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Abstract: Low-density lipoprotein receptor-related protein (LRP)-1, LRP-1b, LRP-2, LRP-5, 

and LRP-6 mediate the endocytosis of metalloproteinases and inhibitors and/or promote the 

expression of metalloproteinases. These properties confer important and complex roles in the 

development of pathologies related to an intense proteolytic degradation of the cellular microen-

vironment. The cell surface levels of the identified endocytic receptors, LRP-1, LRP-1b, and 

LRP-2, are themselves regulated by metalloproteinases. The released extra- and intracellular 

domains may also exert functions in these pathologies.
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Introduction
Pathologies related to metalloproteinase activities represent an important part of 

biomedical research, yielding about 20,000 citations in PubMed. To understand the 

molecular mechanisms by which metalloproteinases mediate these pathologies rep-

resents the most important and exciting challenge for the development of new thera-

peutic strategies. In addition to regulation at both the expression and secretion levels, 

metalloproteinases can be further controlled.1 Thus, metalloproteinases are generally 

synthesized as inactive proenzymes and must be activated to be proteolytically efficient. 

Once activated, the metalloproteinases are inhibited by broad spectrum or specific 

inhibitors. An additional and efficient mechanism of control of metalloproteinases is 

the endocytic clearance mediated by members of the low-density lipoprotein (LDL) 

receptor (LDLR) family, LDLR-related proteins (LRPs). In addition to their endocytic 

activities, some of them exhibit signaling properties that can modulate the expression 

of some metalloproteinases.

After a brief description of the LDLR family, we focus this review on the 

LDLR family members involved in the regulation of metalloproteinase activity 

and/or expression, their role in the development of pathologies associated to metal-

loproteinase activities, and their own regulation by a shedding process mediated by 

metalloproteinases.

General features of the LDLR family
The LDLR family consists of membrane receptors involved in the endocytosis 

of a variety of ligands, most of which are lipoproteins.2 In humans, this family 

includes LDLR,3 VLDLR,4 LRP-1,5 LRP-1b,6 glycoprotein 330 (gp330)/megalin/

LRP-2,7 LRP-3 (closely resembles ST7/LRP-12),8,9 MEGF7/LRP-4,10 LRP-5,11 
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Figure 1 The low-density lipoprotein (LDL) receptor gene family.
Notes: (A) The core of the LDL receptor family consists of the LDL receptor (LDLR), vLDL receptor (vLDLR), apolipoprotein e receptor 2 (ApoeR-2), LRP-4 (multiple 
epidermal growth factor containing protein 7; MeGF7), LRP-1, LRP-1b, and LRP-2 (megalin). The extracellular domains consist of arrays of ligand-binding type repeats, always 
followed by epidermal growth factor precursor homology domains. All receptors are anchored in the plasma membrane by a single membrane-spanning segment and contain 
a short cytoplasmic tail. (B) Distantly related receptors LRP-5 and LRP-6, which do not contain NPxY motifs in their cytoplasmic tail, and LR11/SorLA, which harbors a 
VPS10 homology domain and six fibronectin repeats. 
Abbreviation: vLDL, very low-density lipoprotein.
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LRP-6,12 LRP-7,13 apoER2/LRP-8,14 LRP-9,15 LRP-10,16 

and sorLA/LR11.17 They are type I membrane proteins 

that contain a single transmembrane-spanning domain 

with the exception of LRP-4, which is a type II membrane 

protein.10 They all share additional common modules char-

acteristic of the LDLR family (epidermal growth factor 

[EGF] repeats, LDLR ligand-binding repeats, cytoplasmic 

domain) and exhibit both endocytic and signaling proper-

ties18 (Figure 1).

Members of the LDLR family 
regulate metalloproteinase activity
Until now, only LRP-1, LRP-1b, LRP-2, LRP-5, and LRP-6 

have been demonstrated to regulate the level of metallopro-

teinases or their inhibitors, either by endocytosing them or 

by modulating their expression.

Regulation of metalloproteinase  
activity by endocytosis
Among the five members of the LDLR family that modu-

late metalloproteinase activity, only LRP-1, LRP-2, and 

LRP-1b mediate endocytosis of metalloproteinases or their 

inhibitors.

LRP-1
LRP-1, previously identif ied as an α

2
-macroglobulin 

receptor,19 is the first member of the protein family related to 

LDLR.20 It is synthesized as a 600 kDa single-chain protein 

cleaved by a furin-like protease in the trans-Golgi compart-

ment into a 515 kDa α-chain and an 85 kDa β-chain that 

remain noncovalently associated. The extracellular α chain 

harbors four LDLR ligand-binding repeats that interact 

with about 40 ligands, whereas the transmembrane β-chain 

contains an extracellular portion, a transmembrane domain, 

and a short cytoplasmic tail that includes two NPxY motifs 

for triggering endocytosis and recruiting adaptor and signal-

ing proteins.21

LRP-1 regulates extracellular proteolytic activities by 

mediating the endocytic clearance of all active proteinases 

(including metalloproteinases) bound to the pan-proteinase 

inhibitor α
2
-macroglobulin.19 More specifically, LRP-1 endo-

cytoses members of the matrix metalloproteinase (MMP) 

family, MMP-2, MMP-9, and MMP-13, and members of 

the adamalysin-like metalloproteinase with thrombospon-

din (TSP) motifs (ADAMTS) family, ADAMTS-4 and 

ADAMTS-5.22 In addition, it also endocytoses members of 

the tissue inhibitor of metalloproteinases (TIMP) family, 

TIMP-1, TIMP-2, and TIMP-3.22
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Figure 2 Different mechanisms of low-density lipoprotein receptor-related protein 1 (LRP-1)-mediated clearance of matrix metalloproteinases (MMPs).
Notes: The more straightforward mechanism is the direct association of proMMP-9 with LRP-1. ProMMP-13 first binds to an unidentified 170 kDa cell surface coreceptor before 
LRP-1-mediated endocytosis. LRP-1-mediated clearance of proMMP-2 involves two different coreceptors: if bound to thrombospondin (TSP), proMMP-2 first associates with an 
unknown cell surface heparan sulfate proteoglycan (HSPG) before interaction with LRP-1, and when complexed with TIMP-2, proMMP-2 first binds to an unidentified coreceptor.
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MMP-2, MMP-9, and MMP-13
MMP-13 was the first metalloproteinase identified as ligand 

of LRP-1.23 This was based on the observation that the 

parathyroid hormone promotes clearance of rat collagenase 

(the ortholog of human collagenase-3 or MMP-13) from 

the culture medium conditioned by rat osteosarcoma cells.24 

MMP-13 endocytosis is a two-step process of binding and 

internalization that requires both an unidentified 170 kDa 

coreceptor and LRP-123 (Figure 2). The endocytosis of 

MMP-2 involves a preliminary association with a soluble 

partner, TSP-2,25 or TIMP-2,26 followed by recruitment by a 

membrane heparan sulfate proteoglycan for a MMP-2/TSP-2 

complex or an unidentified coreceptor for MMP-2/TIMP-2. 

In contrast, endocytosis of MMP-9, whether complexed to 

TIMP-127 or not,28 results from a direct binding to LRP-1.

ADAMTS-4 and ADAMTS-5
ADAMTS-4 and ADAMTS-5 are considered major metal-

loproteinases that degrade the proteoglycan aggrecan in 

cartilage.29 They are both endocytosed by LRP-1 expressed 

by chondrocytes.30,31 The rate of endocytosis of ADAMTS-4 

is slower than that of ADAMTS-5. Such a difference is 

explained by a 13-fold lower affinity of ADAMTS-4 for 

LRP-1 compared with that of ADAMTS-5.

TIMP-1, TIMP-2, and TIMP-3
TIMP-1 was first identified as an LRP-1 ligand only as 

a complex with MMP-9.27 However, using recombinant 

TIMP-1, we recently showed by surface plasmon resonance 

analysis that free TIMP-1 interacts directly with LRP-1 with 

high affinity.32 As with TIMP-1, TIMP-2, either as a complex 

with MMP-2 or as a free form, binds to and is internalized 

by LRP-1.26 The third member of the TIMP family, TIMP-3, 

has also been identified as an LRP-1 ligand.33,34

LRP-2
Another important and multifunctional member of the family 

is LRP-2 (also known as megalin and gp330). LRP-2 has 

a molecular mass of approximately 600 kDa and contains 

36 cysteine-rich ligand-binding domains, 16 EGF repeats, 

and 40 YWTD repeats in the extracellular domain.7 As with 

LRP-1, LRP-2 harbors four clusters of ligand-binding 

domains, allowing binding and internalization of a vari-

ety of ligands including proteinase/inhibitor complexes, 

 vitamin/vitamin binding protein complexes, hormones, and 

lipoproteins.35 LRP-2 has in particular been recognized as a 

new functional endocytic receptor for MMP-9 clearance.28 

This receptor is expressed at the apical surface of epithelial 

cells, with the main site of expression being the proximal 

renal tubule, where LRP-2 functions as the major scavenger 

receptor.

LRP-1b
LRP-1b, initially referred to as LRP-DIT (deleted in tumor), 

is a candidate tumor suppressor.6 LRP-1b and LRP-1 share 

several common features. Along with LRP-2, they are the 

largest known members of the LDL receptor family, with 

molecular masses around 600 kDa. Furthermore, both have 

four putative extracellular ligand-binding domains that are 

separated by clusters of EGF precursor repeats and propeller 

regions. The number and arrangement of these repeats are 

similar in both LRP-1 and LRP-1b, but LRP-1b contains 

one additional ligand-binding repeat in the ligand-binding 

domain IV, as well as an additional 33-amino acid sequence 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Metalloproteinases In Medicine 2015:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

12

emonard and Marbaix

within its cytoplasmic tail. Although LRP-1 is found in all 

tissues, LRP-1b expression appears to be more limited, 

with preferential localization in brain, thyroid, and salivary 

glands. The function of LRP-1b is still largely unknown, but 

LRP-1b has several ligands common to LRP-1, including 

complexes of urokinase plasminogen activator/plasminogen 

activator inhibitor type 1. Furthermore, LRP-1b inactivation 

in thyroid cancer cells modifies the tumor microenvironment 

that promotes cell growth and invasive capacity. Restoration 

of LRP-1b impairs both in vitro and in vivo tumor growth, 

inhibits cell invasion, and leads to a reduction of MMP-2 

in the conditioned medium without a difference in MMP-2 

messenger (mRNA) levels.36 This data clearly indicates that 

LRP-1b mediates the endocytic clearance of MMP-2.

Regulation of metalloproteinase activities 
through signaling function of members  
of the LDLR family
In addition to its endocytic functions, LRP-1 also modulates 

metalloproteinase activity through signaling functions. 

Similarly, LRP-5 and LRP-6 appear to be associated with 

the modulation of metalloproteinase expression.

LRP-1
In addition to its endocytic function, LRP-1 also modulates 

metalloproteinase expression through its signaling function. 

Thus, binding of the serine protease tissue-type plasmino-

gen activator to LRP-1 induces tyrosine phosphorylation 

of the β-chain cytoplasmic part and triggers intracellular 

signal transduction to induce MMP-9 expression in renal 

interstitial fibroblasts.37 Such an MMP-9 upregulation by 

tissue-type plasminogen activator binding to LRP-1 has 

also been demonstrated in brain, both in cell culture and 

in vivo.38 Rather surprisingly, binding of the serine protease 

inhibitor protease nexin-1 to LRP-1 stimulates extracellular 

signal-regulated kinase activation that results in increased 

MMP-9 mRNA levels in mammary tumor cells.39 In addi-

tion, LRP-1 silencing impeded glioblastoma cell migration 

and invasion by inhibiting MMP-2 and MMP-9 expression 

through a decreased level of phosphorylated extracellular 

signal-regulated kinase.40

LRP-5
LRP-5 exhibits the modules characteristic of the LDRL 

 family. However, it has a unique organization of EGF and 

LDLR repeats, suggesting LRP-5 could represent a new cate-

gory of the LDLR family (Figure 1).11 LRP-5 has been shown 

to be specifically required for  Wnt/β-catenin  signaling.41 

 Interestingly, Wnt/LRP-5 interactions have been dem-

onstrated to modulate the expression of various metal-

loproteinases, including MMP-2,42 MMP-3,43 MMP-13,44 

and MMP-14.42

LRP-6
LRP-6 displays a pattern of four EGF and three LDLR repeats in 

the extracellular domain comparable with those of LRP-5, and 

consequently, it can be classified in the same new class of the 

LDLR family as LRP-5.12 As with LRP-5, LRP-6 interacts with 

Wnt.45 Transgenic mice overexpressing LRP-6 in mammary 

epithelial cells exhibit significant Wnt activation and upregu-

lation of the expression of several MMPs, including MMP-2, 

MMP-3, MMP-7, MMP-9, MMP-13, and MMP-14.46 In 

contrast, another study revealed that the heterozygous loss-of-

function mutation in LRP-6 gene in mice leads to less β-catenin 

signaling within articular cartilage and increased degenerative 

joint disease after ligament and meniscus injury associated with 

increased MMP-3 and MMP-13 expression.47

Effect of metalloproteinase  
regulation by members  
of the LDLR family on pathologies
Focus on LRP-1
As reviewed earlier, members of the LDLR family can, 

either positively or negatively, regulate metalloproteinase 

activity through their endocytic and/or signaling properties. 

Moreover, these receptors may themselves affect pathologies 

independent of metalloproteinase regulation.20,48 It is thus 

rather difficult to estimate their exact contribution in the 

development of metalloproteinase-mediated pathologies. As 

a consequence, this section is focused on the endocytic and 

signaling receptor LRP-1 through some examples selected 

among the main metalloproteinases-related pathologies.

Neurological disorders
Alzheimer’s disease is a neurodegenerative disorder leading 

to dementia. The prevailing view of Alzheimer’s disease 

pathogenesis posits that accumulation of amyloid-β pep-

tide (Aβ), particularly Aβ42, is the central event triggering 

 neurodegeneration.49 It has been postulated that the develop-

ment of amyloid plaques in AD may result from an imbalance 

between the generation and clearance of the Aβ. The amyloid 

precursor protein (APP) can be cleaved by metalloproteinases, 

precluding the production of Aβ or contributing to the deg-

radation of the neurotoxic peptide.50 Evidence suggests that 

metalloproteinases, and in particular MMPs and ADAMs, may 

process APP or Aβ.51 Among them, MMP-9 and ADAM-10 
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cleave the Aβ sequence in its middle, and this not only pre-

cludes its formation but also generates the secreted product 

sAPPα that possesses neurotrophic and neuroprotective 

properties.52,53 In addition, MMP-9 and MMP-2 can proteolyti-

cally degrade the fibrillary forms of Aβ40 and 42.51 However, 

such neuroprotective properties can be counterbalanced by 

TIMPs, particularly TIMP-1, which is largely produced by 

astrocytes surrounding the amyloid plaques.54 MMP-2 and 

MMP-9, as well as TIMP-1, TIMP-2, and TIMP-3, are all 

LRP-1 ligands (see preceding text). Moreover, TIMP-1 

binding to LRP-1 expressed at the surface of neurons greatly 

impairs neurite growth, a hallmark of neurodegenerative 

d isorders.32 From the point of view of metalloproteinase regu-

lation, the role of LRP-1 in the development of Alzheimer’s 

disease remains difficult to understand.

Cancer
Cancer progression is largely associated with the metallo-

proteinase-mediated breakdown of the extracellular matrix 

surrounding cancer cells.55 Thus, LRP-1 could act as a true 

tumor repressor by regulating metalloproteinase activity (as 

detailed above in the paragraph “Members of the LDLR 

family regulate metalloproteinase activity/Regulation of 

metalloproteinase activity by endocytosis/LRP-1”). In this 

sense, decreased expression of LRP-1 has been associated 

with tumor progression in numerous cancer types.56–59 By 

reducing MMP-2 levels in the microvasculature, LRP-1 

improves the antiangiogenic activity of TSP-2 in a murine 

glioma model.60 In contrast, human malignant astrocytomas 

exhibit an increased LRP-1 expression.61 As pointed out earlier 

with regard to neurological disorders, the anticancer effect of 

LRP-1 related to its capacity of endocytosing metalloprotei-

nases may be counterbalanced by its capacity to endocytose 

their inhibitors or by its protumor signaling properties. Thus, 

LRP-1 mediates MMP-2 and/or MMP-9 expression by tumor 

cells on various stimuli.37–40 In addition, LRP-1, whose expres-

sion is increased by hypoxia,62 regulates cancer cell survival 

and metastasis development.63 Finally, LRP-1 may promote 

tumor cell invasion both by regulating cytoskeleton organiza-

tion and adhesive complex turnover64 and by internalizing the 

adhesion receptor CD44.65

These opposite effects observed in vitro or in animal 

models also occur in humans, apparently depending on the 

organs. Thus, the T allele of the C766T polymorphism in the 

LRP-1 gene has been associated with an increased risk for 

breast cancer development.66 LRP-1 overexpression has been 

also found in the highly aggressive Her-2/neu overexpressing 

and in triple-negative breast carcinomas.67 In contrast, LRP-1 

expression in stromal cells is associated with a favorable 

outcome in lung cancer.68

Other metalloproteinase-
mediated pathologies
Vascular pathological conditions, such as atherosclerosis and 

aortic aneurysms, are characterized by intense metallopro-

teinase activities.69 MMP-2 and MMP-9 actively participate 

in the development of aneurysms70 through their capac-

ity of degrading elastin, a main component of the elastic 

fibers in vascular walls.71 Interestingly, binding of activated 

α
2
-macroglobulin to LRP-1 increases MMP-9 expression 

by macrophages.72 The main metalloproteinases involved in 

cartilage matrix degradation in osteoarthritis are MMP-13, 

for collagen degradation, and ADAMTS-4 and ADAMTS-5, 

for aggrecan degradation.73

LRP-1: angel or devil?
As illustrated earlier, LRP-1 may exert a protective effect by 

inhibiting the excess of extracellular metalloproteinases (eg, 

MMP-2 and MMP-9 in vascular pathologies and MMP-13, 

ADAMTS-4, and ADAMTS-5 in  osteoarthritis). LRP-1 also 

exerts deleterious effects by eliminating metalloproteinase 

inhibitors (TIMP-1, TIMP-2, and TIMP-3). The signaling 

function exerted by LRP-1 further adds a supplemental level 

of difficulty for understanding the actual effect of this recep-

tor in metalloproteinases-mediated pathologies.

Metalloproteinases regulate 
members of the LDLR family  
by shedding their ectodomain
The members of the LDLR family that regulate metalloprotei-

nase activities by endocytic process, that is, LRP-1, LRP-1b, 

and LRP-2, are themselves controlled by metalloproteinases, 

which shed their ectodomain (ECD).

LRP-1
The presence of soluble LRP-1 ECD was first reported in 

human plasma.74 Further characterization of LRP-1 ECD in 

human choriocarcinoma cells revealed that soluble LRP-1 

α-chain copurified with a truncated 55-kDa β-chain, corre-

sponding to the predicted molecular weight of the extracellular 

portion of the β-chain, meaning that LRP-1 shedding occurs by 

proteolytic cleavage close to the junction between the extracel-

lular and the transmembrane domains.75 A metalloproteinase 

was responsible for LRP-1 ECD shedding in this model. 

A recent study reported the presence of soluble LRP-1 ECD 

in human brain tissue and cerebrospinal fluid.76 In this study, 
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Notes: LRP-1 undergoes a cleavage by a proteolytic enzyme in the extracellular domain of its β-chain, leading to the release of its ectodomain. After this shedding, LRP-1 
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of approximately 12 kDa. This process, called regulated intramembrane proteolysis (RIP), may in some cases be coupled with nuclear signaling, as previously reported for 
Notch and amyloid precursor protein.
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LRP-1 shedding was regulated by ADAM-10 and ADAM-17. 

We previously provided evidence that LRP-1 ECD shedding 

occurred in cultures of human endometrial explants.77 We also 

characterized MT1-MMP and ADAM-12 as new sheddases of 

LRP-1 in the human fibrosarcoma HT1080 cell line.78

As with numerous transmembrane receptors, such 

as Notch,79 LRP-1 undergoes regulated intramembrane 

 proteolysis. This sequential proteolytic process involves 

preliminary ECD shedding. This generates a substrate for a 

second protease system, generally a γ-secretase presenilin, 

which cleaves within the transmembrane domain and releases 

the intracellular domain (ICD) (Figure 3).

We also showed that the cholesterol content of plasma 

membrane was involved in the shedding of the ECD of LRP-1 

and could influence its endocytic properties.78

LRP-1b and LRP-2
In contrast to LRP-1, only a few data concerning the regula-

tion of cell surface expression by shedding are available for 

LRP-1b and LRP-2. Thus, by using specific metalloproteinase 

inhibitors, Liu et al showed that LRP-1b ECD was shed by 

ADAM-17.80

Immuno-ultrastructural studies revealed two forms of 

LRP-2 in the brush border of kidney proximal tubules.81 One 

of these forms, which lacked its cytoplasmic domain, was 

associated with the microvillar surface. These observations, 

which strongly suggested that LRP-2 can be proteolytically 

processed, were confirmed by in vitro studies demonstrating 

the shedding of LRP-2 ECD by unidentified metalloprotei-

nases in an opossum kidney proximal tubule cell line.82

effect of shedding on metalloproteinase-
mediated pathologies
Increased LRP-1 shedding from human lung fibroblasts 

impairs endocytosis of MMP-2 and MMP-9, and thus might 

contribute to lung tissue destruction in acute respiratory 

distress syndrome.83 We similarly reported that the inhibition 

of LRP-1 shedding improves MMP-2 and MMP-9 clear-

ance in cultures of human endometrial explants and may 

help prevent the occurrence of abnormal uterine bleeding.77 

Importantly, LRP-1 ECD retains ligand-binding capacity 

and acts as a decoy receptor.84 Thus, the addition of LRP-1 

ECD to cultured rat hepatocytes resulted in the inhibition of 

tissue-type plasminogen activator clearance.74 We recently 
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demonstrated that TIMP-3 bound to LRP-1 ECD became 

resistant to endocytosis and retained its inhibitory activity 

against metalloproteinases.34 Although no experimental data 

exist concerning the binding of metalloproteinases; of their 

inhibitors TIMP-1 and TIMP-2 to LRP-1 ECD; or of MMP-9 

to LRP-2 ECD and the preservation of their activities, it is 

tempting to attribute to these ECDs a role in the development 

of pathologies associated with excessive inflammation. In 

this sense, LRP-1 ECD levels are increased in the plasma of 

patients with rheumatoid arthritis and osteoarthritis.85 In addi-

tion, the increased levels of LRP-1 ECD in the cerebrospinal 

fluid of old individuals suggest that LRP-1 shedding during 

aging could contribute to the pathogenesis of Alzheimer’s 

disease.76

The ICD generated by shedding of Notch translocates 

to the nucleus for regulating transcription of target genes.86 

In vitro studies showed that similar to Notch ICD, LRP-1 

ICD is translocated to the nucleus.87 It has been described 

as impairing the transcriptional activity of APP, Fe65, and 

Tip60 complex.88 In neurons, LRP-1 ICD translocation to the 

nucleus leads to apoptotic cell death in ischemic conditions.89 

In macrophages, LRP-1 ICD represses the interferon-γ pro-

moter and limits the inflammatory response.90 Blocking of 

LRP-1b ICD release impedes the ability of LRP-1b to sup-

press anchorage-independent growth in a cell line derived 

from a human central nervous system tumor.80

These data highlight putative roles exerted by ECD and 

ICD from members of the LDLR family in the development 

of metalloproteinase-mediated pathologies.

Conclusion
After presenting the different members of the LDLR family 

involved in the regulation of metalloproteinase activities, we 

focused this review on LRP-1 and its involvement in the main 

metalloproteinase-mediated pathologies that are Alzheimer’s 

disease, cancer, vascular diseases, and osteoarthritis. By 

coupling endocytosis with cell signaling, LRP-1 appears to 

be an efficient cell surface receptor that allows a rapid answer 

to a modification of the cell microenvironment.

Understanding the pathways regulated by LRP-1 in 

the metalloproteinase-mediated pathologies represents an 

important challenge for providing adequate responses to 

patients.
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