodes which may mimic carcinoma in contrast 

enhancement kinetics can be determined to be benign based 

on their bright signal on T2W.

DCe-MRI of breast
In breast MRI exam, dynamic contrast enhanced scan (DCE-

MRI) is the most critical component of the test.8,9 DCE-MRI 

provides both morphological and functional (ie, perfusion) 

information, both critical for differentiating between benign 

and malignant lesions;10 it is therefore very helpful in char-

acterizing primary and recurrent breast cancers as an adjunct 

to mammography and ultrasonography. Breast MRI in high-

risk women has been shown to have a higher sensitivity than 

mammography, and the combination of mammography and 

MRI in this population has the highest sensitivity. Overall, 

studies on high-risk populations have found the sensitivity 

for DCE-MRI ranging from 71% to 100% versus 16% to 

40% for mammography.11 Because of its high sensitivity to 

detect breast abnormalities, DCE-MRI is the leading MRI 

technique for both the initial diagnosis and the treatment 

monitoring of malignant lesions.

DwI of breast
In an effort to improve the specificity of breast MRI, more 

advanced techniques such as DWI are being considered. 

Currently, DWI is not routinely used for breast MRI but 

studies suggest that it can be helpful in differentiating benign 

from malignant lesions.12,13 DWI is based on differences in the 

motion of water molecules in tissue that is the self-diffusion 

of water protons. High cellular density in malignant tumors 

due to rapid proliferation leads to restricted ability of the 

water to diffuse freely within the tissue. Using DWI, one is 

able to calculate the apparent diffusion coefficient, which is a 

quantitative measure directly proportional to the diffusion of 

water. Thus, malignant tumors will have a reduced apparent 

diffusion coefficient due to their restricted diffusion and can 

be distinguished from less cellular, benign tumors.

MRS of breast
MRS is another advanced MRI technique that will continue 

to improve with the advances in stronger field magnets. The 

basis of MRS is the use of the metabolic profile of tissue to 

make diagnostic determinations. Specifically, it has been 

observed that the level of choline and its metabolites is ele-

vated in tumors compared to benign tissue.14 Unfortunately, 

there are confounding factors such as the fact that lactating 

women may also show elevated choline.15 More research is 

needed for a better understanding of MRS application for 

breast MRI.

The need for fat suppression  
in breast MRI
Fat suppression is an essential and integral part of a breast 

MRI exam. While a set of non-fat-suppressed T1-weighted 

images is typically included in breast MRI to visualize the 

anatomy and the distribution of fatty tissue, all the key breast 

MRI scans, including T2W, DCE, DWI, and MRS, require 

or benefit from fat suppression.

Fat appears bright in T2W MRI images because of its long 

T2 relaxation time. The fat signal, if not suppressed, could 

mask the features of interest and interfere with the evaluation 

of benign lesions. As shown in Figure 1, the conspicuity of 

fibroglandular tissue and lymph node is greatly improved in 

the breast with complete fat suppression compared to the 

contralateral breast where fat suppression is non-uniform. 

Unsuppressed fat signal can also cause chemical shift artifact, 

which appears as a thin band of high or low signal at fat and 

soft tissue boundaries.

Fat also appears bright in DCE-MRI due to its rela-

tively short T1 relaxation time. It is likely to interfere 
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Figure 1 Bilateral axial T2-weighed breast magnetic resonance image.
Notes: The left breast demonstrates incomplete fat saturation. The right breast 
shows the improved contrast between background fat and the glandular tissue and 
lymph nodes resulting from complete fat suppression.
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with the evaluation of tissue signal changes from dynamic 

contrast enhancement or obscure abnormal areas of contrast 

enhancement. Therefore, it is very important to suppress fat 

tissue signal to improve the detection of enhancing lesions. 

As shown in Figure 2, the image quality was improved when 

fat suppression works correctly.

Because fatty tissue does not take up contrast, its signal 

should remain constant over the course of contrast uptake 

and washout. Therefore, in the ideal situation, fat signal in 

the post-contrast images can be cancelled out by performing 

subtraction with the corresponding pre-contrast images. 

However, this is rarely the case in clinical patient exams. 

A certain degree of patient motion is unavoidable over 

the course of 6–10 minutes breast DCE-MRI acquisition 

since a patient has to lie down in an uncomfortable prone 

position during the exam. The change in breast shape and 

position over time will also cause mis-registration and 

introduce errors in the subtraction. The un-subtracted fat 

signal can produce patterns which actually mimic contrast 

enhancement.16 Therefore, fat suppression is usually neces-

sary in DCE-MRI.

Another reason for fat suppression in breast DCE-MRI 

is to reduce the error in pharmacokinetic modeling in order 

to quantify kinetic parameters such as the transfer constant 

and the fractional volume of extravascular extracellular 

space. For example, in the commonly used two-compartment 

model, the fat signal is not accounted for because the tissue 

is mottled with the vascular and extracellular compartments. 

Even though fat signal is a relatively small fraction compared 

with the signal from the contrast-enhanced glandular tissue, 

it can still skew the results in quantitative pharmacokinetic 

modeling.17

Fat suppression is also critical in breast DWI, which is 

based on an echo planar imaging (EPI) sequence for data 

acquisition. Being a single-shot gradient echo sequence, 

chemical shift can cause a large displacement of fat sig-

nal in the phase-encoding direction of EPI. Therefore, fat 

suppression is always used in DWI throughout different 

regions in the body. Fat suppression is even more impor-

tant for breast DWI since there is a large amount of fat in 

the breast.

In breast MRS, the resonance of total choline (tCho) 

at 3.2 ppm, which includes the contributions from 

Figure 2 T1-weighted images of the left and right breast.
Notes: T1-weighted image with inhomogeneous fat saturation (A) which was subsequently repeated to improve fat suppression. The repeated image (B) shows improved 
visibility of anatomical details.
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Water Fat Silicone

Frequency0 Hz ~220 Hz ~300 Hz

Figure 3 A schematic spectrum at 1.5T of water, fat, and silicone.
Notes: Fat and water peaks are separated by about 220 Hz. Fat and silicone peaks are 
separated by about 80 Hz. These differences increase linearly with magnetic field (B0).
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multiple choline containing metabolites such as choline, 

phosphocholine, and glycerophosphocholine has been associ-

ated with malignancy. If a breast MRS voxel contains a large 

amount of fat, the sideband of lipid resonance at 1.3 ppm 

could mask the tCho peak. Fat suppression is usually applied 

in breast MRS to attenuate the lipid signal and improve the 

sensitivity and accuracy of tCho detection. It is based on the 

same reason that water suppression is often applied in MRS 

to suppress the dominating signal from water protons in order 

to detect metabolites of much lower concentration.

The challenges of fat suppression  
in breast MRI
While fat suppression is necessary or highly desirable in 

different breast MRI scans, there are unique challenges for 

fat suppression in breast MRI. First of all, because the breast 

has large amounts of fat, fat suppression technique for breast 

MRI must be highly effective in order to completely remove 

fat signal. Second, the breasts are surrounded by air, and the 

magnetic susceptibility difference between the breast tis-

sue and air causes local magnetic field (B
0
) inhomogeneity. 

Therefore, fat suppression technique for breast MRI should 

also have high tolerance for B
0
 inhomogeneity. Third, high 

temporal resolution is needed in breast DCE-MRI in order to 

properly sample the time curve of contrast enhancement, ie, 

the contrast wash-in and wash-out. To achieve high temporal 

resolution, the fat suppression cannot take up too much time 

and slow down the acquisition. Finally, when imaging patients 

with silicone implants, it is important to suppress only the 

fat signal without affecting the silicone signal, so that the 

presence and distribution of silicone can be visualized. This 

is difficult, because the resonance frequencies of fat and 

silicone are very close to each other.

The desired quality of fat suppression
Despite these challenges, fat suppression in breast MRI should 

be accurate and robust. A failure in fat suppression could 

negatively impact the image quality and distort the contrast 

uptake curve.18 Accurate fat suppression means the fat signal 

is completely removed while the water signal is preserved. 

Robust fat suppression means fat suppression should be 

highly accurate throughout the entire breast and surrounding 

regions of interest, such as the axilla, and be consistent on 

subsequent imaging exams. To meet these challenges and 

improve the quality of breast MRI, new and more advanced fat 

suppression techniques have been developed and refined over 

time, allowing us to gradually approach these goals. Although 

fat suppression in breast MRI is an important issue and an 

active area of research and development, there has been no 

comprehensive review dedicated to this topic.

Methods
Fat suppression methods in breast MRI
MRI signal of fat has its unique characteristics. Its resonance 

frequency is different from that of water signal due to chemi-

cal shift. The frequency separation between fat and water 

signal is about 220 Hz at 1.5T and 440 Hz at 3.0T as illus-

trated schematically in Figure 3. Fat signal also has a relative 

short T1 relaxation time (∼300 ms at 1.5T and ∼370 ms at 

3.0T) and long T2 relaxation time (∼50 ms) which makes 

fat hyper-intense on both T1-weighted and T2W images.19 

Based on these properties, different techniques have been 

developed to selectively attenuate fat signal in breast MRI. 

A brief summary of pros and cons of commonly used fat 

suppression techniques is provided in Table 1.

Chemical shift selective saturation or 
Quick FatSat
A commonly used method for fat suppression is based on the 

difference in resonance frequency between fat and water signal 

(ie, the chemical shift difference). As illustrated in Figure 4, 

after applying a spectral-selective radiofrequency (RF) pulse 

with a frequency offset matching the resonance frequency of 

fat protons (220 Hz at 1.5T), only the fat magnetization will 

be excited and tipped into the transverse plane. Such trans-

verse magnetization is then de-phased by a crushing gradient 

pulse immediately afterward so that it would not produce 

any signal. On the other hand, the water magnetization is not 

affected by the spectral-selective RF pulse.

In order for the chemical shift selective saturation (CHESS) 

fat suppression20 to work effectively, the resonance frequency 

of fat must be within the narrow bandwidth of the spectral-

selective RF pulse across the entire field of view (FOV). In case 

the main B
0
 is not uniform, the fat resonance frequency, which 
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Table 1 A high-level summary of the relative advantages and 
disadvantages of fat suppression techniques in breast magnetic 
resonance imaging

Fat  
suppression  
technique

Sensitivity to B0  
inhomogeneity

Sensitivity to B1
+  

inhomogeneity
Impact  
to SNR  
efficiency

CHeSS -- - -
STIR ++ -- --
SPIR/SPeCIAL/
SPAIR

- + -

DIXON/IDeAL ++ ++ +

Notes: “+” implies slight advantage and “++” implies strong advantage, while “-” 
implies slight disadvantage and “--” implies strong disadvantage.
Abbreviations: CHeSS, chemical shift selective saturation; STIR, short tau 
inversion recovery; SPIR, spectral presaturation with inversion recovery; SPeCIAL, 
spectral inversion at lipid; SPAIR, spectrally-selective adiabatic inversion recovery; 
B0, magnetic field; IDEAL, Iterative Decomposition of water and fat with Echo 
Asymmetry and Least-squares estimation; SNR, signal to noise ratio.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

41

Fat suppression in breast MRI

is proportional to B
0
, will also vary. Fat suppression would fail 

if the fat frequency is outside of the bandwidth of the satura-

tion RF pulse. In a worse scenario, the water frequency may 

be shifted into the saturation band of the RF pulse at certain 

locations, causing the water signal to be suppressed instead 

of fat as shown by the example in Figure 5.

The CHESS fat suppression module, which consists of a 

saturation RF pulse and a crushing gradient pulse, does add a 

significant amount of additional time compared to the gradi-

ent echo acquisition itself. It would prolong the scan time or 

reduce the temporal resolution of dynamic acquisition. One 

way to avoid such problem is to apply the fat suppression 

module only prior to the acquisition of central k-space data 

points. Since the image contrast is predominately determined 

by the central k-space data, interleaved fat suppression (QFS) 

can dramatically reduce the scan time while maintaining the 

benefit of fat suppression.21 However, QFS module in fast 

gradient echo acquisition also alters the regular repetition of 

excitations and disrupts the steady state of magnetization. 

As a consequence, the signal intensity does not follow the 

well-established simple model for steady state, making the 

qualitative analysis more challenging.21

Short tau inversion recovery
Another approach for fat suppression is based on the 

T1 relaxation time difference between fat and water protons. 

By acquiring signal at a specific delay time (150 ms for 1.5T 

and 200 ms for 3.0T) after a non-spectral-selective (broadband) 

inversion RF pulse, the fat signal is nulled as illustrated in 

Figure 6. Since short tau inversion recovery (STIR) fat sup-

pression does not rely on spectral-selective RF pulse, it is 

immune to B
0
 inhomogeneity.

There are several drawbacks with the STIR technique. First of 

all, at the null point for fat, water magnetization is only partially 

recovered. Therefore, the water signal is also attenuated22 and 

becomes T1-weighted after inversion recovery (IR). Another 

drawback with STIR fat suppression is that the IR process takes 

an even longer time than the CHESS module. Because it is time 

consuming, STIR fat suppression is only used in static acquisi-

tions such as T2W imaging and sometimes diffusion-weighted 

imaging of the breast. Finally, although STIR is insensitive to 

B
0
 variations, it can be affected by variation of RF amplitude 

(B
1
+). If the inversion RF pulse does not uniformly produce an 

exact 180 degree flip angle across the FOV, the delay time (time 

of inversion [TI]) to null fat signal would also be different from 

90˚

B0 B0 B0 B0

α˚

Time

G

Figure 4 CHeSS fat suppression.
Notes: In CHeSS fat suppression, a spectral-selective pulse tuned to the fat resonance tips the fat magnetization (represented by yellow arrows) to transverse plane (frame 2).  
The fat magnetization is then dephased by a gradient pulse (G) so the net magnetization is zero and only the water magnetization (represented by blue arrows) is remaining 
(frame 3). In the following excitation, only water magnetization is tipped to the transverse plane to eventually produce MR signal.
Abbreviations: CHeSS, chemical shift selective saturation; MR, magnetic resonance; B0, magnetic field.
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the nominal value and certain regions may then have incomplete 

fat suppression. Because dielectric effect is more prominent at 

higher field strength, B
1
+ inhomogeneity is also worse at 3T and 

7T compared to 1.5T. The additional challenges for fat suppres-

sion at higher field strengths will be discussed in detail in Fat 

suppression at 3.0T versus 1.5T.

Spectral presaturation with inversion 
recovery, spectral inversion at lipid, and 
spectrally-selective adiabatic inversion 
recovery
Inversion recovery based fat suppression technique (STIR) 

also attenuates water signal and alters image contrast if a 

non-selective inversion pulse is used. Such a problem can 

be avoided by making the inversion spectrally selective to 

fat so that only the fat magnetization would be inverted and 

subsequently nulled after a certain delay time. Since the water 

magnetization is not affected by the inversion pulse tuned to 

fat resonance, the signal to noise ratio and image contrast 

are preserved, as illustrated in Figure 7. Such fat suppression 

method is known as SPIR and SPECIAL. To reduce the time 

of IR process, a less than 180° flip angle, typically 100°–120°, 

and a corresponding shorter TI are often used in SPIR and 

SPECIAL.

Another problem with IR-based fat suppression technique 

is that it may suffer from B
1
+ inhomogeneity, as discussed 

previously. Spectrally-selective adiabatic inversion recovery 

(SPAIR)23 was developed to address this issue. By substitut-

ing the conventional RF pulse with an adiabatic RF pulse, 

the inversion is made more robust and not sensitive to B
1
+ 

 variation, as illustrated in Figure 7. As a result, SPAIR 

 typically produces more uniform fat suppression than CHESS 

and STIR, especially at higher field strengths such as 3T, as 

Figure 5 Incorrect setting of RF pulse frequency in spectral-selective fat suppression techniques such as CHeSS can cause serious problems in breast MRI.
Notes: In this example, it appears that the frequency of fat suppression RF pulse was set to water resonance frequency instead of fat, therefore suppressing the signal from 
glandular tissue instead of fat in both T2w (A) and DCe (B) images.
Abbreviations: CHeSS, chemical shift selective saturation; MRI, magnetic resonance imaging; T2w, T2-weighted; DCe, dynamic contrast enhanced; RF, radio frequency.

180˚

B0 B0
B0 B0

90˚

Time

Figure 6 STIR fat suppression.
Notes: In STIR fat suppression, a non-selective 180° RF pulse inverts the magnetization of both water and fat (frame 2). Because fat has a shorter T1 relaxation, its 
magnetization recovers faster than water (frame 3). After a certain time, the fat magnetization reaches zero (ie, nulled). If the excitation pulse is played out at this moment; 
only the remaining water magnetization will produce a signal.
Abbreviations: STIR, short tau inversion recovery; B0, magnetic field; RF, radio frequency.
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shown in Figure 8. To overcome the long duration associated 

with IR, SPIR, SPECIAL, or SPAIR, fat suppression modules 

can also be applied in an interleaved fashion, only prior to the 

acquisition of central k-space data in a dynamic acquisition.

Spectral-selective (water) excitation  
with composite pulse and  
spectral spatial pulse
Spectral-selective excitation can be achieved using a composite 

RF pulse which consists of several sub-pulses with specific 

inter-pulse delay. As illustrated in Figure 9, binomial pulse is 

one example of such composite excitation pulse. By selectively 

exciting water resonance, ie, water excitation (WE), the fat sig-

nal is suppressed. The spectral selectivity or the sharpness of the 

excitation profile in the spectral domain improves with increas-

ing number of sub-pulses, but the length of the composite pulse 

also increases. Therefore, (1,1) binomial pulse (Water Excita-

tion, Siemens, Erlangen Germany) and (1,2,1) binominal pulse 

(ProSet, Philips, Best, Netherlands) are typically used in clinical 

applications. Advanced binomial excitation pulse design with no 

inter-pulse delay has also been developed for fast fat suppression 

in dynamic breast imaging and has been shown to provide WE 

with excellent fat suppression in minimum time.24

Spectral spatial (SPSP) pulse is another type of composite 

pulse which achieves spectral-selective excitation through 

the modulation of the RF amplitude and phase in each slice-

 selective sub-pulse.25,26 An example of SPSP pulse and its 

excitation profile are shown in Figure 10. SPSP pulse typi-

cally has more than ten sub-pulses and has relatively long 

pulse duration. Its application is mostly limited to diffusion 

180˚

B0 B0 B0 B0

α˚

Time

Figure 7 Replacing non-spectral-selective inversion RF pulse in STIR with an adiabatic and spectral-selective RF pulse matching fat resonance frequency.
Notes: By replacing the non-spectral-selective inversion RF pulse in STIR with an adiabatic and spectral-selective RF pulse matching fat resonance frequency, the inversion 
only affects fat magnetization (frame 2). while fat magnetization goes through the inversion recovery process and is nulled after a certain delay time, the water magnetization 
remains unchanged. with an adiabatic pulse, the inversion is more robust with respect to B1

+ variation.
Abbreviations: STIR, short tau inversion recovery; B0, magnetic field; RF, radio frequency.

Figure 8 Three-dimensional T2-weighted breast images.
Notes: Three-dimensional T2-weighted breast images at 3.0T with interleaved CHeSS fat suppression (QFS) (A) and with interleaved SPAIR fat suppression (B). Better 
image contrast with more complete fat suppression was achieved with SPAIR fat suppression. 448×448 is the matrix size of both images.
Abbreviations: CHeSS, chemical shift selective saturation; QFS, Quick FatSat; SPAIR, spectrally-selective adiabatic inversion recovery; Te, echo time; TR, repetition time; 
ST, slice thickness.
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weight spin-echo (EP)-EPI where such long excitation pulse 

duration does not have a negative impact. Recently, dual-

band spectral-spatial excitation, which excites two parallel 

slabs, has been demonstrated to provide homogeneous fat 

suppression in bilateral breast imaging when combined with 

independent shims.27

Dixon/Iterative Decomposition of water 
and fat with echo Asymmetry and Least-
squares estimation (IDeAL) fat and water 
separation
Dixon Fat and Water Separation Technique,28,29 as illustrated 

in Figure 11, relies on the fact that there is an increasing 

phase difference between fat and water signal after the 

initial excitation because of their chemical shift difference. 

Such phase difference would cause the fat and water signals 

to be in-phase or out-of-phase with respect to each other 

depending on the echo time (TE) in a gradient echo sequence. 

By acquiring mixed fat and water signals at different TEs, one 

can separate the fat and water signals to generate water-only 

and fat-only images.

While acquiring data at two different TEs (two-point 

Dixon) is adequate for separating fat and water signals, addi-

tional echoes from more TEs can improve the stability of fat 

and water separation and also increase the SNR at the expense 

of longer acquisition time. For example, three-point DIXON 

45˚ 45˚

Time

B0 B0B0B0

∆t =1/(2*∆f)

Figure 9 An example of (1, 1) binomial pulse.
Notes: Immediately after a 45° RF pulse is applied, the magnetizations of fat and water are in-phase (frame 2). After a delay (∆t) equaling the inverse of two times the 
frequency difference between fat and water (∆f) the water and fat magnetizations become out-of-phase (frame 3), then if another 45° RF pulse is applied, the water 
magnetization would effectively experience a 90° RF pulse as a typical excitation. On the other hand, the fat magnetization would return to original state.
Abbreviations: B0, magnetic field; RF, radio frequency.
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Figure 10 The typical composition of a spectral spatial pulse and the simulation results demonstrating both spectral and spatial selective excitation.
Notes: An SPSP pulse consists of a series of slice-selective excitation pulses with the amplitude modulated (A). Such a composite pulse produces an excitation profile which 
is not only slice-selective, but also has periodic excitation and bands in the spectral domain (B). By designing an SPSP pulse with water resonance in the middle of an excitation 
band and fat resonance between two excitation bands, only the water magnetization would be excited.
Abbreviation: SPSP, SPectral SPatial pulse.
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technique has been shown to provide better fat suppression 

and signal homogeneity than SPAIR and ProSet.30

Iterative decomposition of water and fat with echo asym-

metry and least squares estimation (IDEAL)31 acquires three 

or more echoes and uses an iterative reconstruction algorithm 

to decompose the chemical species, ie, fat and water, into 

separate images. Because IDEAL also estimates the local 

field map due to B
0
 inhomogeneities, it is more robust in the 

presence of B
0
 inhomogeneities and maximizes SNR in the 

reconstructed images for all combinations of the separated 

chemical species in a voxel.

In comparison to fat suppression with preparatory pulses, 

the Dixon/IDEAL techniques do not alter the image contrast 

and have the major advantage of being insensitive to the B
0
 

inhomogeneities. A major drawback of the Dixon technique 

has been the requirement of acquiring multiple echoes and 

hence a longer acquisition time. However, the increased 

SNR from multiple echoes can be traded off with accelera-

tion techniques such as parallel imaging and partial k-space 

sampling to make the acquisition faster. In case of dynamic 

imaging, ie, breast DCE-MRI, view sharing techniques such 

as time-resolved MR-angiography with stochastic trajec-

tories (TWIST) or elliptical centric time resolved imaging 

of contrast kinetics (EC-TRICK) can further accelerate the 

acquisitions without SNR penalty. Based on this concept, 

view sharing accelerated fast gradient echo acquisition with 

dual-echo Dixon fat and water separation such as TWIST-

Dixon32 and differential subsampling with cartesian ordering 

(DISCO)33 have been developed and have produced good 

results in breast DCE-MRI application.

Another alternative to avoiding longer acquisition times 

associated with acquiring multiple echoes of different TEs 

is the single-point Dixon technique.34 In single-point Dixon, 

the fat and water separation is based on the data from a 

single echo. A region growing algorithm is used for phase 

error correction.

Recently, several studies have been carried out to com-

pare two-point Dixon and spectral-selective fat suppression 

techniques both qualitatively and quantitatively at 3T.35–38 

Two-point Dixon is found to be outperforming other tech-

niques with more uniform and complete suppression of 

fat signal, better anatomical definition, less artifacts, and 

improved contrast and visibility of the breast lesions in 

contrast-enhanced bilateral breast imaging. In addition to 

three-dimensional (3D) T1-weighted spoiled fast-gradient 

sequence, Dixon/IDEAL fat and water separation can also 

be implemented in 3D T2W fast spin echo sequence.39

Slice-select gradient reversal
Because of the chemical shift difference between fat and 

water, the excited fat and water signals are actually from 

two slices with an offset in the slice direction. If the gradient 

for slice-selective refocusing is reversed, ie, if the gradients 

for slice-selective excitation and slice-selective refocusing 

have opposite polarity, the refocusing of slice for fat and 

the refocusing of slice for water will have an offset in the 

opposite direction. If the total of two offsets is greater than 

the slice thickness, the excited fat magnetization would not 

be refocused and therefore has no contribution to the echo 

signal,40,41 as shown in Figure 12.

α˚ TE1 TE2

Time

B0 B0 B0 B0

∆t =1/(2*∆f)

Figure 11 Two-point Dixon Technique
Notes: After the initial excitation (frame 2), two gradient echoes at different echo times (Tes) are acquired in two-point Dixon, the magnetizations of fat and water would 
be opposed-phase in one echo (ie, frame 3) and in-phase in another echo (ie, frame 4). The water-only and fat-only images can be generated from the combination of in-phase 
and opposed-phase data sets. A new Dixon fat and water separation algorithm has been developed which relaxes strict in-phase and opposed-phase requirements.
Abbreviation: B0, magnetic field; ∆t, delay between echoes; ∆f, frequency difference between fat and water.
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Similar to other fat suppression techniques based on 

chemical shift, slice-select gradient reversal (SSGR) also 

requires uniform B
0
 and benefits from the greater separa-

tion of fat and water resonance frequencies at higher field 

strengths. Unlike CHESS and WE, which only suppress or 

excite signals with a certain bandwidth, SSGR actually sup-

presses all signals that are off-resonance, including silicone. 

Another advantage of SSGR is that it does not require any 

additional time or RF pulse. However, SSGR is limited to two-

dimensional (2D) SE sequence with slice-selective excitation 

and refocusing, such as 2D SE EPI used for breast DWI.

Fat suppression at 3.0T versus 1.5T
Breast MRI at 3.0T has many advantages over 1.5T. The 

greater signal generated at higher field strength can be traded 

off through various acceleration techniques to improve 

the spatial and temporal resolution in breast MRI scans. 

Improved lesion detection may be achieved through gains in 

spatial resolution and greater contrast-to-noise ratio, while 

lesion characterization may be improved through higher 

spatial and/or temporal resolution.42

Despite the greater frequency separation between fat and 

water signal, fat suppression is in general more difficult at 3.0T 

than 1.5T because of the increased B
0
 and B

1
+ inhomogeneity.

Fat suppression techniques need to be adapted to 3.0T. For 

spectral-selective excitation or saturation techniques such as 

CHESS or WE, the frequency offset and the RF pulse band-

width need to be adjusted to the greater frequency separation 

between fat and water and the greater B
0
 inhomogeneity. Such 

change is usually implemented through pulse sequence design. 

For IR-based techniques such as STIR or SPAIR, a longer TI 

should be used to null the fat signal. The greatest challenge 

for fat suppression at higher field strength is to compensate 

for B
1
+ inhomogeneity.43 This may be accomplished through 

advanced hardware such as multi-channel parallel transmis-

sion which enables B
1
+ shimming.44 For IR-based techniques, 

switching the inversion RF pulse to an adiabatic pulse which 

is insensitive to B
1
+ inhomogeneity can be helpful.23

Fat suppression in the presence  
of metallic implant
Breast MRI is often performed as follow-up exams on cancer 

patients to monitor for possible tumor recurrence. For patients 

who have had prior biopsy or surgery, biopsy markers or 

surgical clips are usually placed during the procedure for 

future references, and for patients undergoing chemotherapy, 

a port for vascular access may be present. These metallic 

implants and devices cause strong perturbation of the local B
0
 

and present additional challenges for fat suppression by 

producing artifacts of complex dark and bright bands in the 

conventional fat-suppressed images.45 A recent study shows 

that metal artifact has a slightly smaller volume and more 

distinct pattern in Dixon water-only images than gradient 

echo images with QFS or SPAIR.46

Fat suppression in the presence  
of silicone implant
The percentage of patients with breast implants is on the 

rise. In 2008, more than 300,000 women and teenagers in 

the US underwent breast augmentation surgery and about 

80,000 women underwent reconstructive breast implant 

surgery after mastectomy.47 While MRI is recommended as 

the method of choice for investigating silicone gel implant 

rupture,48 the presence of silicone implant causes additional 

complexity for fat suppression in breast MRI because silicone 

also produces MR signal with an off-resonance frequency 

of 300 Hz at 1.5T, close to that of fat, and a T1 relaxation 

time of 900 ms, which fortunately is much longer than fat T1 

relaxation time. When the objective of breast MRI scan is to 

detect or evaluate lesions in the breast tissue, it is desirable to 

suppress both fat and silicone signals. In such cases, dual fat 

and silicone suppression can be achieved with a combination of 

two techniques described previously, such as STIR and SSGR 

or STIR and IDEAL.49,50 However, if breast MRI is performed 

to evaluate the integrity of the silicone implant, both fat and 

water signal should be suppressed while preserving the silicone 

signal, so any rupture or leakage of the silicone implant can be 

90˚

RF

Gss

Mxy

RF180 RF90

SS
Imaged object

−D +D

180˚ Water
Fat

Figure 12 Schematic illustration of SSGR fat suppression.
Notes: The 90° RF pulse excites fat in a slice that is slightly displaced from that of 
water. when the polarity of gradient is reversed, but has the magnitude for the 180° 
refocussing pulse, the excited slice of fat is displaced in the opposite direction by the 
same amount. If the total shift is greater than the slice thickness, the fat signal is not 
refocused, while the water signal is completely refocused. Springer and european 
Society of Radiology. Eur Radiol, Combination of chemical suppression techniques for 
dual suppression of fat and silicone at diffusion-weighted MR imaging in women with 
breast implants. 22, 2012, 2648–2653, Koh D, Blackledge M, Burns S, et al, ©european 
Society of Radiology 2012, with kind permission of Springer Science+Business Media.49

Abbreviations: SSGR, slice-select gradient reversal; RF, radio frequency; SS, slice 
selection.
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visualized. Then, an IR technique, such as STIR, can be used to 

suppress the fat signal and a spectral-selective saturation with 

its frequency centered at water peak can be used to suppress 

water signal. Another approach to achieve desired suppression 

of unwanted signal is to reconstruct separate water, fat, and 

silicone images using the Dixon method.51

Optimizing fat suppression in breast MRI
For fat suppression techniques which rely on matching the 

frequency of RF pulse with the frequency of fat resonance, 

having the B
0
 as uniform as possible throughout the entire 

breast or the anatomy of interest, and having the center 

frequency of the MR scanner tuned to the water frequency 

is critical. A practical and effective method to reduce the 

B
0
 inhomogeneity at the air and breast tissue boundary is 

to carefully remove the skin folds when positioning the 

patient. In bilateral breast MRI, the transverse images often 

have a larger than necessary FOV in the anterior to posterior 

direction. This is because the frequency encoding needs to be 

in the anterior to posterior direction in order to avoid ghosting 

artifacts of the moving heart from propagating into the breasts. 

By default, the shimming or optimization of B
0
 homogeneity 

is performed by the scanner over the entire large FOV instead 

of just the breast region. To achieve better B
0
 uniformity over 

the breasts and surrounding regions, a localized shim volume 

covering only the breasts, the axilla, and the chest wall can 

be set up manually to optimize the B
0
 homogeneity only for 

those regions and ignore other regions such as the heart and 

lungs,52 At the same time, the adjustment of the scanner’s 

center frequency should be optimized for the same regions 

as well. Most of the MR scanners allow users to manually 

check or confirm the setting of center frequency after the 

automatic adjustment is made. It is important to do so in 

breast MRI. Checking center frequency manually can also 

prevent the occasional error of setting center frequency to 

fat signal when the fat signal dominates.

Another factor that can impact the quality of fat sup-

pression is the transmitting RF field (B
1

+) inhomogeneity or 

inaccuracy, which is worse at higher fields such as 3T due 

to the so-called dielectric effect. On advanced MR scanners 

with multiple independent transmitting coils, it is possible 

to perform B
1

+ shimming to reduce B
1

+ inhomogeneity. 

However, this technique is still under development and not 

widely available. In the meantime, the options to reduce B
1
+ 

inhomogeneity are very limited for an end user. The best 

thing to do is to choose a technique that is insensitive to B
1

+ 

variations, such as diabetic inversion or Dixon fat and water 

separation.

Conclusion
Suppressing the fat signal can improve the sensitivity 

of breast MRI. However, accurate and time-efficient fat 

suppression continues to be a challenge, especially at 

higher field strengths where B
0
 and B

1
+ are less uniform. 

Recently, new strategies, such as SPAIR and Dixon, have 

been introduced and have signif icantly improved the 

quality and robustness of fat suppression in breast MRI. 

Combined with the latest acceleration strategies, such as 

parallel imaging and view sharing, the Dixon technique 

is capable of producing water-only images with minimal 

artifact and even higher SNR efficiency. Such technical 

advancement is alleviating the conflict between high 

spatial-temporal resolution and better conspicuity with 

fat suppression.
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