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Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated 

with it. The secondary injury results from the biological cascade after the primary injury and 

affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would 

benefit patients suffering a primary injury and allow the body to recover more quickly. Unfor­

tunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of 

therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. 

Based on their material properties, they can help treat disease by delivering drugs to specific 

tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the 

treatment of neuronal injury and disease would likely push nanomedicine into a new light. This 

review highlights the various pathological issues involved in secondary spinal cord injury, current 

treatment options, and the improvements that could be made using a nanomedical approach.
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Introduction
Spinal cord injury
Neurological injury often results from biological damage, such as multiple sclerosis, 

or mechanical damage, such as compression in spinal cord injury (SCI). Regardless 

of the affliction, a patient’s quality of life is likely reduced due to the loss of motor, 

sensory, or cognitive function. Motor vehicle accidents most heavily contribute to the 

occurrence of central nervous system (CNS) injuries. Since young adults and teens are 

most likely to be involved in these types of accidents, their age group is significantly 

affected.1 Aside from possible mortality, injury usually results in impaired motor 

capabilities (paralysis), impaired sensory capabilities (hypersensitivity and hypo­

sensitivity), and/or neurologically-based pain. This can drastically reduce a patient’s 

quality of life and place a large burden on society, both in health care costs and lost 

productivity. Regardless of how the CNS is damaged, it has adverse effects on a patient. 

Neuronal injury is a major field of exploration, but this review will focus on aspects 

of treatment after SCI. Various therapies have been explored, but as discussed later, 

the treatments may have little effect or adverse side effects, which calls for a new 

approach to treating such trauma.

It is well established that physical impact is not solely responsible for the severe 

tissue damage resulting from SCI. Rather, mechanical trauma induces a cascade of 

chemical reactions leading to a delayed secondary neurological injury that amplifies 

the effects of the initial injury and expands the damage throughout the cord.2,3 Due to 

the delayed nature of this pathology, which offers a window of intervention, the inhibi­

tion of secondary injury processes has emerged as an important therapeutic strategy to 
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deter further degeneration and promote functional recovery.3 

Therefore, ascertaining the secondary injury and identifying 

key therapeutic targets is warranted. 

Nanomedicine: a new medical approach
Nanotechnology holds promise in aiding the treatment of 

chronic disease and medical conditions. In biology and 

medicine, the field has developed rapidly in the last decade 

to create a new application of nanotechnology in medicine 

known as nanomedicine (for reviews, see Haglund et al4 

Seale-Goldsmith and Leary,5 and Leary6). Major goals in 

the field involve the improvement of targeted drug delivery, 

improved diagnostic or imaging techniques, and simultane­

ous therapeutics and diagnostics (“theranosis”), which is a 

combination of both therapeutics and diagnostics in the same 

nanomedical drug/device. Nanomedicine gives rise to poten­

tial therapies that can be tailored to diagnose and treat for spe­

cific disease states while greatly diminishing the side effects 

of traditional medicine through both the targeting process 

and greatly lowered total systemic doses due to that targeting 

process, and also longer circulation times created by stealth 

layers on the nanomedical device that prevent opsonification 

and decrease uptake by the kidneys and liver. Additionally, as 

the field broadens, it expands to include nanopharmacology 

and nanotoxicity for exploration of how the body reacts to 

the new nanosized structures. While sometimes criticized as 

offering as yet unfulfilled promise, much of the delay is due 

to uncertainties in the evaluation process on the part of regula­

tory agencies such as the US Food and Drug Administration 

(FDA), which is still coming to terms with nanotechnology.7 

Pharmaceutical firms worry about the twin hurdles of FDA 

approval as a “combo” device, since nanomedicine involves 

both a nanodevice and a drug. However, early and simpler 

forms of nanomedical systems have been approved by the 

FDA, and more are in the approval process pipeline. 

Composition of nanoparticles
The composition of nanoparticles is extremely diverse. 

They have been synthesized using a wide range of materials, 

including metal (eg, gold, silver, cadmium), metal oxides 

(iron oxide, titanium oxide, zinc oxide), silica, polymers, and 

biological molecules (peptides and DNA), among others.8–11 

As the field has progressed, more nanoparticles are being 

made from mixtures of these materials, which provide new 

benefits and functions for the various applications that a 

single material will not possess. Many times, the amalga­

mation allows both the diagnostic and therapeutic effects to 

occur either simultaneously or in a time-dependent manner. 

This is achieved by making nanoparticles one layer at a 

time, called layer-by-layer synthesis. Each layer changes 

the characteristics of the nanoparticle and adds functional­

ity, essentially making the nanoparticle programmable. Such 

multifunctional nanoparticles become a unique nanomedical 

system used to address a biological problem.

Neurological disease pathology: 
overview
Neurological degeneration in SCI
Although it can recover somewhat, generally the CNS recov­

ers very little after injury. On the other hand, the peripheral 

nervous system recovers more efficiently. The enzymatic 

and molecular composition of the neurons involved con­

tributes heavily to the differences in their regeneration. The 

CNS myelin, composed of oligodendrocytes, contains direct 

inhibitors of axonal growth, such as the aptly named Nogo 

receptor, that interact with myelin proteins.12–16 In the periph­

eral nervous system, protective Schwann cells form a scaffold 

that allows the renewed growth of injured axons.17–19 Injury 

to the CNS also affects a patient more critically. The brain 

and spinal cord are the control centers for the body’s many 

functions. When messages cannot be transported back and 

forth, the brain cannot relay appropriate responses to incom­

ing sensory information, or it does not receive the information 

at all. In the peripheral nervous system, although the loss of 

information may be detrimental, it is usually both locally 

concentrated and less critical than the copious amounts of 

information the brain and spinal cord both send and receive. 

In the CNS, the axons of the neurons can be quite long, and 

once damaged or destroyed, the information from a large 

part of the body is lost.

In places in and around the injury site, cells often suffer 

from membrane and myelin damage.20 Neuronal membrane 

integrity is critical to cellular function. The membrane not 

only retains chemicals and proteins but also prevents them 

from entering. The function of a neuron depends on specific 

ion concentration gradients between the extracellular and 

intracellular spaces. Extracellularly, sodium and calcium ions 

are abundant in comparison with those in the cytosol. Intracel­

lularly, the potassium ion concentration is much higher inside 

the cell. In a normal cell, the differences in concentration 

create a voltage potential across the membrane and polar­

ize the cell. When the membrane is compromised, allowing 

free movement of ions, the gradients diminish or disappear. 

The cell depolarizes, and the leaky membrane prevents it 

from repolarizing, thereby destroying its ability to generate 

an action potential.21 Beyond that, other chemicals, such as 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

925

Spinal cord injury and nanomedicine

reactive species and proteins, can invade and damage the cell, 

generating secondary injury and necrosis in a cycle. The cycle 

of stress and death impedes the ability of cells to recover from 

the inundation of toxins and return to homeostasis.

In the CNS, oligodendrocytes are responsible for myeli­

nating neuronal axons. The oligodendrocytes form segments 

of sheaths around the axons. Spaces between the segments 

are known as the nodes of Ranvier. The sheaths allow action 

potentials to “jump” quickly from node to node. Further, the 

junctions contain distinct enzymes and signaling molecules to 

keep different ion channels segregated. The nodes of Ranvier 

contain potassium channels, and the sodium channels congre­

gate in the adjacent juxtanodal regions. The channels open 

and close at different points during an action potential, and 

the separation of the ion channels not only allows movement 

of the action potential, but also facilitates faster depolariza­

tion along the axon.22,23 When the ion channels do not remain 

separated, neuronal function is impaired.22 Therefore, after 

demyelination, when the ion channels are desegregated, the 

ability of the neuron to transmit action potentials is hindered 

or destroyed. Beyond SCI, demyelination is a large issue in 

the progression of other neurodegenerative diseases.24,25

At a deeper level, initial SCI results in a concentrated site 

of necrotic cell death, membrane damage, and, often, myelin 

damage. In contrast with apoptosis, where cell contents are 

packaged and recycled before cell death, the contents of 

necrotic cells are released haphazardly into their environ­

ment. Normally, the body uses many of the molecules that are 

released during necrosis for various mechanisms, including 

signaling, degradation, and synthesis.26–30 Hydrogen peroxide 

and nitric oxide, both potent oxidative species, are secondary 

messengers for different cellular pathways.27,29 For instance, 

nitric oxide is a secondary messenger that results in vasodi­

lation of smooth muscle, among other functions.27 To help 

destroy invading pathogens, hydrogen peroxide is secreted 

by cells responsible for immunity.28 The superoxide anion 

is produced in the mitochondria during the electron trans­

port chain. The combination of superoxide and nitric oxide 

results in peroxynitrite; its formation and sequestration by 

uric acid after SCI was studied and found to ameliorate some 

effects of peroxynitrite formation, but the major mechanism 

seemed to stem from attenuating the inflammatory response 

from immune cells.31 Vitamin B
12

 works specifically through 

a radical reaction with cobalt, creating upstream products 

for DNA synthesis.26 Upon uncontrolled release, though, 

many of these molecules and enzymes, specifically reactive 

oxygen species and reactive nitrogen species (Figure 1), 

travel to neighboring cells, including healthy ones, and cause 

secondary damage through effects such as lipid peroxidation 

and inflammation.31–33

Biochemical targets of SCI
In SCI, inflammation plays a role in the health and progres­

sion of CNS neurons. In vitro, activated microglial cells 

induce oxidative stress when cultured with neuronal cells.34,35 

Although the response is natural, the oxidative stress can 

be detrimental to cells that are already undergoing stress. 

Figure 2 highlights the role inflammation can have in neu­

ronal injury.

Acrolein (Figure 3), a reactive oxygen species, has 

been implicated in secondary injury in neuronal tissues.36,37 

Both studies found increased lipid peroxidation specifically 

caused by acrolein. Luo et al monitored the protein adducts 

of acrolein after SCI in vivo. They found that acrolein levels 

peaked 24 hours after injury, but stayed elevated for up to 

N=O

Nitric oxide

Hydrogen peroxide Peroxynitrite

HO   OH

O
O

O–
N

Superoxide anion

•
O=O

–•

Figure 1 Common reactive oxygen species and reactive nitrogen species. 
The formation of such species is normally highly controlled for specific signaling 
mechanisms (nitric oxide), respiration (superoxide), or defense (hydrogen peroxide). 
When cells are damaged, radicals can freely form and travel to uninjured, healthy cells. 
Environmental factors may also contribute to the formation of oxidative stress.

Mechanisms of secondary chemical injury to
cells after primary physical injury

Primary injury: necrotic cells release cellular
contents in response to cell injury

Inflammation and ROS/acrolein generation

Lipid peroxidation

Secondary
injury

Membrane and myelin damage

Loss of homeostasis and function

Figure 2 Progression of primary injury and secondary injury. After primary injury, 
the biochemical cascade that follows is secondary injury. The secondary injury 
can cause damage to tissue that was previously unharmed, perpetuating a cycle of 
oxidative stress and injury.
Abbreviation: ROS, reactive oxygen species.
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a week.37 Later studies explored the various biochemical 

changes caused by acrolein in neuronal tissues, includ­

ing lipid peroxidation, myelin damage, and mitochondrial 

damage.38–40 The primary carbon of acrolein can undergo 

nucleophilic (“nucleus-loving”) attack, but contributing to 

its destructive nature, the electrophilic (“electron-loving” or 

electron-deficient) carbons of the π-bond (second bond of 

C=C) can undergo attack by nucleophiles in the cell. Specifi­

cally, acrolein reacts with amine-containing lysine residues, 

histidines, and electrophilic unsaturated fatty acids. Changes 

to protein residues upon reacting with acrolein can cause 

functional and conformational detriments in proteins. When 

acrolein attacks fatty acids, more acrolein is generated in a 

cycle of uncontrolled lipid peroxidation.41 Environmentally, 

acrolein is a byproduct of the burning of plastics, overheated 

cooking oil, and cigarette smoke, which makes it an important 

environmental source of oxidative stress that can adversely 

affect the body.42–44

When acrolein reacts with lipids, such as those in the cell 

membrane, the membrane is compromised, and more acrolein 

is released to attack other tissue in a feed-forward process. 

It creates a cascade of oxidative stress to a particular area of 

injury. In this way, acrolein can increase stress and damage 

healthy tissues surrounding the injury site.32,38,45 The large 

amount of oxidative stress overwhelms the body’s natural 

antioxidant, glutathione.46 Normally, glutathione is oxidized, 

which stops reactive oxygen species and reactive nitrogen 

species from oxidizing proteins and structures in the cell. It 

then would be reduced to its original form by glutathione 

reductase. In a large area of oxidation, glutathione cannot 

be reduced rapidly enough to account for the overwhelming, 

cyclic, and unchecked production of acrolein. 

Acrolein is a small molecule target in SCI, but inher­

ent biological systems also play a role in SCI. Calpain, 

a calcium-dependent cysteine protease, cleaves various 

proteins associated with the cell membrane. The protease 

is strongly conserved across different species. In humans, 

it has two main isoforms, calpain-1 and calpain-2, also 

referred to as μ-calpain and m-calpain, respectively, where 

the latter notation refers to the concentration of calcium 

(micromolar and millimolar) necessary for optimal activa­

tion. Cysteine proteases use a nucleophilic thiol group of 

the cysteine residue to cleave peptide bonds. Peptide bonds 

contain an electrophilic carbonyl where cleavage takes place, 

breaking the bond between the carboxylic acid portion of 

one amino acid and the amine of the neighboring residue. 

The reaction requires water, and the cysteine of the active 

site only catalyzes the break, thereby being recycled.47 

Because calpain cleaves numerous proteins with seemingly 

little order, various studies have attempted to deduce and 

deconstruct substrate cleavage sites.48,49 For example, Betts 

et al constructed a series of synthetic peptides and tested 

calpain activity against known substrates for the purpose of 

analyzing, residue by residue, the construction of the inherent 

inhibitor, calpastatin.48

Calpain expression has been implicated in different 

disease states and become a therapeutic target because of its 

role in disease states, apoptosis, and, mainly, necrosis.50–55 

In damaged neuronal tissue, large influxes of calcium can 

cause widespread activation of calpains. In these states, its 

natural inhibitor, calpastatin, is underexpressed, leading to 

an imbalance of calpain activity (Figure 4).56 Additionally, 

calpastatin specifically inhibits calpain.57 Various efforts 

have been made to create new calpain inhibitors, but 

they often target other proteases as well.58–62 Calpeptin, a 

short peptide, for example, targets both forms of calpain 

very well, but it also inhibits papain, although at higher 

concentrations.59

In 1989, Maki et al determined the domain of calpasta­

tin involved in the inhibition of calpain. It consists of a 

27-mer portion of the protein known as B-peptide, with the 

sequence DPMSSTYIEELGKREVTIPPKYRELLA.63 Later, 

it became known as the calpastatin B-27 peptide, based on its 

sequence location in exon 1B. Since then, the crystal struc­

ture of the two proteins has been published and discussed.64 

Calpastatin’s α-helix in the B-peptide turns away from the 

reactive cysteine, while the other portions of the protein 

facilitate binding of the B-peptide. Modeling and analysis 

has been performed to determine the important morphology 

of the calpain-calpastatin system and to provide insight for 

designing new targets.49,65

Although other biological factors may play a role in SCI, 

such as various molecular pathways, inflammation, calpain, 

and acrolein are targets that the current clinical therapies 

(namely methyprednisolone) do not sufficiently address. In 

particular, the persistence of acrolein in vivo leads to more 

oxidative stress that can travel to healthy tissues, causing the 

H2C

O

Figure 3 Acrolein is a reactive oxygen species implicated in secondary injury after 
spinal cord injury. The pi-bond reacts with proteins and lipids, altering the function 
of proteins or causing lipid peroxidation. The carbonyl of acrolein is still free for 
other reactions, such as those used for scavenging.
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injury site to grow beyond the initial trauma point. Further, 

unlike other oxidative species, its levels remain high, which 

hinders the ability of tissues to recover effectively. Specifi­

cally, both acrolein and inflammation can lead to necrosis, 

which negatively impacts not only the dying tissue, but also 

the surrounding tissue. In a sensitive area like the spinal cord, 

necrosis and damage can affect the entire body, not just a 

concentrated area.

Therapeutic explorations in 
treating SCI
Immunosuppression
Although methylprednisolone, a steroid, is the most 

common drug used for SCI, it has been the subject of 

criticism.66 Hugenholtz et al concluded that the drug is too 

expensive to prescribe with the current clinical data that 

are scattered and inconclusive.66 Bracken et al recommend 

that the drug be given within the first 8 hours post-injury 

to be effective.67 Regardless, the drug aims to suppress the 

immune system, reducing inflammation around the injury 

site. Although it may attenuate oxidative stress and cytok­

ines from immune cells, it does not address the process 

of stress from dead or dying cells. Methylprednisolone is 

the only treatment used clinically, but its mechanism of 

action and questionable efficacy warrants re-evaluation and 

decidedly better alternatives. On the other hand, a new and 

better vehicle may help to mitigate its negatives, but its 

ability to stop secondary injury is focused on preventing 

stress from one of the many sources of stress. Therefore, 

more work needs to be done to find new and more effec­

tive therapies for SCI.

Glutathione
A seemingly easy approach for improving the body’s 

stores of antioxidants includes glutathione supplementation 

(Figure 5). The molecule is made from cysteine, glycine, 

and glutamate, and its antioxidant properties stem from 

the nucleophilic thiol group of the cysteine. Oxidative 

Ca2+

Ca2+

Molecules or peptides that
block the activation of calpain,
increase calpastatin levels, or

allow for the inhibition of calpain
are potential therapeutics

Calpastatin

Calpain
(inactive)

Calpain
(inhibited)

Calpastatin

Calpain
(active)

Nucleus

The natural inhibitor
calpastatin is downregulated

if calpain is highly
overexpressed, reducing its

ability to inhibit calpain
activity

Cleaves many essential
proteins, leading to

apoptosis or necrosis

Massive calcium influx
after cell damage can

cause large activation of
calpain

Figure 4 Example of the calpain-calpastatin molecular mechanisms in a damaged cell. Calcium influx causes mass activation of calpain, which cleaves protein substrates and 
regulators of its inhibitor, calpastatin. An efficient delivery of calpastatin or other calpain inhibitors may hinder the damage caused by the extensive activation of calpain after 
injury. Calpain may also serve as a protein target for nanomedical systems. Cell is not drawn to scale. For a review of explored calpain inhibitors, see Donkor.62
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species are electrophilic and the extra valence electrons 

of the thiol group reduce the oxidative species and create 

water in the process. In other words, the antioxidant is 

oxidized rather than allowing essential parts of the cell to 

be oxidized. Unfortunately, orally administered glutathione 

itself is poorly absorbed.68 Studies of glutathione levels 

have found that it forms an equilibrium with its amino acid 

components through synthesis of glutathione and uptake 

of cysteine.69,70 To increase glutathione levels, rather than 

absorbing glutathione, increasing the uptake of its amino 

acid components shifts the equilibrium toward synthesis 

of glutathione. 

Due to its limited bioavailability, effectively delivering 

glutathione directly to the site of injury could help increase 

the antioxidant capabilities of cells suffering from second­

ary injury. Since glutathione is the cell’s primary defense, 

its efficacy is likely to be higher with fewer side effects. 

Cells already contain a system to process, use, and dispose 

of glutathione effectively. Using such a treatment would act 

as a supplement to the process already in place.

Calpain inhibition
Based on its role in neurological injury, some groups have 

used calpain inhibitors to target the apoptosis and necrosis 

of neurons in various disease models.50,52,60,71–74 In a notable 

in vivo study that used both intravenous and intraperitoneal 

injections, Yu and Geddes found that only when the two types 

of injections were combined (intravenously after injury and 

then intraperitoneally daily for a week after the injury) did the 

pathology of the injury change significantly.74 Otherwise, 

they found that the lesion increased and tissues died similar 

to the levels of the control injury. The authors admit that their 

results could be improved with better delivery and availability 

of the inhibitor, which is less of an issue in vitro.74 In in vitro 

systems, the cells of interest can be studied directly without 

numerous other factors that may affect the delivery of thera­

peutic molecules in vivo. Although the group had positive 

therapeutic results in vivo, the increase in the lesion site was 

likely due to other secondary injury factors not addressed by 

the calpain inhibitor.

One group attempted to address the issue by combining 

methylprednisolone and calpeptin.73 Although this approach 

is creative, it does not target the cascade of secondary injury 

caused by inherent oxidative stress. The animals were sacri­

ficed after 48 hours, their motor capacities were not reported, 

and pathology was not examined. If the study had continued 

and the pathology was determined, it would have given bet­

ter insight into the mechanisms of SCI that the authors were 

attempting to study.

Calpain inhibition is a critical aspect of secondary injury 

in need of address. Calpain activation is likely to affect liv­

ing, but compromised, cells. Preventing their necrotic death 

could temper the spread of the injury site to previously unin­

jured tissues. Like most therapeutics, specificity is difficult 

to obtain in small molecules, and bioinspired therapeutics 

generally require protection from degradation. Like the 

study described above, a more effective treatment will likely 

require a combination therapy technique.

Hydralazine as an acrolein scavenger
The drug hydralazine (Figure 6) has been found to “scavenge” 

for acrolein and other oxidative species.3,32,38,75–77 In particu­

lar, the drug will scavenge and react with acrolein that has 

reacted with proteins.38 As mentioned earlier, the carbonyl 

group in acrolein is free for nucleophilic attack. Once acrolein 

reacts with a protein, the carbonyl is free, and hydralazine 

can attack it. The reaction results in a Schiff-base and imine 

(C=N bond) formation, which the body uses regularly 

for amino acid synthesis. When the drug reacts with free 

acrolein, it reduces the amount of acrolein that can induce 

lipid peroxidation, arresting the feed-forward production of 

HN HN

N

N

N

N

N

NH2

CH2

Figure 6 Hydralazine (left) and the imine product of acrolein and hydralazine 
(right). After the reaction with acrolein, the Schiff base on the right is the product 
of hydralazine scavenging acrolein. If acrolein has already reacted with proteins, 
hydralazine can still react with acrolein for removal.

O

HO OH

NH2

NH
NH

SH
O

O

O

Figure 5 Glutathione. The thiol (-SH) group contributes to its antioxidative 
properties. The body naturally controls the production and reduction of glutathione 
from its oxidized state. In cases of severe oxidative stress, the reduction occurs 
too slowly for cells to overcome the assault of reactive oxygen species or reactive 
nitrogen species.
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acrolein. Ultimately, stopping this process would allow the 

cells to recover more effectively.

Currently, hydralazine is used for hypertension. It 

activates a G-protein coupled receptor, guanylate cyclase, 

in smooth muscle, causing a downstream signal to relax 

the smooth muscle.78 Due to this mechanism, administering 

hydralazine for acrolein scavenging could critically lower 

an injured patient’s blood pressure. Further, hydralazine has 

a fairly short half-life of about 2 hours in vivo, and genetic 

factors influence the metabolism and side effects of the drug. 

Some patients who metabolize the compound rapidly have 

been shown to exhibit lupus-like symptoms.79 Therefore, 

a therapy that could concentrate hydralazine locally without 

lowering blood pressure or invading other tissues would 

have great potential for SCI patients. Hydralazine treatment 

would lack the need for regulatory approval, but its specificity 

limits its translation for SCI. Unlike glutathione, hydralazine 

is limited in its scavenging of a broad range of oxidative 

species, but being a small molecule, it is inexpensive and a 

prime candidate for delivery manipulation.

Polymeric therapeutic molecules
Long-chain polymers have been also studied for SCI. 

Poly(ethylene) glycol (PEG) and chitosan have both been 

studied for their effects in treating SCI and other neurological 

diseases.3,45,77,80 The polymers first plug the damaged 

membrane by associating with the holes. Interaction of 

the polymers then causes the two separated parts of the 

membrane to associate with each other, effectively closing 

the hole and stopping the  invasion of unwanted ions and 

molecules.45,80 

The two polymers have a few distinct differences. The 

molecular weight of PEG ranges from very small (molecular 

weight 250) to very large (molecular weight 500,000), 

depending on the application. It also comes with a range 

of functional groups for different modifications or can be 

modified for functionality. The applications and functional­

ities of PEG are discussed in the next section. Chitosan, on the 

other hand, is derived from the exoskeletons of shell fish, such 

as crabs and shrimp.81 Chitin, the polymeric material from the 

shells, is deacetylated in various degrees to create chitosan. 

Chitosan alone is not water-soluble, so must be modified 

to become water-soluble.10 The properties of PEG/chitosan 

blends have also been studied to combine the biodegrada­

tion and biocompatibility effects of both polymers.82–84 De 

Campos et al compared polymeric particles coated with PEG 

and those coated with chitosan for therapeutic delivery to the 

cornea. They found that PEG had better delivery, but chitosan 

had a better drug retention effect.85

Polymers such as PEG and chitosan could play an impor­

tant role in SCI therapy. PEG is a stealth polymer used to 

extend the half-life of therapeutics (discussed later in this 

review). Membrane sealing is a primary step in helping 

cells to achieve homeostasis and stopping an onslaught of 

unwanted extracellular material, which would ideally allow 

cells to eventually obtain a membrane potential. Membrane 

sealing alone will not stop the spread of damage, and only 

addresses a small aspect of the secondary injury problem.

Treatment summary
A number of different molecules have been used to target 

the symptoms of SCI. All of them attempt to address some, 

although not all, characteristics of SCI. Table 1 summarizes 

the origin and action of many of the common therapies. It 

is evident that a new approach is necessary to address the 

complex processes that occur during and after SCI. Since 

the major explorations involve controlling one of the afore­

mentioned aspects of SCI, a therapy that could combat all of 

Table 1 Summary of explored molecularly-based therapies for spinal cord injury

Type Biological action Biological aspects References

Glutathione Peptide-like molecule Natural antioxidant Increases with cysteine uptake 46,68,70,86
Methylprednisolone Steroid Immunosuppressant Must be taken directly after injury;  

reduces inflammation
67,87

Hydralazine Small molecule Oxidant scavenger;  
guanylate cyclase ligand

Short half-life; hypotension  
side effect

75,78,79

Calpain inhibitors Peptide or synthetic  
molecule

Inhibits protease  
activity of calpain

Some target other proteases 59–61,63,74

PEG Polymer Membrane sealant Biocompatible; comes in many  
sizes and types of functional groups

38,45,77,88

Chitosan Polymer found in  
shell fish

Membrane sealant Biocompatible; must be made  
hydrophilic

10,80,89,90

Notes: The various therapies referenced include traditional synthetic molecules and biologically-based molecules. Each molecule may be used to treat a different, but limited, 
aspect of secondary spinal cord injury.
Abbreviation: PEG, poly(ethylene) glycol.
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them would be a large step in helping SCI patients. Granted, 

axonal regeneration is another factor after SCI, but oxidative 

stress and proteolysis are direct pathways to apoptosis and 

necrosis. Therefore, controlling and preventing cell death is 

extremely important before the tissues can repair themselves. 

Additionally, the major problem in inflammation is induction 

of oxidative stress through cytokines. Rather than affecting 

a patient’s entire immune system, it is more beneficial to 

control local inflammation and oxidative stress.

Nanomedicine strategies
Due to current therapeutic limitations, a nanomedical 

approach may help to ameliorate poor drug availability 

and the biochemical effects of secondary injury. In current 

therapies, drugs are administered and, hopefully, arrive at 

their intended location. Nanoparticles can act as carriers and 

increase the circulation time of a therapy, which is critical 

for hydrophobic and short-lived therapies, thereby improving 

the therapy’s chance of reaching the cells of interest. Further, 

biomolecules (natural or mimetic) can be added to the nano­

particle assemblies to help with cell-uptake specificity. After 

circulation and accumulation, the biomolecule hopefully 

increases the likelihood of nanoparticles being internalized 

by the intended cells.91 Peptides, DNA, RNA, and receptor 

ligands have been used for their affinity for a particular bio­

marker or characteristic, such as an increase in folate recep­

tors on cancer cells.92–96 Unfortunately, the disease state must 

have a studied and reliable biomarker to target, which may 

not always be the case. Without these moieties, nanoparticles 

may accumulate in different areas, for instance, by changing 

their shape or size.97,98 Different clearance organs, such as the 

spleen, liver, and kidneys, will filter out particles based on 

their size. He et al specifically found that smaller particles 

(200 nm) were less likely to accumulate in the spleen and 

liver compared with larger particles.97

Table 2 summarizes many of the common materials used 

to make nanoparticles. The list includes inorganic material 

(silica and iron oxide), transition metals (gold and quantum 

dots), and organic materials (chitosan, DNA, PEG). Each 

material harbors certain advantages and disadvantages versus 

the others. Efforts have also explored hybrid particles, merg­

ing the advantages of the different materials.

Table 2 indicates that both silica and polymeric nano­

particles provide essential features to ameliorate the limita­

tions of current SCI therapies, most notably they have an 

ability to adsorb and encapsulate drugs. The distinct and 

overwhelming advantage that silica nanoparticles provide 

is the ability to form a mesoporous network. This porosity 

makes them especially useful for various medical applica­

tions, including drug and gene delivery. In particular, the 

tunable mesoporous structure of silica networks gives them 

qualities of zero-order drug release. The drug is released at 

a constant rate, rather than at an exponential or logarithmic 

rate, which could prevent side effects from high drug doses 

and decrease the amount of drug necessary for effective 

delivery. The silica encapsulates the drug until reaching the 

Table 2 Comparison of nanoparticle characteristics

Core material Chemistry Toxicity Therapeutic 
delivery

Imaging References

Silica Stöber method; template in 
microemulsion; commercially 
available

Size-dependent Adsorption; 
tethering

Must add imaging 
agent

76,99–102

Gold Thiol-based; easy, but 
expensive; commercially 
available

Surface 
modification-dependent

Tethering Surface plasmon 
resonance

9,103–107

Quantum dots Difficult, requires heavy 
metals; expensive; 
commercially available in 
range of size and colors

Mixed; heavy metal 
leaching is toxic

Tethering Fluorescence 108–113

Polymeric (PLGA, chitosan) Self-assembly; usually requires 
modification for assembly

Low Encapsulation; 
tethering

Must add imaging 
agent

83,89,114–116

Combination particles
Silica/iron oxide Iron oxide coated with silica Low Adsorption; 

tethering
MRI; imaging agent 11,117–120

Polymeric/iron oxide Iron oxide encapsulated with 
polymer; iron oxide requires 
coating due to hydrophobicity

Low Encapsulation; 
tethering

MRI; imaging agent 93,121–126

Notes: Nanoparticles are generally classified under “inorganic” or “organic” materials, which gives them various properties.
Abbreviations: MRI, magnetic resonance imaging; PLGA, poly(lactic-co-glycolic acid).
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cell or cells of interest. The method can be applied to potent 

drugs, such as chemotherapy agents, or environmentally-

sensitive agents.

In polymeric particles, drugs are usually encapsulated via 

self-assembly.115 Polymeric particles are usually created via 

sonication or mixing, which causes them to assemble into 

nanostructures.8,127 When the nanoparticles disassemble in 

biological systems, the drugs are released in a burst, which 

is usually the cause of adverse side effects.116 When therapies 

are released rapidly, a high local concentration can be toxic 

to cells, especially when delivering very potent drugs (eg, 

chemotherapy agents). Avgoustakis et al synthesized poly­

meric nanoparticles, and in initial release, about 20% of the 

anticancer drug cisplatin was released.8 Zhang and Feng also 

reported an initial burst of the anticancer therapy paclitaxel of 

about 20%.127 In the other types of nanoparticles, the therapies 

are usually added by a form of conjugation method, which 

can be limiting when needing to deliver a small molecule.

Various examples of using silica to deliver therapeutic 

molecules have recently been demonstrated. Chauhan et al 

have used silica hydrogels to load hydrophobic drugs and 

monitor their release profile from contact lenses used for 

glaucoma. They found ways to change the release profile 

and induce release for weeks or months.128–131 The therapeutic 

agents can be loaded by incubating them with the porous sil­

ica. Molecular interactions, generally Van der Waal’s forces, 

cause the drug to adsorb onto the surface of the silica.76,132 

Yu et al successfully coated iron oxide nanoparticles with 

silica for the purpose of protein adsorption.120

Silica nanoparticles can be prepared and functionalized in 

various ways. The starting material, or precursor, is generally 

a small silicate, such as tetramethylorthosilicate or tetraethy­

lorthosilicate. Upon addition of an acid or base, the precursor 

hydrolyzes and eventually condenses to form a silica network 

at room temperature (Figure 7). Although many reaction 

types exist, many of these stem from the Stöber method 

published in 1968.102 The method requires use of a light 

alcohol (methanol or ethanol) and ammonium hydroxide for 

catalysis.102 A common variation on this method includes the 

water-in-oil microemulsion, which uses a nonmiscible sol­

vent (an alkane) and a surfactant.133 Other reagents explored 

include an array of bases, solvents, and even templates for 

silica nucleation. The templates are usually an organic salt, 

such as cetyltrimethylammonium bromide, which creates a 

surfactant layer for nanoparticle nucleation in the two-solvent 

system. In a later step, though, the template must be removed 

to create the silica shell structure. Because the template is 

usually a salt, it is removed using strongly acidified alcohol, 

which adds an additional step to the overall synthesis. A 

similar method for nucleation has been employed to coat iron 

oxide nanoparticles with silica.11 Depending on the various 

reaction conditions, the pore size, surface area, size, and 

shape of the particles will change.101,134–137 Starting material 

concentration, catalyst concentration, and the solvent system 

also play an important role in the silica formation.134,138

Different functional groups can be introduced on the 

surface of the silica by adding an additional precursor 

with a functional group of interest, which is known as the 

cocondensation method. Using this method, the function­

ality and application of silica nanoparticles has greatly 

improved. Organosiloxane is introduced into the original 

mixture or grafted onto the particles in a later reaction. In 

grafting reactions, it is possible that the functional groups 

will become part of the silica network or nucleate, creating 

new nanoparticles.137,139 Therefore, not only does grafting 

create a separate step in synthesis of the nanoparticles, but it 

may also create diverse populations of nanoparticles in one 

mixture. This adds both time and cost to the overall process 

if the particles must fit within a defined range of criteria. 

Otherwise, organosiloxanes come with a variety of groups, 

such as carboxylic acids, amines, and polymers, which are 

especially useful for biological tethering.

PEG is a biocompatible polymer that is commonly used 

for a “stealth” layer on nanoparticles.138,140–143 PEG prevents 

protein adsorption on the surface of nanoparticles during 

circulation (opsonization), which “hides” the nanoparticles 

from attack by immune cells. It can be combined with 

silica to improve aqueous stability and retention, and to 

reduce toxicity both in vivo and in vitro.141,143–145 Similar 

to other reaction conditions, even the amount of PEG 

seems to affect the size of silica nanoparticles.141 Like 

organosiloxanes, PEG is available in numerous sizes and 

may have a number of functional moieties for various 

applications. Further, PEG provides additional targeting for 

both localization and therapy for SCI applications. Local 

injection of PEG helped to alleviate systems of oxidative 

stress in neuronal cells by aiding in the repair of damage 

to the membrane.45
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Figure 7 Formation of silica network with tetramethyl orthosilicate precursor. 
Tetramethyl orthosilicate undergoes hydrolysis in the presence of an acidic or basic 
catalyst followed by condensation with another silica molecule. The formation and 
size of silica nanoparticles is dependent on controlling the rate of both steps.
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Cytotoxicity has been a concern with silica nanoparticles. 

Studies using these nanoparticles have found that both very 

small and very large particles tend to create toxicity problems. 

On the other hand, particles in the submicron range (50–300 nm)  

show less toxicity.99,100,146 In in vivo studies, there are mixed 

results. Table 3 shows a few often-cited studies on the tox­

icity of silica nanoparticles. For comparison purposes, this 

table only highlights single-dose toxicity studies in mice. 

Hudson et al found their particles to be the most toxic using 

both intraperitoneal and intravenous injections. Based on 

particle characterization, their results seem to be attributed 

to the dose and size of their particles. Although all the stud­

ies used both dynamic light scattering (DLS) and electron 

microscopy to confirm and corroborate their size results, 

Hudson et al found disparities in the size of nanoparticles 

achieved using each method.

 DLS derives the radius a particle appears to have in 

solution. Components of a solvent or buffer form a layer 

that moves with the nanoparticle, forming the hydrodynamic 

radius. As a particle moves through solution (Brownian 

motion), it scatters light that can be collected. A large particle 

moves more slowly and scatters less light, while a smaller 

particle moves more quickly in comparison.147 Obviously, 

since the particles are moving in a fluid, the solvent properties, 

specifically viscosity, change their motion in the fluid system. 

On electron microscopy, the particles appear dried and may 

be sputtered before being imaged, which can cause aggre­

gation.148 Therefore, DLS is likely a truer measurement of 

how silica nanoparticles behave in a fluid biological system. 

Hudson et al had very large particles (470±252 nm) based 

on DLS measurements, while scanning electron microscopy 

showed particles of only 100–150 nm. In their preparation 

for DLS, they reported that the samples were sonicated and 

vortexed for 2 hours prior to measurement, which is a good 

indication that their particles were probably both large and 

aggregated since such forces were needed to separate them. 

Further, they mentioned that, even after preparation, the 

particles would fall out of suspension.149 The size of the 

particles, coupled with the large dose, likely contributed to 

the erratic behavior and mortality of the mice used in their 

study. Granted, both Hudson et al and Liu et al found that 

high doses (1,000 mg/kg) of the nanoparticles had some 

toxic effects.

Integrating neurological disease 
and nanomedicine
Methylprednisolone and inflammation
Because methylprednisolone is already used to treat SCI, 

various groups have attempted to improve its local delivery 

with the goal of circumventing its side effects and improv­

ing efficacy. An early study used poly(lactic-co-glycolic 

acid)-based nanoparticles and observed 65% encapsulation 

efficiency.151 The study showed improvements over meth­

ylprednisolone alone in vivo through reduction of the lesion 

site, but the large nanoparticles (200–700 nm) exhibited a 

burst release and stopped releasing after 4 days in a saline-

based experiment. Another group used smaller (~109 nm) 

carboxymethylchitosan/polyamidoamine dendrimer nano­

particles and were able to observe release for 14 days after 

an initial burst within the first 24 hours.152 The study’s 

in vivo results showed an improved locomotor score with 

the methylprednisolone-loaded nanoparticles that was not 

seen with methylprednisolone alone. 

In models of multiple sclerosis and ocular inflammation, 

researchers constructed liposomal nanoparticles using a 

lipid-conjugated PEG, also conjugated with glutathione, and 

phosphatidyl choline to encapsulate a methylprednisolone 

prodrug.153,154 The approach uses both the delivery capability 

Table 3 In vivo studies of silica nanoparticle toxicity

Type Size (nm) Dose Toxicity

He et al97 Mesoporous silica TEM: 80, 120, 200, and 360  
DLS: little larger than TEM

20 mg/kg IV No toxicity; no pathological changes

He et al97 Mesoporous silica  
with PEG

TEM: 80, 120, 200, and 360  
DLS: little larger than TEM

20 mg/kg IV No toxicity; no pathological changes

Hudson et al149 Mesoporous silica SEM: 100–150 
DLS: 470

30 mg IP
(1,200 mg/kg)

Died within 24 hours

Hudson et al149 Mesoporous silica SEM: 100–150 
DLS: 470

6 mg IV Died within 15 minutes

Liu et al150 Mesoporous silica DLS and TEM: 110 40, 160, 500, 1,000, 
and 1,280 mg/kg IV

No death until 1,000 mg/kg; some 
pathological changes

Note: Various studies have explored the toxicity of silica nanoparticles with varying results.
Abbreviations: DLS, dynamic light scattering; IP, intraperitoneal injection; IV, intravenous injection; PEG, poly(ethylene) glycol; SEM, scanning electron microscopy; 
TEM, transmission electron microscopy.
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of the  nanoparticles and their ability to reduce inflammation. 

Glutathione serves as a target and antioxidant, and the authors 

found improved crossing across the blood-brain barrier when 

gluathione was conjugated to the liposomes compared with 

lipoposomes without gluathione when administered intrave­

nously.153 In both studies, the group found an improvement 

in the in vivo inflammation models.

Antioxidants
Many antioxidants show promising results in vitro, but their 

translation in vivo is limited by short half-lives, limited efficacy, 

and metabolism. One of the major drives of nanomedicine is 

improving the delivery of compounds that already demonstrate 

efficacy but have limited capabilities. Ideally, nanomedicine 

could turn the “scrapping” of a promising therapeutic into 

“repackaging” a promising therapeutic, and this is particularly 

true for natural products and their synthetic derivatives. 

Oxidative stress is a common pathology in various 

conditions. Therefore, the amount of natural and derived 

antioxidants being studied for various uses is quite exten­

sive, including compounds from grapefruit, strawberries, 

and green tea. 35,155–157 Dube et al packaged epigallocatechin 

gallate, a natural product in green tea, into chitosan nano­

particles to improve its bioavailability, which is known to be 

quite low.158 Another group attempted to improve bioavail­

ability via lipid-based nanoparticles for use in Alzheimer’s 

disease, and found a two-fold increase in bioavailability.159 

Others have encapsulated epigallocatechin gallate and other 

polyphenols to study how the loaded nanoparticles affect 

their antitumor effects.160–164 

The potential of both synthetic and natural antioxidants 

has been studied, but they are hindered by poor stability, 

availability, and/or delivery. The field of nanomedicine has 

great potential to improve these products beyond their current 

stage. Further, many of them are GRAS (“generally regarded 

as safe”) products, which removes the hurdle of needing a 

compound to be approved by regulatory agencies.

Targeting acrolein
Although antioxidants may help reduce oxidative stress, 

some researchers have focused particularly on massively 

destructive aldehydes, such as acrolein. Cho et al synthesized 

silica nanoparticles to deliver hydralazine to healthy cells that 

had been exposed to acrolein.76 They used a template-based 

synthesis of their silica nanoparticles, grafted an additional 

silica layer, and attached a PEG layer. In the end, the particles 

were around 126 nm. They were able to deliver hydralazine 

to PC-12 cells (rat neurons) over a period of 5 days in vitro 

but not in a linear fashion. The bulk of the drug was released 

in the first few hours. Based on numerous cell assays that 

measure cell viability and therapeutic activity, they concluded 

that their nanoparticles were able to rescue the neurons 

without inducing further toxicity. In a separate study, they 

used similar nanoparticles ex vivo after crushing the spinal 

cord.165 The particles did not contain hydralazine for scav­

enging of acrolein and appeared to recover their ability to 

conduct action potentials nearly to the precrush level. They 

speculate that the recovery originated from the PEG coating 

on the outside of the nanoparticles.

Later, Cho et al attempted to use chitosan-based nano­

particles to study acrolein scavenging. Hydralazine was 

encapsulated by the assembled nanoparticles, which had a 

diameter of around 350 nm. They found that the chitosan 

nanoparticles had lower encapsulation efficiency, but they 

were still able to decrease the death of healthy cells exposed 

to acrolein.89 Tysseling-Mattiace et al used self-assembling 

peptides to try to promote axonal regeneration after SCI. 

Their mice improved in motor capabilities and they found 

decreased apoptosis in and around the injury site.166

Conclusion
Upon devising an appropriate strategy for treating SCI with 

nanomedicine, the first method of delivery will likely require 

direct administration near a patient’s site of injury, which is 

the current standard for methylprednisolone. Using nanoma­

terials that cross the blood–brain barrier without compromis­

ing its integrity would be an ideal strategy. Such an approach 

may then prove useful for other neural injuries and disease 

without a major overhaul of the nanomedical system. Further, 

increasing the bioavailability of a therapeutic in general has 

direct benefits for many products with the same limitation. 

Knowing the pathology of SCI leads to integrating stress 

sensors or switches into nanoparticles to ensure they deliver 

their payload to the appropriate cells. Unlike many biological 

traumas, cells damaged in SCI cannot easily keep nanopar­

ticles out of a cell, but they do not necessarily contain clear 

biological markers for targeting, as in other conditions. 

Using nanoparticles to address some of the second­

ary injury problems demonstrates the potential of using a 

nanomedical approach, but both the delivery systems and 

therapeutics require improvement. In terms of secondary SCI, 

many of the problems have been identified, but the optimal 

treatment has yet to be determined, and methylprednisolone, 

even with its problems and side effects, is the only treatment 

in clinical use specifically for SCI. Therefore, attempting to 

mitigate its side effects using nanomedicine has a distinct 
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advantage in terms of pushing both the treatment of SCI and 

nanomedicine forward. On the other hand, the need for better 

treatments is self-evident, but those treatments are waylaid by 

a lack of clinical results. The research route of administering 

an unapproved treatment via nanomedicine is decidedly dif­

ficult but likely promising in clinical translation.

Finally, scientists have much work in convincing govern­

ment agencies, the pharmaceutical industry, and the public 

regarding the toxicity of nanotechnology in a general sense. 

Beyond that, regulatory agencies and industry must then be 

convinced that nanomedical systems are beneficial to expand 

the current research efforts and drive improvements in the 

technology through research.
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