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Future management of human obesity: 
understanding the meaning of genetic 
susceptibility

Abstract: Gene–environment interactions are central to the expression of obesity. The condition 

is strongly heritable (ie, genetic), and most of the variation in obesity levels between countries 

and between individuals can be explained by the effects of obesogenic environments on individual 

genetic susceptibilities. The nature of the obesogenic environmental influences is not clear in 

detail, but they correlate closely with measures of affluence. The causes of variation in genetic 

susceptibility are also not clearly defined, but their general nature has become clearer. The failure 

of genome-wide association studies or large linkage studies to identify or replicate causative 

genetic variants, together with the segregation of obesity-related traits in families, implicates 

a heterogenetic mechanism in which rare, dominantly or additively expressed genetic variants 

are responsible for most of common obesity. The search for rare causative variants continues 

with some successes, but those identified contribute very little to the overall burden and, assum-

ing heterogenetics, there are many more to find. The time when genomic risk factors provide 

more information than do currently available markers, such as family history, is a long way off. 

Genomic studies to date have contributed little, if anything, to the prevention and treatment of 

common obesity and its associated disorders. This contrasts with the obvious and immediate 

potential implications of the well-established overall genetic basis of obesity, which have not 

yet been exploited in the clinical or public health arenas. Genomic studies, which have helped 

to define the genetic basis of common obesity mainly by exclusion, will in the future play an 

increasingly important role in understanding and managing obesity, but only with parallel studies 

of the physiological, behavioral, and economic influences.

Keywords: obesity phenotypes, obesogenic environment, genomics, pathophysiology, treat-

ment, prevention

Background and aims
According to the World Health Organization projections, by 2015 about 2.3 billion 

adults in the world will be overweight and over 700 million will be obese, and economic 

costing predicts that obesity-related expenditure in USA will approach US$100 billion 

per annum.1 It is now widely, if not universally, accepted that the rising national and 

global prevalence of overweight and obesity since the 1980s can be understood as the 

effects of increasingly obesogenic environments (OEs), which are correlated with mea-

sures of affluence and food availability,2 in genetically predisposed individuals.3,4

Obesity is assessed by the body mass index (BMI, kg/m2) in most epidemiological 

and genetic studies, often together with measures of central fat distribution such as waist 

circumference because of adverse metabolic and health associations. However, neither 

BMI nor other anthropometric measurements are by themselves sufficiently accurate 
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or precise as measures of body fatness in cross-sectional 

 studies.5–8 Further progress in our understanding of the 

genetic underpinnings of obesity will depend on, among other 

things, the use of more informative phenotypes.

The large number of potential proximal environmental 

factors responsible for promoting overconsumption and/or 

underexpenditure of energy and their relative importance is 

under lively debate (eg, Luke and Cooper, associated com-

mentaries, and response9), but the evidence of a primary role 

of food availability and marketing is persuasive for most.2 

Preventative public health efforts targeting food consumption 

and/or physical activity have not yet been successful10,11 and 

can appear weak against the pressure for commercial profit: 

eg, the long campaign directed at reducing consumption of 

sugar-sweetened beverages while consumption has increased 

fivefold since 1950.12 Similarly, individual weight loss pro-

grams have had very limited, if any, success as defined by 

long-term (.2 year) reduced weight maintenance.10,11,13 Past 

pharmaceutical approaches have been equally disappointing, 

both in terms of modest treatment effects and unacceptable 

side effects.14,15 At present, the most successful treatments for 

obesity are surgical procedures, still with limited application 

for most obese and overweight people.14,16

The classic twin adoption studies of Stunkard showed 

that both fatness and thinness were highly heritable and not 

influenced by the adopting family members’ adiposity.17 

Numerous genetic studies since, in a variety of populations 

and using various measures of adiposity, have been consistent 

with those fundamental findings.4 The nature of the genetic 

variation responsible for this heritability is becoming clear 

even though the particular genetic variants are not. Evidence 

of segregation of obesity-related phenotypes in families18–20 

and the failure to account for the heritability in genome-wide 

association studies (GWAS)3,21 and linkage studies22 strongly 

favor a predominant role for rare variants with large effects 

expressed under the influence of OE. The physiological 

mechanism(s) responsible has/have not been established, but 

the genetic and physiological information currently avail-

able remain consistent with the neurobehavioral hypothesis 

(NBH) proposed by O’Rahilly and Farooqi.23 In NBH, com-

mon obesity is the result of widespread genetic susceptibility 

to environmental cues related to food intake,18,24 mediated by 

appetite-regulating pathways within the hypothalamus. The 

mechanisms linking OE to the expression of obesogenic gene 

variant effects are not yet clear.

We aim here to review the recent evidence that leads us 

to accept the working model of the obesity epidemic summa-

rized above, to discuss the physiological, clinical, and public 

health implications of the model, and to discuss ways in which 

future genomic research could enhance our understanding of 

causes and potential treatments of obesity.

Obesity phenotypes have not  
been adequate in most genetic  
and genomic studies
Common obesity
We have clinical and phenotypic modeling backgrounds 

but claim no technical or theoretical expertise in genomics. 

However, we argue that the outstanding problems in the 

genetics of obesity are intimately connected with our areas 

of interest and that further progress in genomic studies is 

limited by the inadequacies of the phenotypes used in most 

studies. The choice of phenotypic markers for expensive, 

large-scale genomic studies is usually restricted to anthro-

pometric measures, BMI, and/or circumferences (waist, hip). 

Neither these measures nor the simplistic clinical manage-

ment phenotypes derived from them adequately represent the 

level of body fatness,5–8 and their continuing use contributes 

to the current uncertainties.6,25

More direct measures of body fatness based on skinfold 

thickness, bioelectric impedance analysis,26 dual-energy 

X-ray absorptiometry (DEXA), or hydrodensitometry27 have 

been used in a limited number of genomic studies without 

obvious benefits regarding gene discovery. With the more 

direct measures (skinfolds, DEXA, hydrodensitometry), 

the high cost, or other logistic requirements of phenotyping 

have restricted the applications to relatively small samples. 

While bioelectric impedance analysis is cheaper, its con-

founding by variability in hydration levels degrades its 

accuracy regarding body fat content.28,29

The concept of increased adiposity or body fatness 

appears intuitively simple but is not easy to define or mea-

sure accurately in humans. The direct measures mentioned 

earlier might provide effective approaches to measurement 

apart from their logistical problems, but even if an accurate 

measure of, eg, total fat mass is obtained, it is not clear a 

priori how to express it as a biologically meaningful index 

of increased adiposity. The common clinical usage of per-

cent body fat cutoffs is arbitrary.30 Analyzing continuous 

measures such as the percent body fat or fat mass indices 

implies assumptions about how human adiposity affects, or 

is affected by, disease processes. Using either BMI or percent 

body fat as covariates can lead to erroneous conclusions in a 

genetic context.31 One possible approach is the use of multi-

variate phenotypic constructs obtained from techniques such 
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as principal components or factor analysis, which partition 

 correlations between multiple input variables into latent 

factors. These procedures eliminate uncorrelated components 

of the input variables, which can reduce error variance and 

hence increase statistical power. Similar improvements in 

power are expected in other types of multivariate analysis 

such as structural equation modeling.32,33 Recently, we 

reported such an analysis of body composition data using 

factor analysis in a small-scale study (n∼200). We extracted 

a factor (Adiposity), which captured more precisely the seg-

regation in families of obesity-related traits than did either 

BMI or measured percent body fat.18 However, the detailed 

phenotypic characterization required for that particular analy-

sis may be impractical for large-scale genomic studies. The 

expected power benefits from multivariate phenotypes are 

most apparent when there are strong correlations between 

the individual phenotypes, as is the case with many pheno-

types obtained in genomic studies of obesity, but this is not 

the only requirement for derivation of useful phenotypes. The 

aim must be to construct biologically informative phenotypes 

which, in principle, could be achieved either by applying 

prior knowledge to the development of explicit physiologi-

cal models composed of measurable variables31 or by careful 

consideration of the biological and statistical properties of the 

available raw phenotypes.18 It is also important to consider 

the origins of the correlations between phenotypic markers, 

so as to specify the correct functional forms of the relation-

ships, and especially to avoid correlated errors when choosing 

phenotypes for inclusion. For example, in our own study,18 

which used a combination of anthropometric and DEXA 

measurements, we used log-transformations to accommo-

date the dimensional relationships between input variables 

and avoided inclusion of multiple phenotypes based on the 

same primary measurement (eg, fat mass and percent fat) and 

therefore sharing correlated errors. These precautions, which 

amount to standard requirements for the extraction of reliable 

multivariate constructs, have generally not been applied in 

multivariate genomic or genetic studies.20,34

The choice of phenotype(s) for genomic studies of com-

mon obesity is unresolved. If, as we discuss in the follow-

ing sections, the potential utility of large-scale association 

studies has been exhausted, more expensive phenotypic 

measures may be justified in smaller scale case–control or 

linkage studies. It seems likely to us that any single pheno-

typic measure would contain less genetic information than 

carefully designed multivariate constructs. For example, 

multivariate constructs derived from commonly obtained 

anthropometric measurements (weight, height, and, waist–hip 

 circumferences) may be worth considering. However, we 

expect that the additional costs of direct measures of body 

fat would be more than repaid by the increased power and 

interpretability of the resulting analyses.

Sub-obesity phenotypes
Clinically, obesity and/or overweight are not homogeneous 

phenotypes. There are prospects for identifying useful genetic 

markers for those at greater or lesser risk of adverse health 

consequences of obesity, which would assist in developing 

or targeting treatments. There is growing evidence that a 

substantial subset of obese individuals (∼25%), defined by a 

lack of risk factors for comorbidities, may be protected from 

some or all of the adverse consequences of obesity.35 There 

is an established association between abdominal, especially 

visceral, fat deposition and adverse health consequences at 

least partly independent of total adiposity, which may be 

under independent genetic influences.36,37 Identification of 

genetic determinants of these clinical phenotypes, we sub-

mit, depends on the development of genetically informative 

quantitative phenotypes using the principles summarized 

earlier.

There are no effective nonsurgical 
treatments or preventative 
strategies for obesity
Despite much nutritional and physical activity research, no 

lifestyle regimen has been reported to maintain substantial 

weight loss in the long term.38 This result is consistent with 

the strong feedback of metabolic and appetite-regulating 

hormones to the hypothalamus when weight loss does occur 

in the obese,39 a finding consistent with the predictions of the 

NBH. Similarly, public health initiatives promoting lifestyle 

changes at the population level have been minimally, if at 

all, effective in reducing obesity levels.11 There is almost 

no other area in drug development that is replete with as 

many failures and withdrawals as seen in obesity.40  Current 

novel obesity agents include a 5HT2c receptor agonist 

(Lorcaserin), a combination of phentermine and extended-

release topiramate (Qysmia), both of which have modest 

treatment effects and side effects of concern to regulatory 

agencies41 and a peripherally acting drug  (Beloranib, a 

methionine aminopeptidase inhibitor) currently in Phase III 

trials, so far without major side effects.42 Of those three, 

only Beloranib offers a prospect of broad usage, but to 

date, results of treatment have only been reported out to 

12 weeks. Currently, only bariatric surgery achieves long-

term weight loss: by physical restriction (banding), by 
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increasing gastrointestinal satiety hormone release (gastric 

bypass), and/or by diverting nutrients.43,44

Despite this lack of effective treatments and strategies, 

some governments are being advised to consider financial 

penalties for obese patients in regard to health insurance, 

justified by the belief that obesity is a personal choice.45 

In the USA, the National Institutes of Health has funded 

the Childhood Obesity Prevention and Treatment Research 

(COPTR) consortium formed to prevent obesity in preschool-

ers and treat obesity in 1,700 13–17 year olds.46 Reports of 

recent childhood lifestyle interventions in randomized trials 

showed no significant weight effect despite employing the 

currently regarded optimum methodology.47 For example, 

12-month follow-up of shared care management in 3–10 year 

olds in a randomized trial showed no better BMI outcomes 

for intervention than untreated controls (intervention effect 

−0.1 [−0.7, 0.5] kg/m2).48 Against this background of failure, 

the possible emotional impact of frequent measurements 

of body size and weight of a child (and mother)49,50 should 

not be ignored when considering large-scale projects such 

as COPTR.46 It is also not possible at present to determine 

which young people are “healthy” obese, and arguably, who 

do not require medical intervention for improved metabolic 

health.35 In summary, the treatment issue in obesity is the lack 

of proven long-term effective treatments at both the individual 

and population levels.

Genetic variants contributing to 
common obesity are expressed 
under obesogenic environmental 
influences
Gene–environment interactions are central to the expres-

sion of obesity. The rapid rise in prevalence in developed 

countries over the last three decades, coupled with the strong 

heritability of obesity, allows no other conclusion.51 Obesity 

rates continue to rise in developing countries, but are at or 

near saturation in developed countries.52,53 While the identity 

and strengths of the proximal factors comprising OE are not 

agreed upon, it is clear that indices of affluence either within 

(eg, socioeconomic status [SES]) or between (eg, gross 

domestic product [GDP]) populations can be powerful proxies 

for total OE.54–58 The effect of OE by those measures on obesity 

levels is not linear, with evidence of saturation in developed in 

developed countries56 consistent with reports of diminishing 

national trends in some developed countries. The apparent 

plateau level of national BMI at high GDP (∼26 kg/m2)56  

is well below a notional full expression of clinically defined 

obesity (BMI$30 kg/m2), indicating that substantially 

,100% of individuals are susceptible to OE. Within 

countries, the situation is more complex.54,55 In multiple 

samples from 36 developing countries, a positive effect of 

individual SES explained 74% of the within-country variance 

in BMI,58 but in developed countries the relationship is often 

reversed, with low SES groups showing the highest obesity 

prevalence.54,55 The reasons for this apparent reversal of effect 

are not clear. Likely contributors include the influence edu-

cational level on obesogenic behaviors and negative effects 

of obesity on SES.59 There are also methodological issues 

regarding confounding variables, particularly associations 

between measures of SES and ethnicity. However, in the 

most extensively studied, if not necessarily representative, 

country60 (USA), the association between one measure of 

SES (education) and BMI has weakened over the period 

1970–2000.61 It may be that SES now plays a more minor 

role compared to the national level of affluence in the most 

developed countries.

Measures of affluence explain approximately 50% of 

the between-country variance in BMI and approximately 

70% of the within-country BMI variance in developing 

countries.58 No gene-discovery studies (GWAS or linkage 

or candidate) that we are aware of have utilized any markers 

of OE as covariates. Omitting such a powerful conditional 

determinant from genetic studies, perhaps unavoidable with 

the uncertainties of identity and measurement, must lead to 

a reduced power to detect genetic associations and to arti-

factual associations if population stratification, either within 

or between countries, leads to confounding between OE and 

genetic markers.

The mechanistic link(s) at the molecular level between 

OE and obesity development are not clear. The physiological 

evidence implicates hypothalamic appetite-regulating path-

ways with their various sensor and effector systems,23,24 and 

the genomic evidence (see “Obesogenic genetic variants”) 

still supports the basic structure of the NBH. In this scheme, 

reduced (or increased) function in various components leads 

to either an increased drive to eat in the presence of OE 

and/or, equivalently, a decreased restraint of an appropriate 

drive in response to feedback signals. In either case, without 

counteracting changes in energy expenditure, the expected 

result is maintenance of larger fat stores at a level that either 

balances the increased drive with higher feedback signals 

or normalizes the feedback signal itself in the dysfunctional 

pathway or parallel (redundant) pathways.

There is currently great interest in the possibility that epi-

genetic changes to gene function could provide a molecular 
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link between OE and obesogenic gene variant effects. This 

proposed mechanism is a key element in the hypothesis of 

the developmental origins of health and disease (DOHaD), 

which proposes that a substantial fraction of the rising preva-

lence of obesity (and other complex diseases) is due to expo-

sures to OE in utero.62,63 Environmental conditions, including 

nutrient availability, can epigenetically influence expression 

of genes involved in energy metabolism64,65 and at least one 

component of NBH (proopiomelanocortin [POMC]66) in 

humans. Epigenetic DNA methylation may be enriched and 

more variable in obese compared to nonobese humans.67 

These and many other studies, predominantly in animal 

models, have clearly established the potential of DOHaD, but 

much less evidence exists of any substantial contribution to 

endemic human obesity. Direct evidence in humans comes 

from studies of the effects of maternal obesity on offspring 

phenotypes, studies of which are very difficult to design with 

appropriate controls; most do not account for the genetic 

influences on obesity which will confound any effects of 

in utero environment. The strongest human evidence is in 

a series of studies of the effects of maternal bariatric sur-

gery on obesity in children, using a within-subject design 

(pre- and post-surgery) to control for genetic influences. 

Children conceived after surgery had substantially lower 

levels of various obesity-related phenotypes compared to 

those conceived before surgery68 and showed an altered 

DNA methylation pattern in white blood cells.69 However, 

there are reasons to doubt that these findings are applicable 

to endemic obesity. Both studies used morbidly obese sub-

jects (BMI ≈46 kg/m2) undergoing the most drastic form of 

bariatric surgery (biliopancreatic diversion) which resulted 

in massive weight loss (BMI ≈30 kg/m2), which itself results 

in nutritional deficiencies in utero.70 The incidence of folate 

deficiency is a particular concern for the interpretation of 

the DNA methylation pattern.62 In contrast, a large hospital-

records-based within-subject study of the effects of much 

less severe, purely restrictive bariatric surgery (BMI change 

from 36 kg/m2 to 32 kg/m2) found no evidence for reduced 

adiposity in children conceived after surgery, with trends 

in the opposite direction.71 Other studies were designed to 

isolate any nongenetic effect of maternal adiposity by use 

of maternal FTO genotype as an instrumental variable72 or 

by comparing influences of maternal and paternal adiposity 

on offspring adiposity.73 Both studies concluded that any 

maternal effect on offspring adiposity is weak and unlikely 

to explain any substantial fraction of the obesity epidemic. 

So while DOHaD and its proposed epigenetic mechanisms 

are based on undoubtedly exciting emerging biological 

insights, we found no persuasive evidence for an important 

role of DOHaD in endemic human obesity.

Heritability and mode of inheritance  
of obesity susceptibility
Obesity is highly heritable, but estimates of the degree 

of heritability have varied substantially between studies 

(h2∼40%–80%). The source(s) of this variability have not 

been established, but a leading candidate is the effects of 

variations and trends in OE. For example, twin studies gener-

ally give higher heritability estimates than do sibling studies 

or multigenerational family studies, perhaps because OE is 

likely to vary less between twins than between generations or 

siblings of different ages.19 Similarly, as obesity levels have 

risen over time in response to rising OE, so have the measured 

genetic contributions to the overall variance, and hence h2.74 

Many studies have detected evidence of segregation and/or 

multimodality of adiposity-related traits but the implied 

modes of inheritance have varied. Early studies (reviewed 

in Price et al19) found evidence of recessive expression of 

higher adiposity, while more recent studies have tended to 

favor dominant or additive models of expression.18–20 As 

argued by Price et al,19 part of this variation may be due to 

secular trends in gene–OE interactions,74 which have the 

effect of simulating recessive inheritance in multigenerational 

studies. The use of extreme obesity phenotypes would also 

tend to favor a recessive pattern if the true mode is addi-

tive and the heterozygous phenotype is either obscured by 

definition75 or is indistinguishable in the data.76,77 The use of 

inappropriate phenotypes can also obscure signals of domi-

nance or additivity. Our own demonstration of segregation of 

 Adiposity in families with type 2 diabetes mellitus (T2DM)18 

was obtained only with a multivariate phenotype based on 

direct measures of body compartments (Figure 1A), and 

was obscured in body fat percent and BMI data (Figure 1B), 

despite the close correlations between Adiposity and body fat 

percent or BMI (R2=0.87, Figure 1C). The genetic informa-

tion is contained within the apparent noise in Figure 1C. In 

summary, published studies are either not inconsistent with, 

or give explicit support to, dominant or additive expression 

of genetic susceptibility to increased adiposity. Because of 

its use of an informative and biologically plausible pheno-

type and a highly enriched sample (family history positive 

compared to a carefully matched family history negative 

control group) from a developed (OE-saturated) country, and 

despite its small sample size (n=202), we submit our study18 

as the best current indicator of the mode of inheritance of 

susceptibility to common obesity.
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Figure 1 Distributions of age- and sex-adjusted obesity-related phenotypes in 
healthy adults with a family history of T2DM (FH+, n=80).
Notes: (A) A latent factor (Adiposity) derived by rotated factor analysis of body 
composition and anthropometric data. (B) Residual log-transformed BMi (Adiposity 
and loge BMi are both presented as residuals from age and sex models). Data were 
binned by deciles of the full sample (FH+, FH−, n=202) and fitted to a bimodal normal 
distribution. The dashed line in (A) represents the fitted distribution of Adiposity 
(no fit was obtained in the loge BMi data). The segregation of Adiposity in FH+ is 
consistent with dominant expression of rare risk variants with major effects, which 
are expressed in over half of FH+ and which can account for most of the T2DM-
associated obesity in this population. (C) Relationship between Adiposity and BMi 
in healthy individuals with or without a family history of T2DM (n=202).18 The line 
represents the fit of Adiposity to log-transformed BMI (r2=0.87). Reproduced from 
Jenkins AB, Batterham M, Samocha-Bonet D, Tonks K, Greenfield JR, Campbell LV. 
Segregation of a latent high Adiposity phenotype in families with a history of type 
2 diabetes mellitus implicates rare obesity-susceptibility genetic variants with large 
effects in diabetes-related obesity. PLoS One. 2013;8:e70435.18

Abbreviations: T2DM, type 2 diabetes mellitus; BMi, body mass index.
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The bimodal distribution of Adiposity in individuals 

with a positive family history of T2DM (FH+, Figure 1A) is 

consistent with segregation in families of rare obesity suscep-

tibility variants with major effects, contrary to the predictions 

of a polygenic model in which variants at many loci have 

cumulative, small effects on the phenotype.  Previous stud-

ies of the transmission of obesity-related phenotypes have 

also generally not favored the polygenic model. However, 

a recent simulation study based on extensive identity by 

descent and BMI data in families reaches the conclusion 

that polygenic inheritance of BMI is capable of explaining 

the failure of replication of hits in linkage studies, possibly 

by random sampling of chromosomal blocks containing 

multiple obesogenic variants of small effects, and therefore 

questions the conclusion that a heterogenetic model is favored 

by the exclusion of competing hypotheses.78 Their conclu-

sion is based on the equivalence of various polygenetic and 

heterogenetic models, rather than on statistical evidence 

favoring any particular model. They prefer the polygenic 

model for reasons of parsimony, although it seems to us the 

least parsimonious of their mechanisms. The heterogenetic 

models tested were very stringently defined in terms of 

private variants in each family, ie, a minor allele fraction 

(MAF) of ∼0.01% vide the usual definition of rare (MAF 

,1%) based on the current power of GWAS.79 Whether the 

result could apply to more realistic situations in which, for 

example, interactions between genes and environment were 

considered and the heterogenetic model was less stringently 

defined is not yet clear, and we take the current evidence for 

segregation of obesity-related phenotypes to strongly favor 

the heterogenetic model.

Our analysis18 was insensitive to the nature of the inher-

ited obesogenic variants, but we can conclude that they are 

rare to have escaped detection in large-scale studies even 

of BMI, even allowing for confounding by OE, and must 

have large effects to account for the separation between 

modes of Adiposity (0.93 standard deviation units [SD]). 

The two factors extracted by Tayo et al,20 which are likely to 

partition the variance in Adiposity, show similar effect sizes 

(0.84–0.89 SD). The BMI equivalent of the effect size in 

Adiposity is approximately 4 kg/m2, and other segregation 

studies have reported similarly large effects although direct 

comparisons are hindered by the variety of phenotypes 

analyzed (BMI,19 fat mass,80 percent body fat,81 skinfolds82), 

the different populations sampled, and the genetic models 

tested (additive, dominant, mixed). Our major effects 

accounted for 91% for the age- and sex-adjusted Adiposity 

variance, but this high value is a function of the enrichment 

of susceptibility in our sample (positive family history) as 

well as the high national GDP and hence OE. The residual 

variance (9%; 95% CI, 4%–69%) contains the effects of 

all other determinants of Adiposity including polygenes, 
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the environment, and interactions between them. While 

the point estimate indicates minimal contribution from all 

these sources in our sample, the wide confidence intervals 

(probably related to small sample size) do not rule out a 

substantial contribution in this or other samples. However, 

taken with the other estimates of heritability of obesity-

related phenotypes and their strengths and limitations 

referred to above, our result supports a predominant role 

of segregating rare variants in the transmission of obesity 

susceptibility.

Obesogenic genetic variants
The genetic determinants responsible for endemic obesity 

remain largely undiscovered. Over 50 loci have been asso-

ciated with BMI and/or categorical obesity in GWAS and 

meta-analyses,3,21,83 but the combined (additive) effects of 

all variants account for only a small fraction of the pheno-

typic variation (1%–2%), leaving most of the heritability 

unexplained. Possible sources of this missing heritability 

have been well discussed by Hebebrand et al25: nonspecific 

phenotypes, measurement error, small effects sizes, rare 

variants, inflated heritability estimates, developmental 

aspects, gene–gene and gene–environment interactions, to 

which we add common copy number variations (CNVs). 

While GWAS have not systematically targeted CNVs,  

a recent study of linkage disequilibrium between common 

single nucleotide variants (SNVs) and common CNVs con-

cluded that “[...] for complex traits, the heritability void left 

by genome-wide association studies will not be accounted 

for by common CNVs.”84 While all of those sources of error 

no doubt contribute to the current heritability void, the 

evidence of segregation of obesity-related traits points to a 

predominant role of rare variants or a heterogenetic model 

of transmission. Under a heterogenetic model, estimates 

of heritability are not a useful way of combining evidence 

from gene-discovery studies, and it is more instructive 

to examine the effect sizes attributable to identified gene 

variants. Figure 2 illustrates the distribution of effect sizes 

(when reported in or readily transformable to BMI units, 

n=47); GWAS-identified results are extracted from recent 

reviews3,21,83 or the studies referred to therein. The sources 

of the effect sizes of other variants identified in various 

candidate designs are discussed in points “1. FTO” to 

“7. 16p11.2”. Compared to our estimates of the segregating 

effect size (4.1 kg/m2),18 most effects, including all identi-

fied in GWAS, are vanishingly small and can be ruled out as 

contributors to segregation, although they, and other similar 

but unknown loci, presumably contribute to the background 

variability. The exclusions should include FTO variants if 

based on effect size alone, but as we discuss in “1. FTO”, 

their emerging mechanism of action may provide a model 

for other larger effects in the same region. Also, most GWAS 

effects on BMI are so small that there can be no confidence 

that they represent effects on body fat as opposed nonfat 

compartments. That leaves only the outliers in Figure 2 as 

candidates for the types of variant that could contribute to 

a segregation signal.

1. FTO: common single-nucleotide polymorphisms (SNPs) 

in the FTO region have the largest effect size of any vari-

ants detected in GWAS, but that effect (0.4 kg/m2) is too 

small to make a significant contribution to the segregation 

signal that we and others detect. However, it may be that 

other rarer variants in the same region could contribute, 

and recent advances regarding the mechanisms of action 

of the FTO variants provide a model that exemplifies 

the potential of the NBH. Obesity-associated sequences 

within FTO are functionally connected through noncod-

ing RNA with an increased expression of the homeobox 

gene IRX3, deletion of which results in reduced fat mass 

in mice.85 Studies in humans have found associations 

between obesity-associated FTO variants and levels of the 

satiety hormone leptin (negative),86 the hunger hormone 

ghrelin (positive),86,87 and brain responsivity to food cues 

(positive).87 So while common FTO SNPs do not contribute 

substantially to common obesity susceptibility, they do 

illustrate the potential of other rarer variants affecting the 

same processes.

2. AMY1: CNVs in AMY1 encoding salivary amylase have 

been associated with variations in BMI (low copy num-

ber associated with higher BMI) in two independent 

samples.88 The effect size plotted in Figure 2 (0.75 kg/m2) 

is based on the maximum possible negative difference in 

copy number (−5) from the mean of the normal-weight 

distributions in Falchi et al.88 This effect size is small 

compared to our estimate,18 but could contribute to a 

BMI (kg/m2)

AMY1

FTO

POMCCTNNBL1

LEP16p11.2SIM1 LEPR

106 8420

Figure 2 Boxplot of published heterozygote effect sizes (when reported in or 
transformable to BMi units) of obesity-associated genetic variants (n=47).
Notes: The box represents the median and interquartile range and the whiskers 
extend to 1.5 times the interquartile range. The box and whiskers enclose all variants 
identified in genome-wide association studies except FTO. The red arrow indicates the 
BMi effect size calculated from our study of the segregation of Adiposity.18

Abbreviations: BMi, body mass index; POMC, proopiomelanocortin.
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segregation signal in larger scale studies. The CNV in 

AMY1 was investigated in relation to BMI after an initial 

screen of effects on gene expression in adipose tissue,88 

but the salivary amylase product is also expressed in saliva 

under the influence of copy number89 and in various other 

tissues. The mechanisms linking AMY1 expression and 

BMI have not been established, but AMY1 is known to 

have a role in sensory perception of starch in foods as 

well as being regulated by autonomic nervous system 

(ANS) activity,90 providing potential links to and from 

hypothalamic appetite-regulating centers and therefore 

possible consistency with the NBH.

3. SIM1: SIM1 is a homologue of a transcription factor in 

mice, which is known to be involved in the development 

of hypothalamic appetite regulation centers, and haplo-

insufficiency results in a hyperphagic obesity in mice 

and humans. Common SNPs in and near SIM1 regions 

were associated with BMI in a candidate gene study in 

Pima Indians.91 The risk alleles were common in Pima 

Indians (∼0.6), but less so in Europeans (∼0.3) with no 

association with BMI in the European sample. Perhaps 

linked functional variants have originated in or become 

enriched (through genetic drift or selection) in Pima 

Indians. The potential mechanism is clear, and consistent 

with the NBH, and the effect size (2.2 kg/m2) would be 

detectable in a reasonably powered linkage study.

4. CTNNBL1: multiple SNPs mainly in intronic regions of 

CTNNBL1 were associated with BMI and fat mass in a 

sample of unrelated US Caucasians and were supported 

in a French Caucasian case–control study of categorical 

obesity,92 but not in a central European sample93 or a  Danish 

sample.94 Failure of replication is an expected feature of 

a heterogenetic model in which different populations or 

smaller groups (down to families) could be expected to 

have different genetic origins of obesity susceptibility. The 

effect size of 2.7 kg/m2 would be detectable in a reasonably 

powered linkage study, but there are reasons to doubt the 

specificity of the continuous phenotypes for body fatness. 

Liu et al92 used directly measured fat mass as a control on 

the BMI analyses, but did not control for effects of body 

size on fat mass, and so both phenotypes contain informa-

tion about nonfat body compartments. Consistent with this 

potential confounding, the replication study by Andreasen 

et al94 found no association with BMI, but significant asso-

ciations with weight and height. CTNNBL1 variants may be 

associated with increased risk of obesity, but the measured 

effect size on BMI includes an unknown but probably 

substantial contribution from genetic effects on body size. 

Confirmation using an unbiased phenotype is needed. The 

functions of CTNNBL1 are not established, and there is no 

clear potential link to the NBH, but it is expressed in at least 

one region of the human central nervous system (CNS) 

(cortex) and variants have been associated with measures 

of CNS function (memory).95

5. POMC: POMC is a complex pro-peptide, the products of 

which are secreted by neurons that are critically involved 

in appetite regulation. Congenital deficiency of POMC is 

the cause of a rare form of monogenic obesity, and haplo-

insufficiency of POMC is linked to increased BMI in 

affected families.96 The effects of POMC deficiency were 

important elements in the development of the NBH.23 

The heterozygote effect size in Figure 2 (3.7 kg/m2) is 

an approximation based the original report in SD units 

(+1.3) multiplied by the average SD in males and females 

(2.85 kg/m2) in the reference data97 used by Farooqi 

et al.96

6. LEP and LEPR: leptin acting through the leptin receptor 

functions as a feedback signal from adipose tissue fat 

stores with strong suppressive effects on appetite through 

the hypothalamic leptin–melanocortin signaling pathway. 

Both homozygous leptin and leptin receptor deficiencies 

cause rare monogenic severe obesity in humans driven 

by hyperphagia, and both are crucial elements in the 

development of the NBH. Heterozygous loss-of-function 

variants in both genes are associated with substantial 

effects on body fatness.98,99 In both cases, the phenotype 

affected was directly measured by body fat percent 

adjusted for age, sex, height, and weight, and the effects 

were substantial: +20% body fat for LEP98 and +6% for 

LEPR,99 which roughly translate to effects in BMI units 

in our sample18 of +9 and +3 kg/m2, respectively.

7. 16p11.2: independent associations with obesity of large 

deletions at two locations in 16p11.2 have been detected 

following a strategy of resequencing at loci known to be 

associated with rare forms of extreme obesity,100,101 and 

one of the locations was replicated using continuous 

BMI in a population sample101 represented in Figure 2. 

The BMI effect size in Figure 2 is based on a very small 

sample (4) of heterozygous carriers in that one popula-

tion, but the combined effect on BMI in all populations 

sampled was +1.1 SD units (n=8), similar to our effect 

size on Adiposity (+0.93 SD).18 The responsible causal 

loci are not clear, but the deleted region contains SH2B1, 

which has established links to hyperphagia and obesity 

in humans and animals acting through leptin signaling 

pathways102 consistent with the NBH.
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As judged by effect size, only the POMC, LEP, and LEPR 

heterozygous loss-of-function mutations and the deletions at 

16p11.2 stand out as possible examples of the types of variants 

which could contribute to a heterogenetic mechanism of sus-

ceptibility to common obesity, although contributions from the 

others cannot be excluded (except perhaps CTNNBL1). While 

we do not suppose that the outlier loci identified in Figure 2 

are necessarily representative of all causative variants, it is 

noteworthy that their mean effect size (+3.9 kg/m2) is very 

close to our estimate of average effect size (+4.1 kg/m2).18 The 

gene products of the first three have key roles in appetite regu-

lation, as does one candidate for the 16p11.2 effect, and as do 

other gene products identified as causative agents in severe 

monogenic obesity (PSK1, MC4R, SIM1).21 Other causes 

of severe (syndromic) obesity associated with generalized 

developmental CNS disturbances are also linked to disruption 

of appetite regulation (Bardet–Biedl syndrome, Prader–Willi 

syndrome, pseudohypoparathyroidism, WAGR syndrome).21 

When taken together with our evidence of increased sensi-

tivity to food-related cues in healthy family-history-positive 

individuals,24 the genomic evidence continues to point to 

hypothalamic appetite regulation pathways as the most likely 

location of rare variants driving the susceptibility to obesity in 

response to increased OE as proposed in the NBH. The effects 

of common variants in FTO illustrate how such mechanisms 

can operate, and have increased interest in the potential roles 

of noncoding RNAs.

The search for rare variants with large effects on obe-

sity susceptibility is in progress and has resulted in some 

success,101 as have related approaches in other complex 

diseases.103,104 However, the contributions of the newly iden-

tified variants to population susceptibilities are very small, 

and if, as we conclude, most of the obesity susceptibility 

is due to rare variants, there are many more to find. There 

are formidable problems in design and statistical analysis 

to be solved before identification of rare variants becomes 

a routine procedure, and we may currently be able to find 

only the “low-hanging fruit” that are amenable to current 

techniques.101 The variants’ effects must be large, and it 

might therefore be hoped that simple phenotypes such as 

BMI would be adequate for reliable discovery, more so than 

in GWAS where the small effect sizes must be interpreted 

with caution due to biases in BMI. However, even large 

effects can be generated or obscured by BMI bias; measured 

biases in different ethnic groups range from −6 kg/m2 to 

+4.5 kg/m2 at equivalent body fat percentage105,106 and in our 

ethnically unselected sample from −3.6 kg/m2 to +6.7 kg/m2 

(95% CI −3.1, 4.3) at equivalent Adiposity (Figure 1C).18 

There is a clear need for more informative phenotypes in 

these studies.

Implications of a heterogenetic 
mechanism for gene discovery, 
treatment, and prevention
GwAS studies have reached  
their potential
The results obtained from GWAS studies have excluded a 

major causative role for common genetic variants in obesity, 

directly for common SNPs and indirectly for common 

CNVs.84 The GWAS design does not have the power to detect 

rare causative variants in any feasible sample size. Power and 

accuracy would undoubtedly be improved by the use of better 

phenotypes than BMI, but it is unlikely that the improve-

ments would be enough to capture many rare variants. The 

increased costs associated with better phenotyping would be 

better used in smaller scale studies following the types of 

approaches recommended by Walters et al.101

Many variants may produce similar  
effects on obesity-related traits
Under a heterogenetic model, the separation between modes 

of Adiposity in Figure 1A represents the average effect size 

of the causative variants. Our analysis treats it as a fixed (ie, 

constant) effect, and while we were unable to model the range 

of dispersion of effects, nor any heterogeneity of background 

variability, the data are consistent with a very narrow range 

of effect sizes superimposed on a constant background vari-

ability. It might be thought implausible that many hetero-

genetic variants could all result in similar effects sizes, but 

it is possible for that pattern to arise from the properties of 

the affected physiological system(s). For example, the NBH 

proposes that appetite regulation systems in the hypothalamus 

are the target of most obesogenic variants; those systems are 

very complex involving a large number of sensory, effector, 

and integrative processes, all interacting with and subject to 

feedback from other central regulatory systems such as the 

ANS, and affected by systems modulating mood and other 

behavioral traits. The overall properties of this system, or 

network, of sensors, integrators, and effectors are not clearly 

understood, but it is likely that it exhibits features of redun-

dancy in that a complete or partial failure of any component 

is partly compensated for by the remaining intact links (an 

analogy can be found in the properties of the glucoregula-

tory system107). Such a system could produce the segregation 

behavior that we and others observe.
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Can phenotypic convergence help  
to locate new therapeutic targets?
Under some possible structures of the physiological system(s) 

involved, there could be clustering of the effects of multiple 

variants on potentially targetable subsystems. However, 

appetite regulation is such a central process with links to 

and from many other systems (ANS, mood, etc) that it makes 

specific targeting without undesirable side effects potentially 

very difficult, as can been seen in the history of drug devel-

opment in this area.40 Recent interest in the melanocortin-4 

receptor as a potentially targetable component of the NBH 

appears to be an illustration of continuing problems of this 

nature. Antagonist compounds to melanocortin-4 receptor 

are being developed for targeting depression and anxiety,108 

while agonists are being developed to target obesity.109 This is 

reminiscent of the history of Rimonabant, a drug developed 

to target obesity though antagonism of cannabinoid recep-

tors in satiety pathways but which was withdrawn due to 

side effects on depression.40 An improved understanding of 

the properties of the appetite-regulating system as a control 

system could affect strategies for targeting. If, for example, 

the system is strongly hierarchical with lateral connections 

to other systems such as the ANS mainly at high levels in the 

hierarchy, that could be quite different in its implications from 

a more distributed network-like structure with many lateral 

connections. If a hierarchical structure could be defined, 

there may be obvious potential targets at the mid-level in the 

system, below the lateral links. A network structure presents 

a much more challenging problem.

Similarities and differences in  
obesity susceptibility in populations
Obesity and overweight vary between populations due to 

effects of and interactions between genetic and environ-

mental factors. Some small genetically isolated populations 

have developed very high prevalences of obesity in response 

to recent environmental changes (eg, Pima Indians,110 

Nauruans,111 Australian Aboriginals112). There are also 

marked, though usually less extreme, differences in obesity 

prevalences between large national populations,113 which, 

as discussed earlier, can be assigned mainly to the effects of 

OE on genetically susceptible individuals. The genetic deter-

minants of the variation in susceptibility between individuals 

or groups are not clear, except for a very small number of 

individuals with severe monogenic obesity. There are cur-

rently no known genetic variants or combinations of variants 

that are helpful as indicators of risk, in either individuals or 

populations. Genetic risk scores calculated by adding known 

obesogenic variant loads have minimal predictive power.114 

A very rough calculation based on current estimates of effect 

sizes (Figure 2) indicates that approximately 40 different vari-

ants per individual would be needed to account for obesity 

risk using a multiplicative (epistatic) model.

The origin of the undefined heterogenetic variation 

responsible for the varying phenotypic responses to OE is 

also unclear. Plausible theories include the effects of posi-

tive or negative selection, or of genetic drift, the pros and 

cons of which have been extensively discussed115–117 without 

resolution. A strong case can be made for selection, which 

brings together many features of obesity.117 The need for 

Homo sapiens to supply adequate glucose for a large brain to 

metabolize in recurrent famine situations and for the female 

to store sufficient fat to carry a pregnancy successfully and 

feed the baby could have ensured selection of genes that 

prioritized high-energy nutrients in the sparse environments 

and encouraged rapid ingestion and fat storage. It would be 

interesting to know whether the CNV in the salivary amylase 

gene (AMY1), which affects detection of starch and associ-

ates with higher BMI, has been subject to pre-agricultural 

selection. Parallel selection for rapid immune and stress 

responsiveness is also possible.117 Those “survivor” genes 

selected as a result of responsiveness to environmental nutri-

ent cues could, with current OE, be predicted to increase 

the prevalence of obesity. However, there is at present very 

little direct evidence from genomic studies which bears on 

this question. A few studies report signals of selection at 

obesity susceptibility loci identified in GWAS118,119 but no 

clear pattern has yet emerged. If however, as we conclude, 

causative obesogenic variants are rare, unknown, and not 

captured in GWAS, the detected selection signals have mar-

ginal relevance to endemic obesity and we do not yet have 

the genomic data to test selection hypotheses.

Opportunity for more targeted 
prevention and customized 
treatment of obesity
The results of genomic studies to date have contributed very 

little, if anything of immediate relevance to the prevention 

and treatment of common obesity and its associated disorders. 

This contrasts, in our view, with the obvious and immediate 

potential implications of the well-established genetic basis for 

the disorder, which have not yet been exploited in the clinical 

or public health arenas. It seems to us that the failure, to date, 

to explain obesity susceptibility by genomic studies is, in some 

quarters, being interpreted incorrectly as questioning the over-

all genetic basis of the disorder. It may be that accumulation of 
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causal variants would therefore amplify the genetic message, 

but the time when risk information from genomic data would 

be more informative than, say, family history appears to be a 

long way off. Similarly, we can find no evidence that known 

genomic markers are able to predict responses to currently 

available treatments. Again, this contrasts with the potential for 

known nongenomic risk factors, like family history, to predict 

the need for and responses to interventions.120

In the future, it is probable that information from genomic 

and physiological studies will identify new therapeutic targets 

that ideally would avoid the side effects responsible for the 

recurrent failure of drug development.40 In the short term, dis-

covery of genomic markers that would help to identify subsets 

of patients who would either respond to currently available 

treatments or who are at greater or lesser risk of the common 

side effects or comorbidities of obesity would be an advance. 

A recent analysis found that the benefit of reduced availability 

of junk food in schools was restricted to children with a family 

history of overweight.120 This highlights one of the potential 

benefits of genetic risk classification of individuals, but there 

is much to do before genomic information provides better risk 

prediction than do currently available markers such as fam-

ily history. A family history of T2DM may be a particularly 

powerful discriminator as it identifies a group with history of 

obesity with pathogenic consequences.18,24

There is strong desire in many quarters to intervene early, 

in children or in utero, in part because childhood obesity is a 

strong predictor of adult obesity and its consequences. As we 

now understand, this relationship reflects the shared genetic 

makeup of child and adult and is unlikely to be causative. The 

drive for aggressive early interventions ought to be dimin-

ished by the knowledge of the genetic basis of the disorder 

and by the lack of effectiveness of past interventions and the 

potential adverse consequences of interventions.49,50

Implications for enhanced patient 
care such as quality of life
An acceptance by science, medicine, and the public that 

common obesity is strongly heritable would in itself be a 

therapeutic advance, which should lead to significant changes 

to current approaches:

•	 Development of a more sympathetic approach to current 

patient management by clinicians who would then accept 

that genetic predisposition to susceptibility to the current 

OE underlies the repeated failures of “will-power”.121

•	 Lessening of repetitive weight loss attempts undertaken 

despite the inevitable regain and the personal sense of 

failure that this entails.

•	 Early life intervention should be undertaken only where 

evidence of both benefit and lack of harm has been 

demonstrated in studies. There is a real possibility of 

permanent mental and physical harm if useless interven-

tions are repeated in ever younger populations.49,50

•	 Similarly, public health interventions to prevent obesity 

that are unsuccessful must be altered or abandoned. The 

public influences on obesity are mainly in the domains 

of economics and marketing, not in modifiable per-

sonal behaviors. Investment in ineffective behavioral 

messages targeting obesity is futile and serves only to 

maintain a false picture of the problem ignoring the 

genetic element, and thereby maintaining the dominant 

public51 and clinical121 view of obesity as a personal 

failing.

Studies to define the condition of healthy obesity and 

its maintenance will allow less intervention, and hence 

increased quality of life, if no adverse associations or health 

conditions are found. There are no established protective 

markers yet, but a recent report of a low-frequency (1.5%) 

variant in the Cyclin D2 gene, which increases body mass 

but decreases diabetes risk, may be an encouraging sign122; 

1.5% could represent a useful proportion of the healthy 

obese (∼25%).

Conclusion
As genomic naïves, it appears to us that in the immediate 

future we must aim or hope for two things:

1. Identification of points of convergence in phenotypic 

pathways by better measurement and assessment of col-

lateral links to other physiological systems. We should 

not aim to personalize treatments to an individual gene, 

which seems very unrealistic in this domain, and should 

be targeting the effects of groups of genes by satiety 

induction.

2. Identification, discrimination, and quantitation of obe-

sogenic environmental factors and understanding how 

they interact with obesogenic genetic variants to increase 

their effect. There may be opportunities to counteract 

personal exposures to elements of OE or to identify more 

realistic targets for public health interventions.

We believe that genomic studies, which have helped to 

define the genetic basis of common obesity mainly by exclu-

sion, will in the future play an increasingly important role 

in the understanding and management of obesity, but not 

without parallel studies of the physiological, behavioral, and 

economic influences, and especially not without the use of 

more informative phenotypes than BMI.
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