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Purpose: To investigate the heart rate (HR) and its autonomic modulation at baseline and 

during dynamic postexercise (P
EX

) with intensities of 40% and 60% of the maximum HR in 

healthy elderly.

Methods: This cross-sectional study included ten apparently healthy people who had been 

submitted to a protocol on a cycle ergometer for 35 minutes. Autonomic modulation was 

evaluated by spectral analysis of HR variability (HRV).

Results: A relevant increase in HR response was observed at 15 minutes postexercise with 

intensities of 60% and 40% of the maximum HR (10±2 bpm versus 5±1 bpm, respectively; 

P=0.005), and a significant reduction in HRV was also noted with 40% and 60% intensities 

during the rest period, and significant reduction in HRV (RR variance) was also observed in 

40% and 60% intensities when  compared to the baseline, as well as between the post-exercise 

intensities (1032±32 ms versus 905±5 ms) (P,0.001). In the HRV spectral analysis, a significant 

increase in the low frequency component HRV and autonomic balance at 40% of the maximum 

HR (68±2 normalized units [nu] versus 55±1 nu and 2.0±0.1 versus 1.2±0.1; P,0.001) and at 

60% of the maximum HR (77±1 nu versus 55±1 nu and 3.2±0.1 versus 1.2±0.1 [P,0.001]) in 

relation to baseline was observed. A significant reduction of high frequency component at 40% 

and 60% intensities, however, was observed when compared to baseline (31±2 nu and 23±1 nu 

versus 45±1 nu, respectively; P,0.001). Moreover, significant differences were observed for 

the low frequency and high frequency components, as well as for the sympathovagal balance 

between participants who reached 40% and 60% of the maximum HR.

Conclusion: There was an increase in the HR, sympathetic modulation, and sympathovagal bal-

ance, as well as a reduction in vagal modulation in the elderly at both intensities of the P
EX

.
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Introduction
The aging process reduces the parasympathetic activity of the heart and, consequently, 

decreases heart rate (HR) variability (HRV) indices.1–6 Additionally, an increase in 

the prevalence of sympathetic activity over parasympathetic balance is also observed 

in older subjects at rest.3 Other results, however, suggest that the autonomic balance 

appears to be unaffected by aging due to the observed decrease in sympathovagal 

components.2 These comments are relevant since the reduction of HRV with aging 

can be related to higher cardiovascular morbidity and mortality rates.7,8

Parasympathetic activity has been shown to confer protection against arrhythmias in 

the setting of exercise-induced ischemia,9,10 while sympathetic activity has also been shown 

to provoke ventricular arrhythmias.11 Many studies demonstrate that exercise has overall 

salutary effects. On the other hand, there is also evidence that the risk of sudden death 

is increased dramatically during and immediately after exercise.12,13 Although there are 

several possible mechanisms for this marked increase in the risk of sudden cardiac death, 
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including the induction of myocardial ischemia, death may be 

related to acute changes in the autonomic tone that accompa-

nies exercise. The prognostic significance of the abnormalities 

of autonomic tone has been established in multiple studies that 

have evaluated the autonomic control of HR, predominantly at 

rest or during activities. These studies have linked diminished 

parasympathetic control with increased mortality.14–18 

Exercise is characterized by activation of the sympathetic 

nervous system, as well as by an increase in serum catecholamine 

and parasympathetic withdrawal.19 Conversely, recovery has the 

opposite autonomic changes. The HR response after exercise has 

a prognostic and predictive role for cardiovascular events.20,21 Pre-

vious studies evaluating autonomic effects on recovery, however, 

have provided conflicting evidence,22,23 and it is unclear whether 

the intensity of exercise influences these effects. On the basis 

of these considerations, the purpose of the present study was to 

determine whether HR responses and cardiac autonomic regula-

tion in elderly subjects following mild and moderate dynamic 

exercise (subacute effects) is associated with an increase in 

sympathetic hyperactivity and reduced vagal modulation.

Methods
subjects
The study protocol was approved by the Human Ethical 

Subject Protection Committees of the Federal University 

of Paraiba. Written informed consent was obtained from all 

subjects. Measurements were obtained from a number of 

elderly subjects. The ten elderly subjects chosen were closely 

matched for age and body mass index, as well as for demo-

graphic, hemodynamic, clinical characteristics (Table 1). 

Measurements and experimental 
protocol
All subjects were studied during the daytime (afternoon, 

2 pm) in the Clinical Investigation Laboratory. Throughout 

the protocol, subjects were instrumented with a three-lead 

electrocardiograph (ECG) to determine HR, as well as with 

a respiratory belt (Pneumotrace IITM; UFI, Morro Bay, CA, 

USA) to measure the respiratory rate. The ECG and respiratory 

signals were recorded on a Gould 2800S polygraph connected 

to a computer. After instrumentation and acclimation for at 

least 15 minutes, measurements were taken while the subjects 

were awake during 10 minutes of undisturbed supine rest. 

Subsequently, after the baseline condition had been estab-

lished, the elderly subjects began a bicycle ergometer test set 

at a mild setting (model 740E ergometer; Siemens Healthcare 

USA, Inc., Malvern, PA, USA), corresponding to 40% of the 

working HR,24 for 35 minutes. After completing the bicycle 

ergometer test, the subjects lay down again and rested for 15 

minutes; then, the recording of ECG and respiratory signals 

began for a total of 10 minutes. After 5 days, the elderly 

subjects returned to the Clinical Investigation Laboratory and 

repeated the bicycle treadmill at 60% of the working HR.

Data analysis
Analog-to-digital conversion was performed in 1,000 samples/

second/channel and stored on a computer for offline signal 

processing and subsequent analysis (WinDaq DI-200 

Acquisition; DATAQ Instruments, Inc., Akron, USA) with 

a personal computer. R-R intervals were calculated from the 

time difference of successive R-wave peaks. The software 

for data acquisition and spectral analysis has been described 

elsewhere25 and consist of the use of WinDaq for the identi-

fication of R-R intervals in the ECG wave and in the wave 

of the respiratory rate. Visual inspection was carried out to 

identify some incorrect markings. Following this, the time 

series of the cardiac interval (tachogram) and respiration 

(respirogram) were generated. The power spectral density 

was integrated into two frequency bands of interest through 

the normalized data: high frequency (HF) between 0.15 Hz 

and 0.40 Hz; and low frequency (LF) between 0.03 Hz and 

0.15 Hz. The sympathovagal balance, or autonomic bal-

ance, was also calculated, which is determined by the ratio 

between the components and assess the proportion (ratio) 

between the spectral power of low frequency component 

and high frequency component. All variability series were 

analyzed by means of autoregressive parametric spectral 

algorithms that automatically provided the number, center 

frequency, and power of each oscillatory component.2,25  

Table 1 Population study characteristics

Elderly subjects (n=10)

Age, years 66±2
Males/females 3/7
height, cm 158±1
Weight, kg 58.4±4.4
Body mass index, kg/m2 23.4±0.9
heart rate, bpm 69.4±2.9
systolic blood pressure, mmhg 120.4±2.5
Diastolic blood pressure, mmhg 71.8±1.9
Cholesterol, mg/dl 220.1±7.0
lDl cholesterol mg/dl 146.7±9.3
hDl cholesterol, mg/dl 52.6±3.7
Triglycerides, mg/dl 150.6±24.0
glucose, mg/dl 89.2±3.7
T3, ng/dl 112.7±5.6
T4, μg/dl 5.9±1.6
hemoglobin, g/dl 13.3±0.4

Note: Values are presented as the mean ± standard error. 
Abbreviations: n, number; lDl, low-density lipoprotein; hDl, high-density 
lipoprotein; T3, triiodothyronine; T4, thyroxine.
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The LF and HF spectral components of the R-R interval were 

expressed in normalized units (nu).2,26

statistical analysis
The results are expressed as the mean and standard error. 

HR responses were analyzed using Student’s paired t-test. 

To determine the effect of exercise intensity on cardiac 

variability, a one-way analysis of variance was performed, 

followed by Scheffé’s test for multiple comparisons, in order 

to allow pairwise testing for significant differences between 

the stages. P,0.05 was considered significant. 

Results
HR responses were significantly lower after mild-intensity 

exercise (dynamic postexercise [P
EX

]40%: 5±1 bpm) when 

compared with moderate-intensity exercise (P
EX

60%: 

10±2 bpm) in elderly subjects (Figure 1). The R-R interval was 

significantly decreased in elderly subjects after mild and mod-

erate intensive exercises (1,032±23 ms and 905±8 ms, respec-

tively), as opposed to the baseline conditions (1,240±32 ms). 

Similar to the ratio between the different intensities, the R-R 

at P
EX

60% was significantly lower than that at P
EX

40% (905±8 

ms versus 1,032±23 ms) (Figure 2A). R-R interval variance 

was significantly reduced at both intensities of the exercise 

(P
EX

40%: 1,535±73 ms; P
EX

60%: 1,213±35 ms) when com-

pared to baseline conditions (3,154±110 ms) (Figure 2B). 

Elderly subjects had a considerably increased normalized LF 

variability in the R-R interval after mild- (P
EX

40%: 68±2 nu) 

and moderate- (P
EX

60%: 77±1 nu) intensity exercises when 

compared with baseline conditions (55±1 nu; P,0.001, all 

comparisons). When both components of LF (low frequency) 

(nu) with 40% and 60% of the maximum HR were compared, 

a significant statistical difference (68±1 nu and 77±1 nu; 

P,0.001) was observed (Figure 2C). The normalized HF 

variability of the R-R interval was significantly decreased after 

mild (P
EX

40%: 23±1 nu) and moderate (P
EX

60%: 31±2 nu) 

intensities of dynamic exercises when compared to baseline 

conditions (45±1 nu). In terms of the different intensities of 

the dynamic exercises, we observed that high frequency in 

P
EX

60% was significantly lower than P
EX

40% (31±2 high nu 

versus 23±1 nu) (Figure 2D). Consequently, the LF-to-HF 

ratio of R-R variability was increased in mild (P
EX

40%: 

2.0±0.1) and moderate (P
EX

60%: 3.2±0.1) dynamic exercise 

intensities when compared to baseline conditions (1.2±0.1) 

in elderly subjects. In addition, when mild and moderate 

exercise intensities were compared, we observed that the 

sympathovagal balance was significantly lower in P
EX

40% 

compared to P
EX

60% (2.0±0.1 versus 3.2±0.1) (Figure 2E) 

(P,0.001, for all comparisons).

Discussion
Our results indicate that elderly subjects at baseline condi-

tions showed a predominance of sympathetic activity, and 

after mild and moderate dynamic exercise, this activity 

increased while vagal modulation decreased. 

The role of aging on markers of autonomic modulation at 

rest or during exercise is well established.6,27,28 In the present 

study, moderate exercise imposed additional sympathetic 

overactivity (an increased LF nu and LF/HF ratio) and 

greater parasympathetic withdrawal (HF nu, R-R variance) 

when compared to baseline and postexercise at mild intensity 

(P
EX

40%). These effects might be due to a recurrent combi-

nation of adrenergic modulation with the increased residual 

effect of exercise (muscle and systemic metabolic effects) 

that promoted increased vascular reactivity.23,29

Many studies have investigated chronic adaptations to 

exercise training and the acute effects of exercise, but little is 

known about the subacute effects on HR responses of a single 

round of exercise, and their cardiac autonomic regulation in 

healthy elderly people. In the present study, different exer-

cise intensities showed responses of significantly different 

magnitudes when compared to the baseline condition. Acute 

exercise reduces triglyceride levels, increases high-density 

lipoprotein cholesterol levels,30 insulin sensitivity, and the 

ability to resynthetize the glycogen of skeletal muscle.31 It 

also produces an acute blood pressure reduction,32 increases 

vascular conductance and vasodilatory reactivity,29 alters the 

HR,33,34 decreases baroreflex sensitivity and HRV, and aug-

ments the LF component of systolic blood pressure.34

Several studies have shown that healthy subjects and 

athletes, in periods after high-intensity exercise, exhibit 

a suppression of or slow parasympathetic reactivation, 
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Figure 1 hr responses at mild (PeX40%) and moderate (PeX60%) dynamic exercise 
in elderly subjects (n=10). 
Notes: *P,0.001 PeX40% versus PeX60%. Values are presented as the mean ±  
standard error.
Abbreviations: hr, heart rate; PeX, postexercise; n, number.
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sometimes followed by sympathetic suppression.35–38 Our 

results, however, show that in the elderly, sympathetic hyper-

activation occurs in the moments after exercise. In fact, the 

very process of aging promotes modifications in HR and its 

HRV,4–6,39,40 and it also leads to impairments in baroreflex 

sensibility,41–44 a reduction in synthesis nitric oxide,45–47 and 

increases in sympathetic activity3 with concomitant reduced 

vagal activity.4–6,39 A combination of these disturbances add-

ing the hard exercise and considering the age can be capable 

of causing autonomic cardiac disturbance in the elderly and 

exposes them to cardiac danger.

Although the results found in this study showed different 

magnitudes of HR recovery that are dependent upon exercise 

intensity and differences in indicators of cardiac autonomic 

modulation, it is worth highlighting that the current literature 

does not clearly show a correlation between HR recovery 

and HRV during rest and postexercise.6,48,49 In the present 

study, we evaluated the cardiac autonomic modulation by 

spectral analysis of HRV. However, other methods of inves-

tigation for efferent autonomic control are important, such 

as spontaneous baroreflex sensitivity, HR turbulence, and a 

symbolic analysis of HR. Nevertheless, these analyses were 
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Figure 2 r-r intervals, r-r variance, normalized lF spectral component, normalized hF spectral component, and lF-to-hF ratio of the r-r interval in elderly subjects 
(n=10).
Notes: (A) r-r intervals; (B) r-r variance; (C) normalized lF spectral component (lF nu); (D) normalized hF spectral component (hF nu); and (E) lF-to-hF ratio of the 
R-R interval (LF/HF). The R-R intervals, R-R variance, and HF nu were significantly reduced in PeX40% and PeX60% when compared to the baseline condition. In addition, the 
parameters in the PeX60% condition were significantly lower than those in the PeX40% condition. *P,0.001 versus the baseline condition. †P,0.001 versus PeX40%. Values 
are presented as the mean ± standard error.
Abbreviations: PeX, postexercise; lF, low frequency; hF, high frequency; n, number; nu, normalized units.
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precluded because of the absence of stress maneuvers that 

promote turbulence in HR; in addition, we did not simultane-

ously collect the blood pressure signal, preventing analysis 

of spontaneous baroreflex sensitivity. Additionally, we opted 

not to carry out analyses using nonlinear methods of cardiac 

autonomic control.

Considering the risk of cardiovascular events during and 

after exercise,12,13 our results call attention to the moments 

after exercise, especially following exercises of moderate 

intensity. For future research, it is important to monitor the 

elderly across different durations of exercise, to include tests 

of high intensity, and to monitor these variables.

Conclusion
In conclusion, an increase in HR, sympathetic modulation, 

sympathovagal balance, and a reduction in vagal modulation 

was observed in the elderly at both levels of intensity fol-

lowing dynamic postexercise; however, moderate exercise 

elevated these effects.
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