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Abstract: Protein adsorption onto nanoparticles (NPs) in biological fluids has emerged as an 

important factor when testing biological responses to NPs, as this may influence both uptake and 

subsequent toxicity. The aim of the present study was to quantify the adsorption of proteins onto 

TiO
2
 NPs and to test the influence on cellular uptake. The surface composition of the particles 

was characterized by thermal analysis and by X-ray photoelectron spectroscopy. The adsorption 

of three blood proteins, ie, human serum albumin (HSA), γ-globulins (Glbs), and fibrinogen 

(Fib), onto three types of anatase NPs of different sizes was quantified for each protein. The 

concentration of the adsorbed protein was measured by ultraviolet-visible spectrophotometry 

using the Bradford method. The degree of cellular uptake was quantified by inductivity coupled 

plasma mass spectroscopy, and visualized by an ultra-high resolution imaging system. The 

proteins were adsorbed onto all of the anatase NPs. The quantity adsorbed increased with time 

and was higher for the smaller particles. Fib and Glbs showed the highest affinity to TiO
2
 NPs, 

while the lowest was seen for HSA. The adsorption of proteins affected the surface charge and 

the hydrodynamic diameter of the NPs in cell culture medium. The degree of particle uptake 

was highest in protein-free medium and in the presence HSA, followed by culture medium 

supplemented with Glbs, and lowest in the presence of Fib. The results indicate that the uptake 

of anatase NPs by fibroblasts is influenced by the identity of the adsorbed protein. 
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Introduction
Nano-sized particles are more biologically active than their micron-sized counterparts.1 

The toxicity of nanoparticles (NPs) is influenced by physicochemical characteristics 

such as: the primary particle size, agglomeration state, specific surface area, zeta 

potential, and surface chemistry.2 Protein adsorption onto NPs in biological fluids 

has emerged as an important factor to be taken into consideration with regard to the 

assessment of biological responses to NPs.3–5

Human plasma contains different types and variants of proteins, of which human 

serum albumin (HSA), fibrinogen (Fib), and γ-globulins (Glbs) are the most abundant.6,7 

Cells used in cytotoxicity studies are usually cultured in media supplemented with 

fetal bovine serum (FBS), which is a mixture of various proteins, similar to what is 

found in human plasma, except for Fib, which is removed from FBS. NPs introduced 

to the biological environment will inevitably interact with proteins, leading to their 

adsorption onto the particles. A “protein corona” may be formed, which is a complex 

mixture of adsorbed proteins in equilibrium on the surface of NPs.4,8–10 The protein 

corona may alter the size, agglomeration state, and interfacial properties of the NPs,10 

which could potentially affect the cellular uptake of NPs.3,11 
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Protein adsorption to a given NP and its influence on the 

cellular uptake and biological responses in general, are not 

well elucidated. Until recently, only a few studies have inves-

tigated the effect of proteins on the uptake of NPs. Some of 

these studies revealed that the uptake was enhanced in the 

presence of serum proteins12,13 on polystyrene NPs, whereas 

others showed higher uptake in the absence of serum proteins 

on polystyrene,14 silica,15 polymer,16 and carbon nanotubes.17

TiO
2
 NPs are being incorporated in a variety of pharma-

ceutical products, food, and cosmetics. Once inside the body, 

unintentionally or intentionally, such NPs will inevitably 

interact with blood proteins. The adsorption of proteins 

onto TiO
2
 NPs has been a subject of several studies.18–24 In 

these studies, the connection between protein adsorption and 

cellular uptake was not investigated. Previously, we have 

evaluated the effect of physicochemical characteristics of a 

panel of TiO
2
 NPs on uptake by fibroblasts.25 The aim of the 

present study was to quantify the individual adsorption of 

HSA, Glbs, and Fib onto anatase TiO
2 
NPs and their effect 

on uptake by L929 fibroblasts.

Materials and methods
TiO2 nanopowders 
Three types of commercially available anatase TiO

2
 NPs with 

different sizes were used in this study, termed A.40, A.10, and 

A.5. Their physicochemical characteristics and transmission 

electron micrographs were reported by us in a previous paper.25 

The NP samples were 100% anatase, except for A.5, which 

comprised 14% rutile phase. The smallest particles (A.5) had 

the highest specific surface area (Braunauer-Emmett-Teller, 

131 m2/g), then A.10 (105 m2/g), whereas the largest par-

ticles (A.40) had the lowest (49 m2/g). Transmission electron 

microscopy of the NP samples showed that A.5 had average 

diameter of 11 nm, A.10 was 24 nm, and A.40 was 43 nm, 

and they were spherical. A thermogravimetric analysis was 

carried out in order to reveal the presence of surface contami-

nants and was performed in a Stanton Redcroft thermobalance 

(Model STA-780) (Figure 1A). The temperature programmed 

desorption–mass spectrometry analyses were carried out on 

an experimental setup coupled to a Pfeiffer quadrupole mass 

spectrometer (Figure 1B).26 To gain further insight on the par-

ticles’ surface chemistry, the NPs’ surface was characterized 

by X-ray photoelectron spectroscopy (XPS) (Kratos Axix Ultra 

DLD, Kratos Analytical Ltd., Manchester, UK with CasaXPS 

software, Casa Software Ltd., UK) (Figure 2). 

suspension of NPs
The suspensions were made following a protocol that was 

shown to provide a good NP dispersion.25,27 Briefly, 1 g/L 

TiO
2
 NPs in deionized H

2
O stock solution was sonicated 

(VCX130, Vibra-Cell, 130 watts; Sonics & Materials Inc, 

Newtown, CT, USA), pulse at 70% duty for 2 minutes. 

Right after sonication, the volumes needed to prepare the 

end-point concentrations were transferred to 10 mL test tubes 

containing Roswell Park Memorial Institute (RPMI) 1640 

cell culture medium (BE12-918F; Lonza Group Ltd, Basel, 

Switzerland), without l-glutamine and phenol red, either 

alone or with individual proteins.

Quantification of the adsorbed proteins
One g/L TiO

2
 NPs prepared as described above were added 

to the test tubes containing 1 g/L proteins in the cell culture 

medium. The proteins used were HSA (A1653-5G; Sigma-

Aldrich Co, St Louis, MO, USA), Fib from human plasma 

(F3879-1G; Sigma-Aldrich Co) and Glbs from human blood 

(G4386-1G; Sigma-Aldrich Co). The test tubes were rotated 

for 2 hours or 24 hours at 37°C. The particles were then 

separated by 2× centrifugation (5810R, Eppendorf AG cen-

trifuge, rotor: A-4-62; Hamburg, Germany) at 3,220× g, for 

15 minutes. The concentration of proteins in the supernatant 

was determined by adding 1.5 mL of the Bradford reagent 

(B6916-500ML; Sigma-Aldrich Co) to 50 µL taken from the 

supernatant.28 The mixture was vortexed and allowed to react 

for 5 minutes, and then the optical absorption was measured in 

a ultraviolet-visible spectrophotometer (BioMate 3S; Thermo 

Fisher Scientific, Waltham, MA, USA) at the wavelength 

of 595 nm. The protein concentration was obtained from a 

reference standard curve, made for each protein. The amount 

of protein adsorbed on the particle surface was obtained by 

subtracting the protein concentration in the supernatant from 

the initial protein concentration.29 

Diameter and zeta potentials of particles 
in suspension
Dynamic light scattering (DLS) was used in order to reveal 

the hydrodynamic diameter of the agglomerates (Table 1) 

using a Zetasizer NS (Malvern Instruments, Malvern, UK). 

Dilute samples based on the suspensions described above 

(maximum 100 mg/L) were used in order to avoid multiple 

scattering. The electrophoretic mobilities (U
ef 

=150 V) 

of the particles were converted to apparent zeta-poten-

tials (ζ-potentials) using the Helmholtz–Smoluchowski 

relationship (Table 2).30 

cell culture 
The National Collection of Type Cultures (NCTC) clone 929 

(L929 mouse fibroblasts) from the American Type Culture 

Collection, Manassas, VA, USA were employed because 
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Table 1 agglomerate sizes expressed as hydrodynamic diameter of TiO2 NPs (100 mg/l) in rPMI 1640 cell culture medium with 
(100 mg/l) and without proteins, after 24 h and 3 h (in brackets) rotation at 37°c

Sample Hydrodynamic diameter ± SD (nm)

Without proteins HSA Glbs Fib

a.5 2,779±130
(2,874±62)

573±6
(547±6)

*
(*)

*
(660±24)

a.10 3,242±244
(3,211±39)

572±14
(580±10)

*
(*)

*
(573±17)

a.40 1,439±41
(1,800±70)

1,275±30
(1,500±64)

*
(*)

*
(962±121)

Note: *It was impossible to measure the hydrodynamic diameter because the samples were too polydispersed (polydispersity index 0.6).
Abbreviations: NPs, nanoparticles; rPMI, roswell Park Memorial Institute; h, hours; sD, standard deviation; hsa, human serum albumin; glbs, γ-globulins; Fib, fibrinogen.

Table 2 Zeta potentials of TiO2 NPs in rPMI medium with and without proteins, after 24 h rotation at 37°c

Sample Zeta potential ± SD (mV)

Without proteins HSA Glbs Fib

a.5 -18.2±1.6 -12.0±1.0 -5.4±0.5 -9.0±0.5
a.10 -18.0±1.3 -13.4±0.6 -5.9±0.4 -7.6±0.5
a.40 -20.6±1.7 -17.6±1.1 -16.4±1.1 -18.4±1.4

Abbreviations: NPs, nanoparticles; rPMI, roswell Park Memorial Institute; h, hours; sD, standard deviation; hsa, human serum albumin; glbs, γ-globulins; Fib, fibrinogen.

fibroblasts constitute the major cellular component of fibrous 

connective tissue surrounding the implants. L929 cells were 

maintained in culture at 20,000 cells/cm2, in 25 cm2 poly-

styrene flasks in RPMI 1640 with 10% FBS, 2% penicillin/

streptomycin/fungisone, and 1% l-glutamine (all from 

MedProbe AS, Lysaker, Norway), at 37°C, 5% CO
2
. The 

cells were trypsinized every 3–4 days and then transferred to 

new flasks. Only cells cultures with a viability
 
90% (tested 

by exclusion of 0.2% trypan blue) and below 30 passages 

were used in the experiments.

Quantification of TiO2 NP cellular uptake 
The cells were seeded in 12-well plates (Thermo Fisher 

Scientific; Nunc™ Nunclon™ Delta, category number 

150628) in the same medium as explained above, and then 

incubated for 48 hours until they reached 70%–80% conflu-

ence. The supernatant was removed, washed twice with 

phosphate-buffered saline (PBS), and exposed for 24 hours to 

5 mg/L nano-TiO
2
 NPs suspended in RPMI 1640 cell culture 

medium either without proteins or with individual proteins; 

ie, HSA, Fib, or Glbs, at a concentration of 100 mg/L. The 

prepared exposure solutions were rotated 1 hour before expo-

sure. After exposure, the cells were washed again three times 

with PBS to remove unattached particles. The cells were 

then trypsinized, transferred into new tubes, and sonicated 

in an ultrasound bath for 30 minutes, at 45°C. The solutions 

were then digested in a microwave digestion unit (MLS 1200 

Mega; Gemini BV, Apeldoorn, the Netherlands) by adding 

2 mL nitric acid (60%) (Ultrapure; EMD Millipore, Billerica, 

MA, USA) and 50 µL hydrofluoric acid (40%) (Suprapur®; 

EMD Millipore). 

The total concentration of Ti, representing the TiO
2 

uptake, was determined by inductively coupled plasma–

mass spectrometry (ICP–MS) (Element 2; Thermo Fisher 

Scientific). An internal standard of indium (1 µg/L) was 

added to all the samples to monitor and correct for any 

instrumental fluctuations. Calibration was performed by 

standard addition using calibrating solutions (0.2, 0.5, 2, and 

10 µg/L) (EMD Millipore).

Visualization of uptake
Prior to exposure, the fibroblasts were seeded in two-

well glass chambers (Thermo Fisher Scientific; Nunc™ 

Lab-Tek™) and kept for 48 hours at 37°C till they became 

70%–80% confluent. They were then exposed for 24 hours to 

0.5 mg/L of TiO
2
 NPs by removing

 
the supernatant, washing 

with PBS, and replacing it with 1 mL of TiO
2 
NP solutions 

prepared as described above. At the end of the exposure, cells 

were washed three times with PBS in order to remove unat-

tached particles, followed by fixation in 4% formaldehyde 

for 15 minutes at room temperature. The fibroblasts were 

then washed twice with PBS and once with sterile water. 

After removing the chambers from the slides, a mounting 

medium (Eukitt™; Electron Microscopy Sciences, Hatfield, 

PA, USA) was used to mount a cover-slip. Each experiment 

was repeated at least three times and run in duplicate. 

Imaging and image analysis was performed by using an 

ultra-high resolution dark field condenser (URI [ultra-high 
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resolution imaging] CytoViva™ 130; Warner Instruments, 

Hamden, CT, USA), on an optical microscope (Olympus 

BX41 microscope; Olympus Corporation, Tokyo, Japan), 

with a light source (X-Cite™ 120; EXFO, VANIER, QC, 

Canada).31 The fixed cells were examined with a 100× oil 

immersion objective.

statistical analysis 
Data for adsorption and uptake were not normally distributed 

and thus, non-parametric tests were employed. Results in 

Figures 3 and 4 were expressed as medians and quartiles. 

The Kruskal–Wallis H test and Dunn’s test were used for 

multiple comparisons. P0.05 was considered statistically 

significant. Measurements of agglomerates’ sizes (Table 1) 

and zeta potentials (Table 2) were presented as means ± 

standard deviations. Data were analyzed by a statistical analy-

sis software package (SPSS for Windows, version 18).

Results and discussion
surface characterization of TiO2 NPs
The thermogravimetric analysis of the nano-TiO

2
 showed a 

total weight loss in the whole temperature range of 6.3%, 

5.0%, and 3.8% for A.5, A.10, and A.40, respectively 

(Figure 1A). Two main regions of weight loss could be 

distinguished, below 150°C and between 150°C and 500°C. 

This could be due to the removal of H
2
O and hydroxyl, 

respectively.32 Thermal desorption studies (Figure 1B) 

confirmed the existence of H
2
O onto the particles and showed 

the dehydroxylation at higher temperatures.32 In addition, 

carbon traces were observed for A.40 following desorption 

of CO
2
 from its surface, at ~400°C. 

The XPS survey scan of the NPs further revealed that 

a high percent of the carbon element was in fact present in 

all three samples and not just A.40 (Figure 2A, B). Sodium 

was also present in a relatively high percentage (~4.5%) 

on all particles. Moreover, a significant level of chromium 

(2.63%) was found at the surface of A.10 as well as trace 

elements such as sulfur (0.21% for A.10) and iron (0.19% 

for A.40). These trace elements are likely impurities from 

the synthesis process. Storage and transport may also be a 

source of surface contamination. The concentration ratios 

of oxygen and titanium were 2.46, 2.17, and 2.23 for A.40, 

A.10, and A.5, respectively. This means that there are 

other O atoms than Ti–O in TiO
2
. A high resolution XPS 

spectrum of O(1s) binding energy region revealed two 

peaks, one ~529 eV attributed to Ti–O and one ~231 eV 

attributed to Ti–OH (Figure 2C), which are hydroxyl groups 

chemisorbed on the surface of the sample.33 This is in 

accordance with thermogravimetric analysis. The hydroxyl 

groups readily adsorb water under ambient conditions, and 

give an indication on the wettability.

Protein adsorption onto TiO2 NPs
The proteins used in the present study (HSA, Fib, and Glbs) 

were all able to adsorb onto TiO
2
 NPs when incubated 

individually with the particles for a 2–24-hour period at 

37°C. The adsorption of Glbs and Fib was time-dependent 

(Figure 3). After 2 hours, the quantity adsorbed was low and 

relatively similar for all the proteins used. However, after 

24 hours, the adsorbed quantity of Glbs and Fib increased 

significantly and was much higher than that of HSA. Protein 

adsorption is a dynamic process in which longer exposure 

time leads to a higher probability of reaching the surface of 

the particles and thus, to a higher adsorption over time. The 

highest adsorption was observed for Glbs, followed by Fib, 

whereas the lowest was found for HSA (Figure 3). 
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Figure 1 Thermal analysis of TiO2 NP samples a.5, a.10, and a.40.
Notes: (A) Tga; and (B) TPD–Ms. 
Abbreviations: NP, nanoparticle; Tga, thermogravimetric analysis; TPD–Ms, temperature programmed desorption–mass spectrometry; T, temperature.
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The highest quantity adsorbed was observed for the 

smallest NPs (A.5) (Figure 3), partly due to the larger specific 

surface area of the small particles (Figure 3), which provides 

increased available adsorption sites.4,17,34,35 However, the 

increase in protein adsorption with the increase in surface 

area was not substantial and not statistically significant in 

the present study. This may be due to agglomeration, which 

decreases the exposed effective surface for adsorption. DLS 

experiments revealed that in the absence of proteins the par-

ticles were highly agglomerated and reached micron-sized 

agglomerates (Table 1). This may be caused by the increase in 

the ionic strength resulting in a decrease of the electrical double 

layer.27,36 In contrast, in the presence of HSA, the agglomerates’ 

sizes were much smaller and their hydrodynamic diameters 

did not increase from 3 to 24 hours (Table 1). The low zeta 

potentials (absolute values) following protein adsorption 

(Table 2) support the hypothesis that the stabilizing effect of 

proteins is not related to electrostatic repulsion, but rather to 

steric repulsion.37–39 Some agglomeration over time is however 

inevitable, even in the presence of proteins. In the presence of 

Glbs and Fib, the polydispersity index was high, which means 

a broad size distribution. In that case, the accuracy of the DLS 

method decreases substantially and therefore, results with a 

polydispersity index 0.6 were not reported. 

All the particles used in this study had a negative net 

charge in all the media, and their surface potentials were rela-

tively similar in protein-free medium (Table 2). If we assume 

electrostatic interactions as the main mechanism governing 

the adsorption of proteins onto NPs,40 proteins will then 

adsorb favorably onto positively charged NPs.41 However, 

proteins can also adsorb to negatively charged particles, like 

in the present study. The suggested mechanism in this case 

is bridging by divalent cations (eg, Ca2+).18,19 

A distinct shift in the zeta potential of the particles was 

observed following adsorption of proteins (Table 2), eg, for 

A.5, from -18.2 (protein-free medium) to -12 (HSA), -9.0 

(Fib), and -5.4 (Glbs). The shift in the zeta potential appears 

to correlate with the amount of the protein adsorbed for all 

the particles used, ie, the highest adsorption was observed 

for Glbs, followed by Fib, and the lowest for HSA. The zeta 

potential is a measure of net surface charge density. When 

the proteins adsorb onto NPs, the measured zeta potential 

may reflect the net surface charge density of the adsorbed 

protein. There is a prevailing opinion that NPs tend to adopt 

the physicochemical properties of the adsorbed protein.3,4,10,42 

Thus, protein adsorption affects the surface charge of the 

particles, which may influence their uptake.41,43,44 The zeta 

potential for A.40 was less affected by protein adsorption 

than for the other anatase NPs. This may be due to the low 

adsorption of proteins. 

cellular uptake of TiO2 NPs
Due to their small size, NPs can enter the cells and eventually 

induce harmful effects. The main reported effects of TiO
2
 

NPs are inflammation, cell death, and DNA damage.45–49 The 

three anatase samples were all taken up, to different degrees, 

by the fibroblasts after 24 hours’ incubation in all media 

used (Figure 4). The uptake of TiO
2
 NPs was higher for the 

smallest (A.5 and A.10) particles, both in the presence and 

absence of proteins. Several other studies clearly indicate 

that size is an important parameter for uptake.25,50–52 It is 

difficult to say if the difference in the degree of uptake was 

size-related in our study, since the primary particle size range 

was small.25,50–52 However, small primary NPs are taken up 

by other mechanisms than larger particles or agglomerates 

of the same compound.53,54
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Figure 5 URI images of L929 fibroblasts at 1000× magnification (scale bar: 10 µm), 
after 24 h exposure to 0.5 mg/l of TiO2 NPs (sample a.5) in different media.
Notes: (A) control cells not exposed to NPs. (B) Protein-free. (C) hsa. (D) glb. 
(E) Fib. Bright spots are NPs/agglomerates either internalized or attached to the 
cell membrane.
Abbreviations: UrI, ultra-high resolution imaging; h, hours; NPs, nanoparticles; 
hsa, human serum albumin; glbs, γ-globulins; Fib, fibrinogen.

The highest uptake, measured by ICP–MS, was observed 

when the cells were exposed to NPs in protein-free medium 

and in the presence of HSA (Figure 4). In presence of Fib, 

and to some extent Glbs, the uptake was lower.

These findings indicate that the protein adsorption influ-

ences cellular uptake. In an earlier study, the uptake of poly-

styrene NPs by endothelial cells did not depend on the identity 

of protein adsorbed, but rather on the quantity adsorbed.12 In 

the present study, this was particularly apparent in the case of 

HSA vs Glbs, and HSA vs Fib. Increased protein adsorption 

retains the particles longer in suspension, and consequently, 

they are in less contact with the cell in an in vitro system 

where the cells are attached to the bottom of the well. Fast 

sedimentation will increase particle–cell contact, which prob-

ably is the case for particles in protein-free medium. 

The finding that the uptake was low in the presence of 

Fib should be interpreted with caution, as this might be due 

to bridge flocculation (interfacial agglomeration), derived 

from the adsorption of Fib.55,56 This could explain why it was 

not possible to measure the hydrodynamic diameter of TiO
2
 

NPs suspended in medium containing Fib (Table 1), as the 

resulting interfacial agglomerates were probably responsible 

for the high polydispersity index of the Fib–TiO
2
 suspension. 

Thus, the lower uptake of Fib-bound particles may be due to 

the interfacial agglomeration, which is relevant for in vivo 

studies as the interaction of NPs with the blood coagulant 

may reduce the bioavailable surface area of the particles and 

the concentration presented to the cells.55

URI imaging supports the results from ICP–MS and 

showed that the cells were associated with TiO
2
 NPs’ agglom-

erates in all the media (Figure 5B–E), but to a lesser extent 

in media supplemented with Fib (Figure 5E) compared with 

HSA (Figure 5C) and Glbs (Figure 5D). The agglomerates 

were observed by URI as bright spots due to high light scatter-

ing. No such optical traits were observed with cells in media 

without NPs (Figure 5A). It was difficult to judge if the NPs 

were placed inside the cells and/or attached to their cellular 

membrane. Both is the probably the case, as demonstrated 

by scanning electron microscopy and transmission electron 

microscopy imaging in our previous study.25

It seems that both the adsorbed protein and the particles’ 

native surface may mediate the attachment of NPs to cellular 

membranes. As mentioned earlier in the discussion, serum 

proteins adsorb onto the surface of both cationic and anionic 

NPs. A recent paper by Fleischer and Payne revealed that in 

the presence of bovine serum albumin (BSA), the cellular 

binding of BSA−NP complexes containing positively charged 

NPs was increased, while that of BSA−NP complexes formed 

from the same NPs, but negatively charged, was inhibited.57 

The uptake in absence of serum proteins may be due to direct 

recognition of the particles at the cell surface.12,58 In the pres-

ence of proteins, the uptake proceeds probably by interaction 

of the adsorbed proteins, specifically with the protein recep-

tors on the cell surface.12 The protein-rich corona may interact 

with multiple receptors and thus, multiple mechanisms may 

be involved simultaneously.58,59 In contrast, particles having 

one type of protein adsorbed at their surface may be restricted 

to a specific receptor.12 

Conclusion
The highest protein adsorption onto the anatase TiO

2 
NPs was 

observed for Glbs, followed by Fib, and the lowest for HSA. 
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The adsorption of proteins affected the agglomerate size 

and surface charge of the NPs, which alters the electrostatic 

binding affinity with cells.

The presence of Fib, and to some extent Glbs, signifi-

cantly lowered the uptake in fibroblasts. The lower uptake 

might be related to the high protein adsorption, which 

increases steric stabilization of the agglomerates, leading to 

less sedimentation and cell–particle contact.
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