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Abstract: Network meta-analysis (NMA) has emerged as a useful analytical tool allowing 

comparison of multiple treatments based on direct and indirect evidence. Commonly, a hier-

archical Bayesian NMA model is used, which allows rank probabilities (the probability that 

each treatment is best, second best, and so on) to be calculated for decision making. However, 

the statistical properties of rank probabilities are not well understood. This study investigates 

how rank probabilities are affected by various factors such as unequal number of studies per 

comparison in the network, the sample size of individual studies, the network configuration, 

and effect sizes between treatments. In order to explore these factors, a simulation study of four 

treatments (three equally effective treatments and one less effective reference) was conducted. 

The simulation illustrated that estimates of rank probabilities are highly sensitive to both the 

number of studies per comparison and the overall network configuration. An unequal number 

of studies per comparison resulted in biased estimates of treatment rank probabilities for every 

network considered. The rank probability for the treatment that was included in the fewest 

number of studies was biased upward. Conversely, the rank of the treatment included in the 

most number of studies was consistently underestimated. When the simulation was altered to 

include three equally effective treatments and one superior treatment, the hierarchical Bayesian 

NMA model correctly identified the most effective treatment, regardless of all factors varied. 

The results of this study offer important insight into the ability of NMA models to rank treat-

ments accurately under several scenarios. The authors recommend that health researchers use 

rank probabilities cautiously in making important decisions.

Keywords: multiple treatment meta-analysis, mixed treatment comparison, ranking, network 

configuration

Background
Meta-analysis is a statistical procedure that can be used to synthesize evidence from 

multiple studies to determine the common effect when effect sizes are consistent, 

or to identify reasons for variation between studies when effects are inconsistent.1,2 

The traditional meta-analysis method allows comparison of two interventions. In 

practice, there are often multiple therapies for a particular disease.3 Sound decision 

making requires comparisons of all available, relevant competing interventions.4,5 The 

comparative effectiveness of a range of interventions requires statistical methodology 

beyond classical meta-analysis methods.

Network meta-analysis (NMA), also called multiple treatments meta-analysis or 

mixed treatment comparison, is an extension of the traditional pairwise meta-analysis 

that enables comparisons between multiple interventions simultaneously,6 respecting 

the randomization in the evidence.7 In practice, direct evidence may not be available for 
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Figure 1 network configuration.
Note: Copyright © 2010. BMJ. Adapted from Middleton LJ, Champaneria R,  
Daniels JP, et al. hysterectomy, endometrial destruction, and levonorgestrel 
releasing intrauterine system (Mirena) for heavy menstrual bleeding: systematic 
review and meta-analysis of data from individual patients. 2010;341:c3929.28

Abbreviations: 1gen, first-generation hysteroscopic endometrial destruction 
technique; 2gen, second-generation nonhysteroscopic endometrial destruction 
technique; hyster, hysterectomy.
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every pair of treatments. NMA enables researchers to obtain the 

relative efficacy of a particular intervention versus any compet-

ing intervention even when direct evidence is not present, via a 

common comparator.8 NMA yields more precise estimates by 

combining direct and indirect evidence versus direct evidence 

alone.4,6,7,9,10 In addition to relative effects, when conducted in 

a Bayesian framework, NMA generates the probability that 

each treatment is ranked first, second, and so on.11,12 It has been 

applied in clinical research areas such as diabetes,13 cardiovas-

cular safety,14 cancer,15 anatomy,16–20 and drug development,21 

and is gaining considerable favor among clinicians, guideline 

decision makers, and health technology agencies.22–24

Considerable research focused on methodological issues 

of NMA has been published in recent years; however, a limited 

number of simulation studies have been conducted. In particu-

lar, few simulations have explored the operating characteristics 

of rank probabilities obtained from an NMA. Some concern 

has been raised about the use of rank probabilities in decision 

making. Researchers argue that rank probability is sensitive 

to various factors and it is biased when there is a paucity of 

direct comparisons. Because of this fragility, researchers 

claim that decisions based on rank probabilities should not 

be trusted unless accompanied with effect sizes of pairwise 

comparisons, such as means and their credible intervals, as 

in some cases individual treatments may be disqualified on 

the basis of cost or clinical contraindication.11,24–26 If there 

are few trials per comparison, as in the study by Haas et al27 

for neonatal mortality outcome, it may lead to the problem 

of overestimating rates, suggesting extra caution should be 

exercised when interpreting the treatment rankings. This study 

aims to investigate how rank probabilities obtained from a 

Bayesian NMA are affected by characteristics of the network, 

including network configuration, number of studies per com-

parison, individual study sample sizes, and effect sizes. The 

simulation was conducted for a binary outcome.

Motivating example
A recently published article shared the results from pair-wise 

comparisons of four treatments in the reduction of heavy 

menstrual bleeding,28 including analysis of individual patient 

data. The authors conducted a wide-range search for studies 

that compared hysterectomy (hyster), endometrial destruc-

tion (both first-generation hysteroscopic [1gen] and second-

generation nonhysteroscopic [2gen] techniques), and the 

levonorgestrel releasing intrauterine system (Mirena) from 

the Cochrane Library, MEDLINE, Embase, and CINAHL 

databases and reference lists. The authors found that the 

level of satisfaction with treatment was the most commonly 

measured outcome across all identified studies, with 21 out of 

30 using this measure, and used it as their primary outcome 

measure. Direct and indirect comparisons among the four 

treatments were made without an NMA approach. The binary 

outcome data from 20 of these two-arm studies were avail-

able, and the resulting network is shown in Figure 1.

The network plot reveals an unequal number of studies 

per comparison and the absence of direct evidence between 

some of the pairs of treatments (eg, hyster and Mirena). An 

NMA synthesizing all evidence simultaneously was not 

conducted and rank probabilities were not estimated.

Using the available raw data (from the identified studies), 

a Bayesian NMA was performed for the purpose of yield-

ing probabilistic conclusions. It was possible to determine 

estimates for both relative effect sizes and rank probabilities 

through Markov chain Monte Carlo (MCMC) simulation 

sampling using an R package called gemtc. The pairwise 

estimates are available in Table 1. Based on this table, 

hysterectomy is the treatment yielding the greatest reduc-

tion of patients’ dissatisfaction regarding heavy menstrual 

bleeding, with the remaining three treatments relatively 

indistinguishable. These estimates are very similar to their 

findings despite the methods applied.

The rank probabilities of the four treatments are pro-

vided in Table 2. This ranking supports the conclusion that 

hysterectomy is the most effective treatment. However, when 

working with real data, there is no way to know if any bias is 

present in the findings. This paper will consider what factors 
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might influence these rank probabilities. The focus will be 

on the first rank probability (ie, the first column of Table 2). 

Using comprehensive simulations, possible sources of bias in 

networks similar to this one (eg, the effect of unequal studies 

per comparison) will be assessed.

The rest of this article is organized as follows. First, 

a brief description of the NMA method is provided. Next, 

the simulation approach is described, results are presented, 

and a discussion and limitations of the simulation are given. 

Finally, a conclusion is provided.

Methods
The NMA method relies on the fundamental assumptions 

of homogeneity, similarity, and consistency.29 Homogeneity 

requires the effect of treatments to be similar across trials,30 

similarity (or transitivity) requires that relative treatment 

effects are assumed to be exchangeable, and consistency 

(or coherence) requires that evidence from both direct and 

indirect comparisons is in agreement.4,29,31,32 Assumptions 

can prove difficult to verify.33

In NMA, a network’s geometry uses nodes to represent inter-

ventions and edges to represent the direct comparisons between 

interventions. The amount of available information is often 

represented in network plots by varying the sizes of nodes and 

thickness of edges. The visual depiction of a network can reveal 

that some treatments are included in significantly more studies 

than others. This disparity may come from comparator prefer-

ence bias, sponsorship bias, selective reporting bias, and time lag 

bias.4 Network geometries range from simple (a network with 

only three treatments) to very complex (a network with multiple 

treatments).34 In this simulation study, graphical networks that 

often result from systematic reviews were considered: star,35,36 

loop, one closed loop,25,36,37 and ladder (linear)25,36,37 (Figure 2). 

All of the four network patterns also exist together in the paper 

published by Lu and Ades.23 Each network comprises four nodes 

representing four interventions (treatments one to four labeled 

T
1
, T

2
, T

3
, and T

4
). Except for the star pattern, each configuration 

has both direct and indirect evidence.

statistical details
In NMA, input data are summary statistics gathered from 

published literature. The aggregate input data might be 

available in two formats: arm-level summaries (eg, odds, 

absolute risk, hazard, mean) or contrast-level summaries 

(eg, odds ratio, risk ratio, hazard ratio, mean difference). 

Arm-level data, which is modeled with the exact likeli-

hood rather than its normal approximation,6 were adopted 

in this simulation study. Both frequentist and Bayesian 

frameworks can suitably fit models for either of the two 

data formats.38

Although inference based on NMA can be made in both 

frequentist and Bayesian frameworks, Bayesian NMA is 

more common and provides two advantages. First, it allows 

researchers to incorporate prior knowledge for parameters of 

interest and a rich and flexible family of models can be fitted. 

Second, treatment rank probabilities can be calculated easily. 

Employing a Bayesian framework requires the calculation of 

posterior distributions using MCMC methods. Procedures are 

described in detail by Salanti et al.11 Furthermore, Bayesian 

inferences are exact for finite samples when appropriate 

priors are used (unlike frequentist inference, which relies 

on a normality assumption) and, hence, are more appealing, 

especially with small samples.

The calculation of rank probabilities is also straightfor-

ward in the Bayesian framework. For every MCMC run, 

each treatment in the study is ranked based on the relative 

effect estimates. The proportion of MCMC cycles in which 

the treatment ranks first gives the probability that it is the 

best among all competing treatments in the study. Similarly, 

rank probabilities of being second best, third best, and so on 

are computed for every treatment.

Table 2 The treatment rank probabilities

Rank probability

1st 2nd 3rd 4th

1gen 0.00020 0.12555 0.31260 0.56165
2gen 0.00355 0.35570 0.50455 0.13620
Mirena 0.04245 0.47750 0.17830 0.30175
hyster 0.95380 0.04125 0.00455 0.00040

Note: Copyright © 2010. BMJ. Adapted from Middleton LJ, Champaneria R,  
Daniels JP, et al. hysterectomy, endometrial destruction, and levonorgestrel 
releasing intrauterine system (Mirena) for heavy menstrual bleeding: systematic 
review and meta-analysis of data from individual patients. 2010;341:c3929.28

Abbreviations: 1gen, first-generation hysteroscopic endometrial destruction 
technique; 2gen, second-generation nonhysteroscopic endometrial destruction 
technique; hyster, hysterectomy.

Table 1 Relative treatment effects of all possible comparisons

1gen 2gen Mirena hyster

1gen – 1.14  
(0.78–1.61)

1.16  
(0.54–2.50)

2.72*  
(1.51–5.05)

2gen 0.88  
(0.62–1.28)

– 1.02  
(0.50–2.09)

2.38  
(1.23–4.95)

Mirena 0.86  
(0.40–1.84)

0.98  
(0.48–2.01)

– 2.34  
(0.89–6.17)

hyster 0.37  
(0.20–0.66)

0.42  
(0.20–0.82)

0.43  
(0.16–1.12)

–

Notes: *The figures in the table show estimated odds ratios along with 95% credible 
interval (CrI) for the treatment shown in the row relative to the treatment in the 
corresponding column. For example, we can see that more women were dissatisfied 
at 12 months after first generation endometrial destruction than after hysterectomy: 
odds ratio (95% CrI) 2.72 (1.51 to 5.05).
Abbreviations: 1gen, first-generation hysteroscopic endometrial destruction tech-
nique; 2gen, second-generation nonhysteroscopic endometrial destruction technique; 
hyster, hysterectomy.
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The general linear model for NMA has been proposed 

by several researchers.32,39 The model can be fitted for dif-

ferent types of data, including normal, binomial, Poisson, 

and multinomial. The following sections will review how 

the Bayesian NMA model can be fitted for arm-level study 

summaries of binary outcomes.

Fixed effects models in NMA
This section describes both fixed and random effects NMA 

models confined to binary outcomes. Suppose that there are 

N randomized controlled trials that compare K treatments. 

Let r
ik
 be the number of events of the ith clinical trial in the 

arm representing treatment k. Let n
ik
 represent the number 

of observations and p
ik
 denote the corresponding success 

probability for treatment k in study i. Then the distribution 

of the number of events is given by:

 r Bin p n i N k Kik ik ik~ ( , ), , , ; , ,= =1 1 2… …  (1)

where p
ik
 represents the corresponding probability of a suc-

cessful outcome for treatment k and is modeled on the logit 

scale as:

 
log ( ) log , , , ; , ,it

p

p
i N b k Kib

ib
ipib =

-
= = = =

1
1 2 1µ … …

 (2)

 
log ( ) log log ( ), ,it p

p

p
d p it dik

ik

ik
i i k ik k=

-
= + ⇔ = +-

1 1
1

1 1 1µ µ

 (3)

with i =1, 2, …, N; k =2, …, k; b  k where µ
i
 are the trial 

specific baselines representing the log odds of an event occur-

ring in the referent treatment group (k = b). Then, d
i,1k

 are the 

fixed trial-specific log odds of event occurrence in group k 

compared with the referent treatment. The logit link function 

maps the probabilities onto the real number line.

Random effects models in NMA
In a random effects model, each study i provides an esti-

mate of the study-specific log odds, δ
i,1k

 which are assumed 

to be independent of the order in which they were carried 

out (exchangeable). Then, the random effects model is 

obtained by replacing d
i,1k

 in the above fixed effects model 

by δ
i,1k

, ie,

 

log ( ) log ,

, , ; , , ; .

,it p
p

p

i N k k b k

ik
ik

ik
i i k=

-
= +

= = <
1

1 2 2

1µ δ

… …  (4)

It is typically assumed that δ σi bk bk k bN d d d, ~ ( , )= -1 1
2 . 

The notation k  b indicates that k is after b and d
11

 =0. Prior 

distributions for basic parameters (d
12

, d
13

, d
14

, …) need to 

be assumed in the Bayesian framework while the remaining 

contrasts, called functional parameters, are defined in terms 

of those treatments compared with the baseline treatment 

directly assuming consistency. The functional parameters 

are written as:

 

d d d b K s K

t K s t

st bt bs= - = =
= <

, , , , ; , , , ;

, , , ; .

1 2 2 3

3 4

… …
…  (5)

With regard to choice of priors for hyperparameters, it 

is common to set weakly informative priors that let the data 

speak, usually µ βi d Nbk, , ( , )∼ 0 104 .4,32,39 For the likelihood of 

binomial outcomes with logit link models, a uniform flat prior 

A

C D

B

T1

T1

T1

T2

T2
T2

T2

T1

T3

T3

T3T3

T4

T4

T4

T4

Figure 2 Type of network geometry considered in our simulation.
Notes: (A) Star geometry. (B) Loop geometry. (C) One closed loop geometry. (D) Ladder or linear geometry. T1 denotes a reference treatment and T2 to T4 are treatments 
that are compared relative to the reference.
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for the standard deviation (ie, σ ∼ Uniform ( , )0 5 )40 is usually 

used. A flat γ prior on the precision (ie, 1/σ γ2 0 001 0 001∼ ( . , . )) 

is another alternative. It assigns small weights to a large stan-

dard deviation. This feature may be useful particularly when 

data are sparse to improve numerical stability and speed 

convergence of MCMC sampling.

The dramatic increase of interest in the Bayesian analysis 

is primarily because of the emergence of MCMC methods. 

While the MCMC method provides a convenient way to 

draw inference from complicated statistical models, there 

are some problems associated with this method. One of 

these problems is that convergence in MCMC sampler is a 

complex issue. It usually needs a large number of iterations 

to reach convergence. In addition, early MCMC iterations 

are highly sensitive to starting values of parameters and do 

not provide good information about the target distribution 

and, hence, are required to be thinned. The basic idea is 

that although the chains look divergent at early iterations 

due to different starting points, when the MCMC algorithm 

is converged, the chains should mix together and become 

indistinguishable from each other as they converge to the 

same posterior distribution. In this study, the package gemtc 

(http://cran.r-proct.org/web/packages/gemtc/index.html) 

from the R library, was used to implement the Bayesian 

NMA through MCMC simulation nicely, and is compat-

ible with other packages that can conduct convergence 

diagnostics.

Simulation studies
In this section, the simulation design and results are provided. 

As outlined in the Background section, this simulation study 

addresses how an unequal number of studies per comparison 

affects the ranking of treatments and the influence of network 

configuration.

simulation design
In this study, four treatments were considered and two-

arm level binary data were simulated. The treatments were 

denoted T
1
 (placebo), T

2
, T

3
, and T

4
. The parameters varied 

during simulation are given in Table 3. Three scenarios were 

considered. The first two scenarios used the success prob-

ability conditions (0.1, 0.5, 0.5, 0.5) for (T
1
, T

2
, T

3
, T

4
). In 

both scenarios, three equivalent treatments were compared 

with a reference treatment, T
1
. The difference between 

the two scenarios was the position of the reference treat-

ment within the network configuration, ie, T
1
 and T

3
 were 

interchanged. The third scenario with success probabilities 

(0.2, 0.2, 0.2, 0.8) for (T
1
, T

2
, T

3
, T

4
) compared a superior 

treatment with the remaining equally inferior treatments. 

Under each of the three scenarios, four different network  

patterns, seven different numbers of studies per comparison, 

and three different study-level sample sizes were used to 

simulate arm-level data.

For the ladder and star geometries, the unequal number 

of studies (1, 5, 15) denoted the number of studies for the 

comparisons between treatments (T
1
 and T

2
, T

2
 and T

3
, T

3
 

and T
4
) and (T

1
 and T

2
, T

1
 and T

3
, T

1
 and T

4
), respectively. 

Likewise, the unequal number of studies (1, 3, 5, 15) for loop 

and one closed loop geometries denoted the number of studies 

comparing the pairs of treatments (T
1
 and T

2
, T

2
 and T

3
, T

3
 

and T
4
, T

1
 and T

4
), respectively. Lastly, for the completely 

connected loop geometry, the number of studies between (T
1
 

and T
2
, T

1
 and T

3
, T

1
 and T

4
, T

2
 and T

3
, T

2
 and T

4
, T

3
 and T

4
) 

were set at (1, 2, 3, 5, 10, 15), respectively.

Using the parameters described above, binary data 

were generated from an appropriate binomial distribution. 

Then, the hierarchical Bayesian NMA model was fitted to 

perform statistical inference. In each MCMC simulation, 

the first 5,000 iterations were discarded as a burn-in to 

minimize the effect of initial values on the posterior 

 distribution. Moreover, to minimize poor mixing (or slow 

convergence), chains were thinned by keeping every 

tenth simulated draw from each MCMC sequence. After 

burn-in and thinning, 2,000 iterations were used to estimate 

posterior distributions and make inferences about rank 

probabilities. For each simulation setting, this process was 

repeated 1,000 times.  Convergence was assessed using 

the Brooks–Rubin diagnostic test where a potential scale 

reduction factor of 1.05 or lower was considered sufficient 

for convergence.41

The first rank probability estimates yielded from the 

MCMC process were averaged over the 1,000 simulations 

for each setting to create mean first rank probabilities. Two 

measures of performance, the bias for estimates of first rank 

probabilities and the standard deviation of the estimates over 

1,000 samples, were calculated.

Table 3 Parameters varied during simulations

Parameters Values

Probability of success  
for T1, T2, T3, T4

(0.1, 0.5, 0.5, 0.5), (0.5, 0.5,  
0.1, 0.5), (0.2, 0.2, 0.2, 0.8)

study sample size 50, 100, 200
network pattern star, ladder, loop, one closed loop
Number of studies per comparison

  network 
  star, ladder 

loop, one closed loop

Equal: 
(1, 2, 3, 5, 10, 15) 
(1, 2, 3, 5, 10, 15)

Unequal: 
(1, 5, 15) 
(1, 3, 5, 15)
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simulation results
In this section, estimates of the mean, bias, and standard 

deviation of first rank probabilities for each simulation set-

ting are given. For the first two sets of success probabilities, 

no difference between the average first rank probabilities of 

T
2
, T

3
, and T

4
 were expected. Table 4 shows results for a star 

geometry. For an equal number of studies per comparison, 

the star geometry identified treatments as expected with 

minimal bias. However, with an unequal number of studies 

per comparison, the star geometry showed large bias and 

large standard deviation.

The upward bias of the first rank probability corresponds 

to the treatment with the smallest number of studies in the 

network. All possible permutations of the unbalanced number 

of studies were checked and showed that the overestimation 

of the first rank probability always aligns with the treatment 

used in the fewest number of studies.

Table 5 shows results for the loop geometry. Here, T
3
 was 

consistently underestimated, albeit slightly, though it was 

expected to be equivalent in efficacy with T
2
 and T

4
.

In order to determine the impact of direct evidence, 

an additional simulation was conducted using a complete 

network. When direct evidence was available for all treat-

ment comparisons, the model correctly estimated the ranks 

of treatments. These results are provided in Table 6.

The results from the one closed loop geometry are pro-

vided in Table 7. As with the loop geometry, the rank prob-

ability of T
3
 was underestimated while those of T

2
 and T

4
 

were overestimated. The underestimation by the one closed 

loop configuration was more extreme than with the loop 

configuration. This appears to be related to the additional 

direct evidence in the one closed loop configuration; T
3
 was 

compared with T
1
, T

2
, and T

4
 as opposed to only T

2
 and T

4
 

in loop geometry.

Table 8 displays the results of when the position of the 

reference treatment for the one closed loop network geometry 

was changed. This result shows that T
4
, the treatment that was 

compared only with the placebo, was favored as compared to 

the other two equivalent treatments, which were compared 

to one another.

Table 9 shows results for the ladder geometry. The first 

rank probability for T
3
 was underestimated as with the loop 

geometry, with even stronger bias.

Table 10 shows results for the final scenario, when T
4
 is 

superior in efficacy compared to three equally less effective 

treatments. Here, as expected, T
4
 was identified by the model 

under each simulation setting as the most effective treatment 

with highest rank probability, regardless of the network 

geometry or placement of the superior treatment within it. 

The impact of the number of studies on the rank probability 

was negligible. In this scenario, bias and standard deviations 

were generally very small in all cases. The results were 

presented with a sample size of 50 for the star network pat-

tern since the results were not markedly different for other 

network configurations or sample sizes, regardless of the 

position of the superior treatment.

Discussion
NMA offers a set of methods to model, visualize, analyze, and 

interpret a comprehensive picture of the evidence involving 

multiple treatments and to understand the relative merits of 

each intervention. In NMA, the Bayesian approach is becom-

ing more popular than the frequentist approach. It provides 

a simple process for calculating the rank probabilities of 

Table 4 Star network pattern with success probabilities (0.1, 0.5, 0.5, 0.5) and n=200

Number of  
studies

Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1) 0.00 0.33 0.33 0.34 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10
(2, 2, 2) 0.00 0.34 0.32 0.34 0.00 0.00 -0.01 0.00 0.00 0.19 0.20 0.20
(3, 3, 3) 0.00 0.34 0.32 0.33 0.00 0.01 -0.01 0.00 0.00 0.23 0.22 0.23
(5, 5, 5) 0.00 0.33 0.34 0.33 0.00 0.00 0.01 0.00 0.00 0.23 0.24 0.24
(10, 10, 10) 0.00 0.35 0.33 0.33 0.00 0.01 -0.01 -0.01 0.00 0.25 0.24 0.24
(15, 15, 15) 0.00 0.34 0.32 0.34 0.00 0.01 -0.01 0.01 0.00 0.25 0.24 0.25
(1, 5, 15) 0.00 0.43 0.31 0.26 0.00 0.09 -0.02 -0.07 0.00 0.27 0.23 0.21
(15, 5, 1) 0.00 0.26 0.30 0.44 0.00 -0.07 -0.03 0.10 0.00 0.22 0.23 0.27
(15, 1, 5) 0.00 0.27 0.43 0.31 0.00 -0.07 0.09 -0.02 0.00 0.21 0.27 0.24
(1, 15, 5) 0.00 0.43 0.26 0.31 0.00 0.10 -0.07 -0.02 0.00 0.27 0.21 0.24
(5, 15, 1) 0.00 0.30 0.26 0.44 0.00 -0.03 -0.08 0.11 0.00 0.23 0.21 0.27
(5, 1, 15) 0.00 0.30 0.44 0.25 0.00 -0.03 0.11 -0.08 0.00 0.23 0.27 0.21

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.
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Table 6 Loop (complete) network pattern with success probabilities (0.1, 0.5, 0.5, 0.5) and n=200

Number of studies Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1, 1, 1, 1) 0.00 0.33 0.33 0.34 0.00 0.00 0.00 0.00 0.00 0.19 0.19 0.19
(2, 2, 2, 2, 2, 2) 0.00 0.32 0.33 0.35 0.00 -0.01 0.00 0.01 0.00 0.23 0.23 0.23

(3, 3, 3, 3, 3, 3) 0.00 0.33 0.33 0.34 0.00 0.00 -0.01 0.00 0.00 0.23 0.23 0.24

(5, 5, 5, 5, 5, 5) 0.00 0.35 0.32 0.32 0.00 0.02 -0.01 -0.01 0.00 0.25 0.24 0.24

(10, 10, 10, 10, 10, 10) 0.00 0.32 0.33 0.35 0.00 -0.01 0.00 0.01 0.00 0.24 0.25 0.25

(15, 15, 15, 15, 15, 15) 0.00 0.34 0.33 0.33 0.00 0.01 -0.01 0.00 0.00 0.26 0.25 0.25

(1, 2, 3, 5, 10, 15) 0.00 0.37 0.33 0.29 0.00 0.04 0.00 -0.04 0.00 0.26 0.25 0.23

(15, 10, 5, 3, 2, 1) 0.00 0.29 0.34 0.38 0.00 -0.05 0.00 0.04 0.00 0.23 0.25 0.26

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.

Table 7 One closed loop network pattern with success probabilities (0.1, 0.5, 0.5, 0.5) and n=200

Number  
of studies

Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1, 1) 0.00 0.36 0.24 0.39 0.00 0.03 -0.09 0.06 0.00 0.14 0.10 0.14

(2, 2, 2, 2) 0.00 0.35 0.26 0.38 0.00 0.02 -0.07 0.05 0.00 0.22 0.19 0.22

(3, 3, 3, 3) 0.00 0.35 0.26 0.39 0.00 0.02 -0.08 0.06 0.00 0.23 0.19 0.24

(5, 5, 5, 5) 0.00 0.37 0.25 0.37 0.00 0.04 -0.08 0.04 0.00 0.25 0.20 0.25

(10, 10, 10, 10) 0.00 0.36 0.25 0.39 0.00 0.03 -0.09 0.06 0.00 0.26 0.21 0.27

(15, 15, 15, 15) 0.00 0.36 0.24 0.40 0.00 0.03 -0.09 0.07 0.00 0.26 0.21 0.27

(1, 3, 5, 15) 0.00 0.42 0.25 0.33 0.00 0.08 -0.08 0.00 0.00 0.27 0.21 0.24

(15, 3, 5, 1) 0.00 0.31 0.25 0.44 0.00 -0.02 -0.08 0.11 0.00 0.23 0.20 0.26

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.

Table 5 Loop network pattern with success probabilities (0.1, 0.5, 0.5, 0.5) and n=200

Number of  
studies

Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1, 1) 0.00 0.35 0.29 0.35 0.00 0.02 -0.04 0.02 0.00 0.13 0.12 0.13

(2, 2, 2, 2) 0.00 0.34 0.31 0.35 0.00 0.01 -0.03 0.02 0.00 0.22 0.20 0.21

(3, 3, 3, 3) 0.00 0.36 0.29 0.35 0.00 0.03 -0.05 0.02 0.00 0.24 0.21 0.24

(5, 5, 5, 5) 0.00 0.36 0.28 0.36 0.00 0.02 -0.05 0.03 0.00 0.25 0.22 0.25

(10, 10, 10, 10) 0.00 0.36 0.28 0.36 0.00 0.02 -0.06 0.03 0.00 0.27 0.23 0.26

(15, 15, 15, 15) 0.00 0.35 0.30 0.36 0.00 0.02 -0.04 0.02 0.00 0.25 0.23 0.25

(1, 3, 5, 15) 0.00 0.38 0.27 0.35 0.00 0.04 -0.06 0.02 0.00 0.25 0.21 0.25

(15, 3, 5, 1) 0.00 0.37 0.28 0.35 0.00 0.04 -0.05 0.02 0.00 0.25 0.21 0.24

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.

Table 8 One closed loop network pattern with success probabilites (0.1, 0.5, 0.5, 0.5) and n=200

Number  
of studies

Rank probability Bias Standard deviation

T3 T2 T1 T4 T3 T2 T1 T4 T3 T2 T1 T4

(1, 1, 1, 1) 0.30 0.29 0.00 0.41 -0.04 -0.04 0.00 0.08 0.12 0.12 0.00 0.15

(2, 2, 2, 2) 0.28 0.28 0.00 0.44 -0.06 -0.05 0.00 0.10 0.20 0.20 0.00 0.24

(3, 3, 3, 3) 0.29 0.29 0.00 0.42 -0.04 -0.05 0.00 0.09 0.22 0.22 0.00 0.26

(5, 5, 5, 5) 0.30 0.29 0.00 0.41 -0.03 -0.05 0.00 0.08 0.23 0.22 0.00 0.27

(10, 10, 10, 10) 0.29 0.30 0.00 0.41 -0.05 -0.03 0.00 0.08 0.22 0.23 0.00 0.27

(15, 15, 15, 15) 0.28 0.30 0.00 0.42 -0.06 -0.03 0.00 0.09 0.22 0.24 0.00 0.28

(1, 3, 5, 15) 0.35 0.33 0.00 0.32 0.02 -0.00 0.00 -0.01 0.25 0.24 0.00 0.24

(15, 3, 5, 1) 0.25 0.26 0.00 0.49 -0.08 -0.08 0.00 0.16 0.21 0.22 0.00 0.28

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.
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interventions, incorporates prior knowledge, and fits more 

flexible models.

The primary purpose of this article was to examine 

the effect of various factors on rank probabilities of treat-

ments in NMA through simulation. For the treatments 

compared in loop, one closed loop, and ladder network 

structures with an equal number of studies per comparison, 

the model-estimated rank probabilities exhibited bias. The 

model favored the treatment that was directly compared 

with the fewest number of treatments in the network 

patterns. The rank probability of the treatment that was 

compared with the largest number of treatments was always 

underestimated.

The simulations also showed that when two equally 

effective treatments in the same network are included in 

the same number of direct comparisons, the effectiveness 

of the treatments to which they are compared will affect 

the rankings. Treatments that are compared directly with 

inferior treatments yield ranks that are overestimated, 

while treatments that are exclusively compared with equal 

or superior treatments yield ranks that are underestimated. 

When there is an unequal number of studies per comparison 

for a given network structure, the model overestimated 

the rank probability of the treatment associated with 

smaller number of studies. The first rank probability’s 

overestimation when it is the least-studied treatment is an 

artifact of a larger estimated variance for that treatment. The 

rank probabilities obtained from Bayesian NMA for loop, 

one closed loop, and ladder geometry can be reliable only 

when there is direct evidence for every treatment involved 

in the analysis or when there is an obvious superiority in 

efficacy. In other words, rank estimates for treatments that 

have never been directly compared should not be trusted. 

The position of the reference treatment in the network may 

affect conclusions from rank probabilities. Increasing the 

sample size of individual studies did not help to adjust the 

over/underestimation of the rank probabilities. These find-

ings validate the concerns of Mills et al24 about using rank 

probabilities for decision making.

There are some limitations of this simulation that must 

be noted. Although the Bayesian NMA model can be used 

broadly, only a binary outcome was considered in this 

simulation study. This study was also confined to only 

two-arm studies. In practice, multi-arm studies in NMA 

are often encountered where correlation is induced among 

contrasts that involve a common comparator and must be 

modeled.38,42 Furthermore, this study only focused on the 

rank probabilities that each treatment is best, but the authors 

might be interested in investigating all of the ranks of avail-

able treatments.

Table 9 Ladder network pattern success probabilities (0.1, 0.5, 0.5, 0.5) and n=200

Number  
of studies

Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1) 0.02 0.36 0.24 0.37 0.02 0.03 -0.09 0.04 0.00 0.09 0.07 0.09
(2, 2, 2) 0.00 0.37 0.25 0.38 0.00 0.04 -0.09 0.05 0.00 0.20 0.16 0.20
(3, 3, 3) 0.00 0.38 0.25 0.38 0.00 0.04 -0.09 0.05 0.00 0.23 0.18 0.23
(5, 5, 5) 0.00 0.37 0.25 0.38 0.00 0.04 -0.08 0.04 0.00 0.24 0.20 0.24
(10, 10, 10) 0.00 0.39 0.24 0.37 0.00 0.05 -0.09 0.04 0.00 0.26 0.21 0.26
(15, 15, 15) 0.00 0.37 0.25 0.38 0.00 0.04 -0.09 0.05 0.00 0.26 0.21 0.26
(1, 5, 15) 0.00 0.41 0.25 0.34 0.00 0.08 -0.08 0.00 0.00 0.26 0.21 0.25
(15, 5, 1) 0.00 0.32 0.25 0.43 0.00 -0.01 -0.09 0.09 0.00 0.22 0.19 0.25

Note: T1 is reference treatment and T2 to T4 are treatments in comparison relative to this reference.

Table 10 Star network pattern success probabilities (0.2, 0.2, 0.2, 0.8) and n=200

Number  
of studies

Rank probability Bias Standard deviation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

(1, 1, 1) 0.01 0.08 0.08 0.83 0.01 0.08 0.08 -0.17 0.00 0.04 0.04 0.04
(2, 2, 2) 0.00 0.01 0.01 0.98 0.00 0.01 0.01 -0.02 0.00 0.01 0.01 0.02
(3, 3, 3) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(5, 5, 5) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(10, 10, 10) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(15, 15, 15) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(1, 5, 15) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
(15, 5, 1) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Conclusion
This simulation study revealed several occasions of bias 

of rank probabilities obtained from a Bayesian NMA. For 

example, for an unequal number of studies per comparison, 

the rank probability of the treatment with more studies was 

underestimated. In addition, the rank probability of the treat-

ment that was directly compared with the placebo and an 

equivalent treatment simultaneously (eg, T
2
 and T

4
 in loop, 

ladder, and one closed loop geometries) gained spurious rank 

probabilities, whereas the rank probability of a treatment that 

was compared with two equivalent treatments (eg, T
3
 in loop, 

ladder, and one closed loop) was underestimated. In summary, 

decisions should not be made based on rank probabilities espe-

cially when treatments are not directly compared (ie, ladder, 

one closed loop, star) as they may be ill-informed.
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