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Abstract: Septins embrace a large family of proteins highly conserved among eukaryotic 

species. They were originally identified in budding yeast in the early 1970s as proteins essential 

for completion of cytokinesis. In humans, septins comprise a group of 13 genes, most of which 

are present in several isoform variants, leading to a complex pattern of expression. The biologi-

cal functions achieved by septins have been extensively investigated in yeast, and while several 

questions remain unanswered, details on the mechanisms of action and pathways relative to their 

major role in orchestrating the mitotic process, cell polarity, and diffusion barriers have been 

elucidated. In mammalian cells, the biological processes in which septins play important roles 

are emerging as increasingly complex. Septins are found with a broad range of expression in 

most tissues, and like in yeast, are essential for the successful completion of cytokinesis and for 

the establishment of cell polarity and diffusion barriers. However, they have also been shown 

to be important for phagocytosis and migration. Owing to their widespread expression in most 

mammalian cell subtypes and the plethora of functions to which they have been associated, it 

is not surprising that septins have been implicated in a large variety of human diseases. This 

review summarizes the current knowledge of septins’ cellular functions and the mechanisms of 

regulation of their assembly. In addition, we present the broad range of human diseases where 

septins have been shown to be important for the etiology of the disease, including areas where 

septins have been recently implemented as biomarkers. Because of the growing evidence sup-

porting the association of septins with novel cellular and biological functions, we expect this 

intriguing family of cytoskeletal interacting proteins to become coupled with an increasing 

number of human diseases.
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Introduction
Septins comprise a large family of cytoskeletal interacting filaments originally identi-

fied in yeast as proteins essential for cytokinesis that associate with the 10 nm filaments 

found at the cytoplasmic interface of the plasma membrane in the mother-bud neck.1–3 

Septins are highly conserved from yeast to humans, and are expressed in variable 

number of gene-family components in all species but higher plants.3 However, recent 

studies aimed at characterizing the phylogenetic distribution and evolutionary origins 

of septins suggest that they are also present in chlorophyte algae, brown algae, and 

ciliates.4

The distinguishing characteristic of septins, which is also essential for the accom-

plishment of their biological functions, is their ability to organize into oligomeric core 

complexes that ultimately assemble into higher-order structures such as filaments,1,5,6 

cages,7 rings,8,9 and gauzes (Figure 1A–C).10
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Septins are defined by the ubiquitous presence of several 

motif sequences (Figure 1D). All septins share the unique 

element, a conserved region orthologous to amino acids 

360–413 of Saccharomyces cerevisiae Cdc3p.11 Mammalian 

septins comprise 13 genes (SEPT1–SEPT12 and SEPT14; 

owing to SEPT13 being characterized as a pseudogene and 

now defined as SEPT7P2) that are subclassified into four 

groups defined based on their homology sequence.12–15 The 

SEPT3 subgroup includes SEPT3, SEPT9, and SEPT12, 

and lacks the coiled-coil C-terminus domain. Loss of this 

domain in yeast and Ashbya gossypii, a filamentous fungus, 

shows aberrant morphology and defects in neck structures, 

and results in failure of cytokinesis.16,17 In yeast, the coiled-

coil domain has been shown to be essential for proper 

localization of Cdc11 (one of the five yeast mitotic septins) 

and is important for interaction with septin Cdc3 and the 

bud emergence gene Bem4.16 While a definite role for the 

coiled-coil domain in mammalian cells remains elusive, 

several lines of evidence suggest that it is important for the 

assembly and stability of septin filaments.18,19 The SEPT2 

subgroup includes SEPT2, SEPT1, SEPT4, and SEPT 5; the 

SEPT7 subgroup includes only SEPT7, which in some stud-

ies is defined as a SEPT2 subgroup together with SEPT13; 

and the SEPT6 subgroup includes SEPT6, SEPT8, SEPT10, 

SEPT11, and SEPT14.

In addition to the septin-unique element and the coiled-

coil domain (present in most septins) the 13 human septins 

all share a central highly conserved core domain consisting of 

a GTP-binding region of the P-loop superfamily of GTPases 

(Walker A motif -P-loop/G1 motif, as well as sequences 

resembling G3 and G4 motifs) flanked by a polybasic 

region.20,21 These domains allow the formation of a flexible 

loop, and are important for the binding of Mg2+, and can 

also interact with β- and γ-phosphates of GTP. The GTPase 

motif is important for GTP-binding specificity. Despite the 

presence of a shared GTP-binding domain in all members 

of the septin family, the dynamics of GDP/GTP binding as 

well as the requirement for GTP hydrolysis to fulfill septin 

biological functions remains to be elucidated. Some reports 

suggest that only septin complexes and not single septins are 

capable of binding appreciable amounts of guanine nucle-

otide,22 while others suggest that septin monomers may also 

have the ability to bind and hydrolyze GTP.11 Independently 

of the organizational status that may allow for binding, all 

septins have been shown to possess the ability to bind GDP. 

Members of groups SEPT2, SEPT7, and SEPT9 present low 
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Figure 1 Representative images of organization of SEPT9 filaments in mammalian cells at different stages of the cell cycle.
Notes: (A) In early anaphase, SEPT9 filaments (red) disassemble and can be observed as punctuated staining in the cytoplasm, as well as more filamentous structures along 
the plasma membrane. (B) During late telophase, SePT9 staining is visible as a ring structure along the cleavage furrow, resembling the morphology of budding yeast. (C) in 
interphase cells, SEPT9 assembles into filaments whose morphology varies between rings and filaments in different cell lines. In MDA-231 cells, both filaments and rings are 
clearly visible. (D) Schematic representation of septin domains: proline-rich domain (green), polybasic domain (gray), GTPase domain (yellow), SUe domain (orange) and the 
coiled-coil domain (blue). images for (A–D) were acquired in Dr Cristina Montagna laboratory at Albert einstein College of Medicine.
Abbreviation: SUe, septin-unique element.
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intrinsic GTP activity with the ability to hydrolyze GDP,21 

while members of the SEPT6 group lack this property.23 It 

has been suggested that loss of the intrinsic GTP hydrolysis 

is a specific feature of organisms like humans having a large 

number of septins; however, the reason for these findings 

remains unclear. Binding of GTP has been shown to induce 

the characteristic conformational change that operates as 

the common mechanism of function of GTPases of the Ras-

related superfamily.24,25 The main question of whether hydro-

lysis is required for septins’ assembly, and if conformational 

changes of the GTP-binding region affect the dynamics of 

septin filaments, remains largely unknown.

A highly conserved polybasic region flanks the GTP-

binding domain at the N-terminus of the septin-protein 

sequence (Figure 1D), and it is responsible for the interaction 

and binding of septins with the cell membrane.26 Upstream of 

the polybasic region, septins contain a proline-rich domain, a 

sequence important for protein–protein interactions and fre-

quently involved in the interaction of proteins with cytoskel-

etal components.27,28 Adding to the complexity of septins is 

the complex transcriptome that is emerging. All members 

but SEPT14 encode various isoform variants (Table 1) for 

a total of 81 transcripts. Micro-ribonucleic acids (miRNAs) 

and antisense transcripts have been recently annotated to 

the septins’ genomic regions (Gencode version 19), sug-

gesting that tightly regulated mechanisms of transcriptions 

may take place to orchestrate the expression of this complex 

gene family.

Dynamics and regulation of septins
The main characteristic of septins is their ability to assem-

ble into filaments. Assembly of septins is achieved via 

organization of heteroligomeric complexes that ultimately 

organize into higher-order structures.20,29 While the role that 

GTP hydrolysis plays in the assembly of septin filaments 

remains largely unknown, electron microscopy studies18,30 

and the crystal structure of the main septin complex31 have 

provided important insights into the structure and organiza-

tion of septin filaments.

Using the G domain, each member of the septin fam-

ily has the ability to dimerize in tandem with itself or with 

another septin member and organize into an apolar hexameric 

complex. The best characterized of these hexamers to date is 

the SEPT2–SEPT6–SEPT7 complex.31 By crystallography 

analyses, it was revealed that these three members of the 

septin family could arrange in one hexamer that is oriented as 

SEPT7–SEPT6–SEPT2–SEPT2–SEPT6–SEPT7 (Figure 2). 

Septin monomers interact by two interfaces: the G domain 

and the N- and C-terminal domains. End-to-end binding of 

these nonpolar oligomers yields to the assembly of linear 

filaments that can additionally pair through their coiled-coil 

domain to produce bundles.8,18,32 Septins can also bind to 

lipids via their polybasic region, a feature that may aid their 

tridimensional organization.26

Several different compositions of the septin hexamers 

have been described thus far. While it remains unknown if 

all members of the septin gene family can substitute each 

other in the assembly of filaments, it is recognized that 

septins follow a combinatorial mode where some members 

have higher affinity for one another.13 While septins are 

ubiquitously expressed in all tissues, there is specificity in 

which member/s of the family may be expressed in a given 

cell subtype. Therefore, the mode of assembly of the septin 

filaments may likely be tissue-specific and depend on which 

Table 1 Chromosomal mapping and transcriptional variants of Septin family members

Septin 
member

Chromosome bp Mapping on  
chromosome

Size of genomic 
locus (bp)

Number of Gencode (version 19) variants

Coding miRNA Antisense Other

SePT1 16 chr16:30,389,454–30,394,171 4,718 3 – – 1
SePT2 2 chr2:242,254,602–242,293,441 38,840 6 – 1 1
SePT3 22 chr22:42,372,931–42,394,225 21,295 5 – 1 –
SePT4 17 chr17:56,597,611–56,606,828 21,295 10 – 4 –
SePT5 22 chr22:19,701,987–19,710,845 8,859 4 – – 1
SePT6 X chrX:118,750,909–118,827,333 76,425 8 1 – 1
SePT7 7 chr7:35,840,596–35,946,715 106,120 7 1 – 1
SePT8 5 chr5:132,091,695–132112980 26,559 8 – – 1
SePT9 17 chr17:75,277,492–75,496,674 219,187 15 2 2 1
SePT10 10 chr2:110,303,626–110,343,400 71,410 7 – – 1
SePT11 4 chr4:77,870,895–77,959,768 88,874 5 – – 1
SePT12 16 chr16:4,827,615–4,838,522 10,908 2 – – 1
SePT14 7 chr7:55,861,237–55,930,482 69,246 1 – – 1
Total 724,896 81 4 8 11

Abbreviations: bp, base pairs on chromosome; miRNA,  micro-ribonucleic acid.
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septin is available. The septin complexes that have been thus 

far isolated from tissue-culture cells include a canonical com-

plex of SEPT2–SEPT6–SEPT7,8,33 SEPT3–SEPT5–SEPT7,34 

and SEPT5–SEPT7–SEPT11.35 Complexes containing 

SEPT9 have been described: SEPT7–SEPT9–SEPT1136 and 

SEPT2–SEPT6–SEPT7–SEPT9.37 These are particularly 

interesting to understand mechanisms that lead to filament 

assembly. SEPT9 was not originally included in the complex 

analyzed by crystallography; however, biochemical and 

immunofluorescence studies suggest that SEPT9 is part of 

the SEPT2–SEPT6–SEPT7 complex.38,39 The most current 

model suggests that SEPT9 occupies a terminal position in 

the native octameric complex, and that removal of the SEPT9 

N-terminal domain disrupts septin higher-order structures, 

leading to failure of cytokinesis.37,40

To date, SEPT7 appears to be a recurrent component 

of the septin complexes, while SEPT9 is present at the 

terminal position of septin complexes and is suggested to 

be responsible for subunit polymerization.40 Based on these 

observations, it is intriguing that among the septin-knockout 

murine models that have been generated thus far (Sept3, 

Sept4, Sept5, Sept6, Sept7, Sept9, and Sept11) the first four 

have mild phenotypes, while constitutive deletion of Sept7, 

Sept9, and Sept11 results in embryonic lethality at early 

gestation.41 These data suggest that while several septins 

could be interchangeable, some others may be required for 

the assembly and/or function of the filaments.

Septins bind to microtubules through their N-terminal 

domain,42 they are recruited to actin bundles via their inter-

action with adaptor proteins,43 and they are required for 

packing actin filaments into rings.44 Because of their close 

interactions with the cytoskeleton, they were originally 

considered structural proteins. However, it is now evident 

from work performed both in yeast and mammalian cells 

that they also have important regulatory functions, as well 

as serving as docking sites for anchoring other regula-

tory proteins involved in a variety of cellular processes. 

Numerous septin-interaction partners that are part of the 

ubiquitination and of the kinase cascade pathways have 

been identified;45,46 in mammalian cells, septins have also 

been implicated in the process of exocytosis by assembling 

into tracks for vesicle transport and are also important for 

the establishment of cell polarity,47 as well as regulators of 

synaptic vesicle dynamics.48

Therefore, while septins interact with one another and 

assemble into filaments, their functions greatly extend beyond 

that of structural filaments by providing regulatory functions 

for a wide variety of cellular processes.

Biological functions of septins
Septins are involved in a large number of biological 

 functions. Several decades of work carried out in yeast has 

provided extensive evidence of the septin filaments’ role 

as scaffolding proteins. For example, at the mother-bud 

neck interface, where septins localize during cell division, 

septins have been shown to be essential recruiters of a large 

number of proteins that are essential for cytokinesis.49–51 

Contrary to what was originally thought, the septin ring that 

assembles at the septum seems not to be required to gener-

ate the dynamic forces required for cytokinesis, but rather 

provides essential regulatory functions.52,53 Assembly of the 

septin scaffold in yeast is required for microtubule capture 

and positioning of the spindle-pole body and subsequent 

segregation of replicated chromosomes into the mother and 

daughter cells.54 In addition to their scaffolding function at 

the mother-bud neck interface, septins also function as a 

diffusion barrier by limiting the exchange of cortical factors 

through the bud neck.55–57

In mammalian cells, septins regulate a large variety of key 

cellular processes, including ciliogenesis and neurogenesis, 
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Figure 2 Representation of the crystal structure of the SePT7, SePT2, and SePT2 complex.
Notes: The 25 nm septin-filament length comprises a hexamer assembled via direct interaction of the SEPT7, SEPT2, and SEPT2 trimer. The arrows represent the presumed 
orientations of the C-terminal ends. Reprinted with permission from Macmillan Publishers Ltd: Sirajuddin M, Farkasovsky M, Hauer F, et al. Structural insight into filament 
formation by mammalian septins. Nature. 2007;449:311–315. © Copyright 2007.31
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and like in yeast they are necessary for cytokinesis, where 

they function as diffusion barriers to compartmentalize dis-

crete cellular domains.58

Similarly to yeast, mammalian cells also organize septin 

rings at the site of cytokinesis (Figure 1B). However, their 

function as diffusion barriers has not been investigated as 

extensively as in yeast. Cortical barriers to diffusion within 

the cleavage furrow of mammalian cells are known to be pres-

ent at the mid-body; however, the contribution of septins to 

this structure remains largely unknown.59 An example of the 

function that septins provide in establishing diffusion barriers 

is provided by the cilia, at the base of which septins form 

a ring-like structure.58 The primary cilium is an organelle 

protruding from the apical surface of most cells in a variety 

of vertebrate cells. Primary cilia function as sensory recep-

tors, and have been established as key coordinators of signal-

ing pathways during development and tissue homeostasis. 

Defects in structure and function of this organelle are a major 

cause of human diseases and developmental disorders known 

as ciliopathies.60 While the membrane of the cilia fuses with 

the plasma membrane during ciliogenesis, it retains a unique 

set of proteins that sense and transduce a variety of extracel-

lular signals. A septin-containing diffusion barrier is present 

at the base of the ciliary membrane, and has been shown to 

be required for the retention of receptor-signaling pathways 

in the primary cilium. This diffusion barrier restricts the dif-

fusion of ciliary membrane proteins between the ciliary and 

periciliary membrane, providing a classic example of evolu-

tionarily conserved roles of septins from fungi to mammals 

(ie, the establishment of compartmentalization of membrane 

domains).61 Similar to what is observed at the base of the 

primary cilia, a septin-diffusion barrier also forms a ring at 

the sperm annulus. The sperm annulus, which is required for 

the cortical organization, morphology, and normal motility 

of sperm flagella, is a septin-based structure composed of 

several septins, such as SEPT1, SEPT4, SEPT6, SEPT7, 

and SEPT12.62–64

Reminiscent of septin localization at the base of protru-

sions, septins were shown to cluster at the base of dendritic 

spines.65 Several members of the septin family, including 

Sept7, were found by a general screening of the hippocam-

pal neurons of rats using mass spectrometry of postsynaptic 

density fractions. Sept7 is localized at the base of dendritic 

protrusions and at dendritic branch points. Overexpression 

of Sept7 leads to increased dendrite branching and density 

of dendritic protrusions, which suggests Sept7 is critical 

for spine morphogenesis and dendrite development during 

neuronal maturation.

Septin functions are not restricted to the central nervous 

system, but they may also play important roles in the periph-

eral nervous system. By mass spectrometry of highly purified 

extracts of myelin isolated from mouse sciatic nerves Sept2, 

Sept7, Sept9, and Sept11 were found to be expressed.66,67

Like yeast septins, the mammalian homologs are required 

for establishment and maintenance of cell polarity.55,68 Cell 

polarity is a fundamental process essential for the develop-

ment and physiological functions of organisms and tissues. 

A common characteristic of polarized cells is the presence 

of an asymmetric organization of the plasma membrane. At 

the cellular level, the establishment and maintenance of cell 

polarity follows common processes in different organisms. 

Similar to yeast, mammalian cells establish polarity using 

the highly conserved Ras and Rho-like family of GTPases.69 

Establishment of cell polarity requires membrane trafficking 

of vesicles along cytoskeleton tracks that connect donor to 

acceptor membranes. Yeast has proven to be an extraordinary 

model to study mechanisms for establishment and regulation 

of cell polarity.70,71 A role for septins in mammalian cell 

polarity also seems to be established. During polarization 

of MDCK cells in vitro, SEPT2 guides the directionality 

of growth and capture of microtubules plus end, a pro-

cess that is essential for maintaining proper orientation of 

 microtubules.72 Previous studies have uncovered that septins 

control microtubule stability through their association with 

MAP4, microtubule acetylation, and binding to polygluta-

mated microtubules.27,38,73–75

Mammalian septins, just like yeast septins, are essen-

tial for the completion of cytokinesis. Microinjection of 

affinity-purified anti-SEPT9 antibodies as well as depletion 

of SEPT2, SEPT7, and SEPT11, using small interfering 

RNA causes defects in the early and late stages of cytoki-

nesis, ultimately resulting in binucleation or failure of final 

separation of daughter cells.38,39 For successful completion 

of cell division, it is essential that coordination between 

cytokinesis and chromosome segregation is established. 

Some septins have been shown to localize at the metaphase 

plate during cell division. Using antibodies against SEPT2 

and SEPT6, Spiliotis et al reported both proteins localized 

within the microtubule spindle in close apposition to the 

kinetochores.73 Septin (SEPT2 and SEPT6) depletion by 

small interfering RNA resulted in chromosome loss from 

the metaphase plate, lack of chromosome segregation, and 

spindle elongation. These defects correlated with loss of 

the mitotic motor and the checkpoint regulator centromere-

associated protein E from the kinetochores of congressing 

chromosomes.
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Lastly, studies of host–microorganism interactions have 

surprisingly uncovered roles for septins during bacterial 

infection and innate immunity. Septins were first linked to 

the process of phagocytosis based on the known function 

they play in regulating membrane traffic. Several septins are 

expressed in mouse macrophage cell lines, and Sept2 and 

Sept11 were shown to localize to the phagosomes.76 Shortly 

thereafter, it began emerging that septins play an essential role 

in mechanisms of protection against infection by pathogens. 

Work performed mainly on Listeria and Shigella has shown 

that septins assemble into a caging as a mechanism of host 

defense that controls the fate of cell-to-cell spreading.7,77 

Regulation of membrane dynamics was also shown to be 

crucial for T-lymphocyte migration.78 Septins assemble along 

the cell cortex, providing a scaffolding structure. Elimination 

of the septin cytoskeleton using small hairpin RNA results in 

morphological alterations of T cells, which causes pronounced 

blebbing and excess leading-edge protrusions.

The resulting disorganized migration of septin-deficient 

cells strongly suggests a corset-like function for the septin 

cytoskeleton, providing compression and rigidity, and sup-

porting efficient motion of motile T cells. Interestingly, 

conditional deletion of Sept9 in mouse T cells by using 

a Sept9-floxed system driving deletion under the con-

trol of Lck-Cre expression results in a delay of T-cell 

development.79

Septin-associated human diseases
The septin family of cytoskeleton-related proteins have 

been implicated in a wide variety of mammalian pathologic 

conditions.

Neurological conditions
With respect to neurological illnesses, septins are thought to 

be involved in disease states spanning both neurodegenerative 

conditions and neurobehavioral disorders. Alzheimer’s dis-

ease is a progressive neurodegenerative disorder that is histo-

pathologically characterized by the presence of senile plaques 

as well as neurofibrillary alterations. SEPT2 (NEDD5), 

SEPT1 (DIFF6), and SEPT4 (H5) have been shown to be 

concentrated in the neurofibrillary tangles of Alzheimer’s 

patient brains, potentially suggesting a role in the neurode-

generative process.80 In another common neurodegenerative 

disorder, Parkinson’s disease, SEPT4 is thought to have a role 

in cell death and the formation of Lewy body cytoplasmic 

inclusions containing α-synuclein.81,82 Proteomic studies per-

formed on postmortem brains of patients with schizophrenia 

and bipolar disorder demonstrated differential expression of 

septins in both diseases.83 Deregulation of several proteins in 

the cerebral cortex of fetuses with Down syndrome included 

a decrease in the level of SEPT7, suggesting involvement in 

the developmental and cognitive impairment in this disease.84 

The mass-spectrometry findings that postsynaptic densities 

contain several members of the septin gene family65,85 support 

their possible implication in neurodegeneration and loss of 

cognitive function. In addition, these results are intriguing, 

given that the brain is a tissue composed mainly of postmi-

totic cells, and therefore in the brain, members of the septin 

family of genes are likely to carry on essential functions that 

are not strictly linked to cytokinesis. While a definitive role 

for septins in the etiology of neurodegenerative disorders at 

the cellular level remains unknown, we could speculate that 

septins in these cells contribute to the formation of cellular 

aggregates characteristic of these diseases. For example, 

septin filaments that normally support the tridimensional 

structure and shape of the cells may become unfolded, leading 

to the generation of aggregates that could possibly disrupt 

cell function and ultimately lead to cell death.

Hereditary neuralgic amyotrophy
SEPT9 is one of the most complex members of the septin 

gene family (Table 1). It was originally identified as a region 

of loss of heterozygosity in breast and ovarian cancer,86 and 

is characterized by expression of 18 putative alternated 

transcripts.87 Mutations in the N-terminal portion of the 

SEPT9 sequence have been discovered in hereditary neuralgic 

amyotrophy (HNA), a neuropathy with autosomal-dominant 

inheritance, clinically characterized by motor and sensory 

deficits of the muscles innervated by the brachial plexus. The 

earliest research conducted on HNA discovered the missense 

mutations R88W and S93F; individuals with these mutations 

display similar dysmorphic features, such as hypotelorism 

and epicanthal folds, while other mutations have no dys-

morphic features.88,89 More recent research has uncovered 

that duplications within the SEPT9 gene occur in families 

with HNA, and have also provided further evidence for the 

current known mutations.90,91 The exact mechanism of action 

by which mutations in SEPT9 are linked to HNA remains to 

be elucidated, although some evidence is starting to emerge. 

The original mutations identified in HNA patients – SEPT9F 

(c.278C.T/p.Ser93Phe) and SEPT9W (c.262C.T/p.

Arg88Trp) – both mapping to SEPT9  isoform _v3 were 

introduced in NMuMG, a nontransformed mouse mammary 

epithelial cell line.92 The mutants, but not the wild type, were 

found to form filaments with SEPT4 and to colocalize with 

SEPT11 at cell–cell junctions, suggesting that sequence 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biochemistry 2015:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

65

Septins and disease

variations in SEPT9 causing HNA are likely to alter modes 

of interaction with partner molecules in cells. Likewise, 

HNA mutation R88W mapping to the N-terminus of SEPT9 

resulted in diminished intracellular microtubule bundling and 

impaired asymmetric neurite growth in pheochromocytoma 

rat PC-12 cells.42 Interestingly mice harboring an inactivated 

prion-protein gene (Prnp0/0), a model for a chronic polyneu-

ropathy, have increased level of SEPT9 expression, as well as 

a characteristic localization in Schwann cells of the protein 

that appears associated with intracellular transport vesicles.67 

This observation provides insight into possible mechanisms 

of SEPT9 function in HNA.

infertility
Another spectrum of disease that septins have been con-

nected to is male infertility. Studies conducted on infertile 

male subjects showed mutations leading to a nonfunctional 

SEPT12 protein that affected both structure and function 

of the sperm causing oligoasthenozoospermia and asthe-

noteratozoospermia.93 Interestingly also, mice lacking the 

homozygous expression of Sept4 are sterile.63 Both human 

sperm expressing mutant SEPT12 and mouse sperm lack-

ing Sept4 expression show cells with similar morphologi-

cal defects, including severely bent tails, large droplets of 

cytoplasm at the area of the cell that surrounds the nucleus, 

and a structurally defective annulus. These observations sug-

gest that loss of septin functions in these cells disrupts the 

structural integrity of the sperm required for egg fertilization, 

and similarly to defects in vesicle trafficking and exocytosis, 

may impair a necessary process of droplet formation and 

dynamics required for motility.43

Tumorigenesis
While severely affecting the organism, the aforementioned 

diseases are not lethal. Septins have however been long linked 

to malignancy, and are implicated in cancer both with tum-

origenic and suppressive potential involving multiple organ 

systems and varieties of histology. They were first implicated 

in tumorigenesis with the discovery of their fusion to the 

MLL gene in hematologic malignancies.94,95 Commonly in 

leukemias, gene fusion occurs via a genetic rearrangement 

of a fusion partner with the MLL locus mapping to 11q23, 

so that the N-terminal portion of the MLL protein fuses to 

the C-terminal portions of the fusion partner.96,97 

In the septin literature, this was first reported in a case 

of monozygotic twins with acute myeloid leukemia (AML) 

and a chromosomal translocation where the human cell-

division cycle-related gene (hCDCrel/SEPT5) was found 

to be the fusion/partner gene to MLL.94 An additional MLL 

septin-like fusion gene (MSF/SEPT9) was also identified as 

a fusion partner to MLL in a case of a therapy-related AML.95 

Further research has discovered several members of the septin 

family that fuse to MLL, including SEPT2, SEPT5, SEPT6, 

SEPT9, and SEPT11, leading to the development of acute 

lymphoblastic leukemia, myelodysplastic syndromes, and 

AML.98–102 Quantification studies looking at fusion partners 

(SEPT2 and SEPT6)/MLL of gene expression demonstrated a 

downregulation of both MLL and its septin partner in patients 

with AML.103 This finding may suggest important clues in the 

biology of septins in relation to tumorigenesis. Indeed, the 

discovery that septins are fusion partners to MLL does not 

seem to be a casual finding, given that five different members 

of the gene family have been identified as fusion partners to 

such an extent septins have been proposed as a unique group 

of MLL fusion partners.104 Patients with MLL–septin fusions 

show a clear bias toward AML cases, and breakpoints in MLL 

can occur in its 5′ or 3′ region, which is in contrast with septin 

genes where the breaks are always found at the very 5′ end 

of known septin open reading frames.105 With technological 

advances in next-generation sequencing tools and with more 

patients being analyzed, it will be extremely interesting to 

observe how findings in hematological malignancies will help 

to elucidate mechanisms of the basic biology of septins.

Given the pivotal role that septins play in cytoskeleton 

dynamics and the broad range of other cellular functions, 

we could predict that the deregulation of septin genes has 

the potential to result in aberrant tissue formation, as well as 

affect the growth of solid tumors. The behavior of the septin 

genes varies based on the cancer type, acting like a tumor 

suppressor in some and oncogene in others. This could be 

explained by the fact that although septins are expressed in 

all tissues, the level of expression of each family member 

differs between cell subtypes and tissues.104

In the US from 2007 to 2011, the incidence rate of pri-

mary brain and central nervous system cancers was estimated 

to be 27.9 per 100,000 individuals, accounting for approxi-

mately 2% of cancers.106 Overall, they are associated with a 

poor prognosis and 5-year survival rates vary with differing 

 histologies. While a large number of biomarkers are now 

available for the subclassification and treatment of these 

malignancies, the need for more precise diagnostic tools and 

for more effective therapies is necessary. 

As mentioned earlier, several members of the septin gene 

family have been implicated in neurodegenerative diseases. 

Based on this observation and the knowledge of oncogenic 

functions, a potential link between septins and brain tumors 
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was  investigated. In particular, SEPT2 (NEDD5) has been 

analyzed in astrocytomas. SEPT2 was found to be expressed 

in a variety of brain cancer-cell lines and surgical tumors, 

low-grade astrocytoma, anaplastic astrocytoma, medullo-

blastoma, and meningioma as detected by Northern and 

Western analyses. When attempts were made to interfere 

with NEDD5/SEPT2 and decrease it in cells in culture, 

multinucleated cells were generated, highlighting its role in 

cytokinesis.107 The expression of SEPT2 has also been identi-

fied in gliomas using mass spectrometry.108 Additional studies 

have shown that septin genes have variable expression levels 

in astrocytomas and medulloblastomas. The expression of a 

dominant-negative mutant form of SEPT2 lead to failure of 

cytokinesis, creating multinucleated cells.109 

An investigation of the role of SEPT7 in gliomas found 

that its overexpression led to inhibition of cell proliferation, 

while knockdown of SEPT7 caused increased cell prolifera-

tion and gliomagenesis.110 SEPT2 is mainly expressed in the 

brain, thus providing a direct link for alteration of function 

of this specific septin-family member in brain-tumor cells. 

Data collected on brain tumors thus far support the hypothesis 

that septins in this tumor type interfere with the regulation 

of the cell cycle. SEPT2 levels of expression were found to 

fluctuate within different phases of the cell cycle, suggesting 

that alteration of its expression level may directly impact 

cell-cycle progression.

Breast cancer is the most common cancer diagnosed in 

women. It is responsible for an estimated 29% of cancers 

cases each year, and it is the second-leading cause of cancer 

death in women.111 With respect to the septin gene family, 

breast cancer research has focused mainly on SEPT9 

and its amplification in both mouse and human breast 

cancers.104,112 

SEPT9 was originally identified as mapping to a region 

of loss of heterozygosity in breast and ovarian cancer.113 

However, several lines of evidence now strongly support 

its putative oncogenic function. SEPT9 is a fusion partner 

of MLL in hematological malignancies, it was identified as 

a hot spot of viral integration in retroviral insertion muta-

genesis experiments,114 and it is amplified in the form of 

double-minute chromosomes.112 These are all features shared 

by strong oncogenes. Genomic amplification of SEPT9 has 

been shown to increase SEPT9 levels of expression in breast 

carcinomas and adenocarcinomas in human cell lines and 

several mouse models for human breast cancer.112 Increased 

levels of the transcript variant SEPT9_v1 have been found in 

both human cell lines and matched tumor- and peritumoral 

breast cancer-tissue specimens.115,116 SEPT9_v1 promotes 

tumor growth via an angiogenic mechanism by stabilizing 

HIF-1α,117 while SEPT9_v4 overexpression has been 

suggested as a mechanism driving resistance to microtubules-

interacting drugs.118 

While the exact function that SEPT9 isoforms play 

in breast tumorigenesis remains unclear, several lines 

of evidence are now emerging suggesting that they may 

play important roles in breast carcinogenesis. SEPT9_v3 

has been shown to be silenced by deoxyribonucleic acid 

(DNA) methylation upstream of the SEPT9_v3 transcrip-

tion start site, and correlates with silencing in cancer cell 

lines.104 Overexpression of SEPT9 is seen more commonly 

in high-grade carcinomas, which are also associated with a 

worse clinical prognosis.116 SEPT9_v1 has been reported as 

upregulated in breast cancer and associated with oncogenic 

potential, possibly via its interaction with c-Jun.115,119 The 

promigratory phenotype of SEPT9 and its isoforms is thought 

to contribute to tumor metastasis and invasion in cancer sub-

types where septins are overexpressed.120 Migration assays 

were performed on GFP-tagged SEPT9 isoforms in stable 

MCF7 clones, and SEPT9_v1, SEPT9_v3, SEPT9_v4, and 

SEPT9_v5 showed increased numbers of migratory cells, 

suggesting that several of the SEPT9 isoforms contribute to 

the migratory phenotype.104 In another cellular model, the 

overexpression of SEPT9 and cell motility was investigated 

using MDCK cells in a 3-D extracellular matrix, which aids 

in the morphogenesis of renal cysts. Cells with overexpres-

sion of SEPT9 doubled in cellular extensions (both in number 

and in length).20

Ovarian cancer is the second-most common gynecologic 

malignancy, and is also the most lethal.111 It can be classified 

into epithelial, stromal, and germ-cell subtypes, and char-

acterized further by histology. Research conducted on the 

septin gene family in this malignancy has primarily focused 

on SEPT9 and its putative role as a tumor suppressor in this 

cancer type. In an analysis of 70 ovarian tumors of varying 

histologies (serous, mucinous, endometrioid) and of varying 

malignant potential (benign, borderline, and malignant), loss 

of heterozygosity was seen in all tumors, but greatest in those 

with malignant disease and 65% displaying a loss of one copy 

of chromosome 17.113 Alternative splice transcripts were also 

investigated in ovarian tumors and ovarian cancer-cell lines. 

They demonstrated a loss of the β-transcript (SEPT9_v4) 

(typically associated with normal tissue) and expression of 

the ζ-transcript (SEPT9_v4*) appeared confined to tumor 

tissue (76%), in addition to benign and borderline tumors 

(60%–62%).121 Increased expression of SEPT9 was detected 

in serous ovarian carcinomas, but appeared most marked in 
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borderline tumors, and it was not increased in any of the 

benign or mucinous carcinomas. SEPT9_v1 and SEPT9_v4* 

transcript variants were overexpressed in borderline tumors 

as well.122

Septins as biomarkers  
for cancer prognosis
The aforementioned studies implicate SEPT9 as an oncogene 

in human cancers, and provide evidence of its potential 

use as a biomarker for prognosis and clinical outcomes. 

The National Institutes of Health defines a biomarker as 

a characteristic that is objectively measured and evaluated 

as a marker for normal biological processes, pathological 

processes, or pharmacological processes to a therapeutic 

intervention.123 The impact of a biomarker has the potential 

to assist in early diagnosis of cancer or follow the treat-

ment pattern to diagnose relapse or remission. If relapse is 

diagnosed, the potential for earlier initiation of treatment is 

made possible, although change in clinical outcomes remains 

questionable.

Colorectal cancer is a relatively common cancer, with both 

genetic and environmental predisposition. Among women 

and men, there is an estimated 9% incidence of new cancer 

cases yearly, and it is the third-leading cause of all cancer 

deaths.111 The most successful work in biomarker develop-

ment relative to septins has been conducted in this cancer 

type, which will be discussed here. Current US Preventive 

Services Task Force recommendations for the screening of 

colorectal cancer include using fecal occult blood testing, 

colonoscopy, or sigmoidoscopy from the ages of 50 to 75 

years.124 While serum markers exist for the monitoring and 

surveillance of colorectal cancer, they have shown limited 

sensitivity and specificity as screening tests, and tend to 

perform better when in combination.125 In other cancer sub-

types, such as ovarian cancer, there are no available screen-

ing modalities. Original studies aimed to identify candidate 
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Figure 3 Plotting of frequency (y-axis) of copy-number alterations (CNAs) observed in cancer patients analyzed as part of the Cancer Genome Atlas (TCGA).
Notes: Members of the septin family of genes are color-coded as indicated on the right. Tumor histologies are indicated on the x-axis. Breast dataset;45 colorectal dataset;46 
lung carcinoma;47,48 uterine carcinoma.134 Provisional data have been plotted by searching the CBioPortal for Cancer Genomics.128,135
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biomarkers in peripheral blood based on the methylation 

status of cell-free DNA in cancer patients identified septins 

as potential biomarkers based on the finding that elevated 

concentrations of methylated SEPT9 were present in their 

plasma.126 Validation studies were performed to identify 

hypermethylated SEPT9 DNA in colon cancer patients of 

all stages, and reported 72% sensitivity and 90% specific-

ity by adding a technical replicate to the measure of methyl 

SEPT9.127 As results of the studies on SEPT9 in colorectal 

cancer, a commercial test (ColoVantage; methylated septin 

9) is now available trough Quest Diagnostics.

This technique has also been explored in other cancers 

where sensitive biomarkers for early detection are lacking, 

such as lung cancer. A study detected hypermethylation 

of the SEPT9 promoter in 44.3% of lung cancer cases of 

all stages and histologic subtypes.128 This work is however 

preliminary, and further studies are required to determine 

if noninvasive DNA methylation assays of septin genes are 

suitable as biomarkers in other cancer types.

In an attempt to explore a possible role of septins as 

biomarkers in hematological malignancies and solid tumors, 

our group performed an analysis of the copy number and 

mutational status of all septins in several tumors of differ-

ent histological subtypes for a total of over 11,000 samples 

covering more than 30 anatomical sites.104 The samples have 

been sequenced using whole-genome and whole-exome 

analysis as part of the Cancer Genome Atlas (TCGA) initia-

tive.129,130 Globally speaking, the majority of solid tumors 

appear to have an alteration in copy-number variation when 

compared to mutational status within the same grouping of 

tumors (by querying both published and provisional data 

provided as of October 2013). This result is consistent with 

previous observations.131,132 There is a range of gain seen in 

epithelial tumors, with the largest alterations in breast and 

lung cancers. In both provisional and published breast cancer 

data sets, the greatest gain is seen in SEPT1 (43.6% reported 

in the published data set, 54.6% reported in the provisional 

dataset), SEPT9 (29.3%, 39.6%), and SEPT12 (44%, 55.7%) 
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(Figure 3). Similarly, in lung cancer, the greatest gain is 

observed in SEPT1 (4.9%, 36.4%), SEPT4 (6%, 46.5%), 

SEPT7 (23.1%, 58.9%), SEPT9 (6%, 49.6%), SEPT12 (5.5%, 

34.9%), and SEPT14 (20.9%, 59.7%). However, this degree 

of genetic alteration is not observed when mutational status 

is interrogated. The percentage of cases with mutations in 

SEPT6 is greatest in the cervical cancer group, with 5.6% 

of patients found to have a mutation. The remaining cancer 

types have less than 5% of cases with a mutation in septin 

(Figure 4). Interestingly, when all septins were analyzed as 

a group (13 members) the most frequently altered tumor 

subtype was bladder urothelial carcinoma, with a total of 

37.8% (n=127) cases harboring a genomic alteration in one 

or more septins. The tumor type with the lowest frequency 

of alterations was thyroid carcinoma (1% of cases, n=399). 

Of interest, a previous report indicated that SEPT9 was not 

found to be mutated in breast cancer.131 The TCGA data sup-

port this observation; however, the sequencing results uncover 

several mutations present in tumors of other histological 

subtypes, with skin cutaneous melanoma presenting SEPT9 

mutations in 1.9% of the cases (n=262). Interestingly, these 

mutations, even though relatively rare, cluster within the 

septin canonical domains: polybasic region, GTPase domain, 

and the septin-unique domain (Montagna and Zechmeister, 

unpublished observations).

Conclusion and perspectives
The septin genes were discovered in budding yeast four 

decades ago,1–3 and their expression in mammalian cells has 

been known for about 20 years.133 While our knowledge of 

the structure and mechanisms of filament assembly in yeast 

has been expanding, the functions that septins play in mam-

malian cells are just emerging. It is quite intriguing that the 

majority of functions that have been characterized by studying 

eukaryotic microorganisms seem to be maintained in mam-

malian cells, a parallel strongly supporting the unambiguous 

essential role that septins play in cytokinesis, cell polarity, and 

establishment of diffusion barriers.134 Despite the large body 

of work, many questions remain unanswered. For instance 

the mechanism of function of the most conserved domain, 

the GTP-binding domain, still awaits further resolution: what 

is the role of GTP binding and hydrolysis, and how do the 

dynamics of hydrolysis affect the 3-D structure of the septin 

complexes? Likewise, the mechanisms of assembly of septin 

filaments, the number, the structure, and the composition of 

septin hexamers and octamers remain poorly understood.

With the discovery of septins as being altered in a large 

number of human diseases, novel functions may emerge. 

Likewise, the mapping of rare variants by the increasing 

number of next-generation whole-exome and whole-genome 

sequencing may help pinpoint important nucleotides 

or regions of interest. For example, the function of the 

N-terminal domain of SEPT9 has been brought to center 

stage because of the identification of mutations in HNA 

patients.88 Following this discovery, functional studies aimed 

at better understanding of the function of this specific region 

have been carried out, such that it was revealed that the 

N-terminal domain of SEPT9 is required for unique interac-

tions with SEPT4 and SEPT11,92 that is necessary for binding 

to microtubule bundles,42 and that is essential to rescue 

cytokinesis defects in septin-depletion experiments.39

As more associations of septins with dysfunction in 

human diseases are uncovered, more data for targeted analysis 

of regions of particular interest will become available, aid-

ing in new discoveries and better characterization of septin 

functions.
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