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Abstract: Diabetic retinopathy (DR) is the most common complication of diabetes mellitus in 

the eye. Although the clinical treatment for DR has already developed to a relative high level, 

there are still many urgent problems that need to be investigated in clinical and basic science. 

Currently, many in vivo animal models and in vitro culture systems have been applied to solve 

these problems. Many approaches have also been used to establish different DR models. How-

ever, till now, there has not been a single study model that can clearly and exactly mimic the 

developmental process of the human DR. Choosing the suitable model is important, not only 

for achieving our research goals smoothly, but also, to better match with different experimental 

proposals in the study. In this review, key problems for consideration in choosing study mod-

els of DR are discussed. These problems relate to clinical relevance, different approaches for 

establishing models, and choice of different species of animals as well as of the specific in vitro 

culture systems. Attending to these considerations will deepen the understanding on current 

study models and optimize the experimental design for the final goal of preventing DR.

Keywords: animal model, in vitro culture, ex vivo culture, neurovascular dysfunction

Introduction
The worldwide incidence of diabetes is rising quickly. Studies have shown that after 

10 years of diabetes, nearly 50% of type 2 and 70% of type 1 diabetic patients will 

develop diabetic retinopathy (DR).1 As a leading cause of blindness in eye diseases, DR 

drives much attention, on the part of clinical and basic researchers, to the investigation of 

its mechanism and prevention. However, the pathogenesis of DR is complicated, so vali-

dated study models are needed to deepen our understanding of the disease mechanisms 

and for trying new approaches for early screening and therapeutic intervention.

DR is a common clinical condition. As to study models for DR, there are several 

different species of animal models, from tiny zebrafish to monkeys, and in vitro culture 

systems for retinal blood vessel assay, using human or nonhuman tissues. All of these 

models are aimed at mimicking the clinical course of DR, while each has its limita-

tion in matching the full features of the human disease. Previously, there have been 

some reviews describing animal models of DR in great detail.2–6 In addition, there are 

other reviews focusing on angiogenesis models in vivo7 and in vitro.8 However, when 

a researcher is faced with choosing the study model for different purposes, there are 

many key problems to consider in advance.

In this review, a summary of the most common and important problems for 

consideration on the selection of appropriate study models of DR is provided. The 

features and challenges of clinical DR that should be considered in preclinical studies 

are discussed first. Then, the current research focuses in clinical and basic science are 
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summarized, for researchers to consider and compare with 

their own experimental goals. Finally, the popular modeling 

approaches in common animal species, together with their 

advantages and limitations, are summarized. These consider-

ations will help researchers to select the appropriate candidate 

when facing multiple choices of study models.

Clinical considerations
Characteristics of human DR
Clinically, DR is mainly classified in two groups, nonpro-

liferative DR (NPDR) and proliferative DR (PDR). PDR 

is judged by the presence of retinal neovascularization,9 

which is usually confirmed with fluorescence fundus 

angiography imaging. PDR is the more advanced stage 

of DR. In PDR, proliferating neovasculature contributes 

to severe complications, eg, vitreous hemorrhage, retinal 

scars, and tractional retinal detachment, all of which often 

need vitreoretinal surgery. However, the endpoint of PDR is 

variable, and irreversible vision loss is attributed to retinal 

structure damage and layer thinning. Thus, the Early Treat-

ment of Diabetes Retinopathy Study (ETDRS) has staged 

NPDR with mild, moderate, and severe grades, aimed to 

screen risk factors and to detect the earlier stages of DR 

for nonsurgical treatment, eg, retinal photocoagulation or 

antiangiogenic therapy.10,11

Histologically, retinal vascular lesions are considered to 

be the hallmark and the grading criterion of DR. The first 

visible alteration in retinal vasculature is the formation of 

microaneurysms. The further changes are intraretinal focal 

hemorrhage, venous beading, and intraretinal microvascular 

abnormalities (IRMAs) showing with microvascular torsion 

and regional capillary nonperfusion on fluorescence fundus 

angiography imaging. IRMA is associated with “cotton 

wool” spots observed with funduscopy, which are focal 

infarcts of nerve fibers in essence. Following the progression 

of vascular damage, diabetic macular edema appears, which 

is one of the major causes of vision loss in DR, linking with 

lesions at the blood–retinal barrier.12,13

Clinical challenges
A current clinical challenge for consideration in diagnosis and 

prevention is the screening for risk factors that contribute to 

retinal vascular abnormality, for eg, studies of ocular blood 

flow;14,15 biomarkers detected in body fluids, like advanced 

glycation end products (AGEs); interleukins; and tumor 

necrosis factor-α (TNF-α).16,17

As to nonsurgical therapeutic investigations, the 

focus has been on treating diabetic macular edema and 

 antiangiogenesis, and on vascular cell protection to inhibit 

neovascularization, for eg, with vascular endothelial growth 

factor (VEGF) inhibitor18 or other potential ocular-delivered 

drugs.19–22 Recently, anti-VEGF has become one of most 

important discoveries to treat neovascularization clinically. 

However, limitations to anti-VEGF therapies also exist, eg, 

resistance, systemic side effects with local use, and non-

VEGF-related vascular proliferative mechanisms.18–22 Indeed, 

other than VEGF, more and more potentially angiogenic fac-

tors have been discovered, such as insulin-like growth factor 

1 (IGF-1),23 platelet-derived growth factor B (PDGF-B), 

erythropoietin (EPO), angiopoietin 2,24 interleukin 8 (IL-8), 

etc.25 Antioxidants, eg, alpha-lipoic acid (ALA), are other 

potential drugs that prevent micro- and macrovascular dam-

age, by normalizing pathways downstream of mitochondrial 

overproduction of reactive oxygen species, and preserve 

pericyte coverage of retinal capillaries.26,27

As to surgical aspects, treatment advances are largely 

dependent on development of new instruments for the goal 

of perfecting results of vitreoretinal surgery. However, when 

DR is advanced to the proliferative stage, surgical effect 

is limited to the severe damage of retinal neurovascular 

structure.28,29

Thus, more and more preclinical trials need to use dif-

ferent in vivo animal models or in vitro vascular assays to 

understand the mechanisms and to find potential treatment 

to prevent human DR.

Choices of study model in DR
Principle of choice: Research goal is the 
basic consideration
Understanding of the mechanism of DR is complicated by 

the complexity of the retinal structure. The retina contains 

multiple cell components and structure, and when exposed 

to the stress of hyperglycemia, not only blood vessels but 

also, retinal neurons and glial cells will all be challenged by 

the insult. The concept of the neurovascular unit is a kind of 

simplified understanding of the crosstalk between the retinal 

blood vessel and other cells around it.30 From the view of 

a neurovascular hypothesis in DR, conditions of hypergly-

cemia induce vascular damage, thereafter destroying the 

microenvironment and the crosstalk between endothelial 

cells/pericytes and neurons, endothelial cells/pericytes and 

retinal glial cells, as well as neurons and glial cells, finally 

leading to vascular proliferation, glial proliferation, and 

neural degeneration (Figure 1).

Previously, the focus was on establishing various ani-

mal models of DR, and there were many classic studies 
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www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2014:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2313

Choosing preclinical study models of diabetic retinopathy

 investigating morphological damage to the retinal vasculature 

and comparing this to clinical features found in human DR. 

Studies have shown that one of the earliest histological 

changes of DR is thickening of the capillary basement mem-

brane.31 Dysfunction of endothelial cells and pericytes, and 

thereafter cell loss, are also early phenomena, which could 

be responsible for the acellular capillary formation.4 It is 

believed that the formation of microaneurysms, the hallmark 

alteration of human DR, are attributed to the loss of peri-

cytes.32 Cotton wool spots are linked with focal IRMAs.33

Therefore, we summarized the current research areas 

and categorized them with respect to the different stages of 

development of DR and according to their different goals. At 

different stages of NPDR and PDR, there have been different 

points of focus, for eg, in NPDR, the blood vessel-related 

research focuses on early biomarkers to detect vascular 

dysfunction,34 the mechanisms for how hyperglycemia 

induces vascular damage,35 and potential treatment to protect 

endothelial cells or pericytes from dysfunction or loss.22 

Neuron-related research has focused on early detection of 

neural degeneration by electrophysiological methods,36,37 and 

neuroprotection.38,39 Glial cell-related research focuses on the 

response of retinal astrocytes and Müller cells.39 Microen-

vironment damage–related research directions include 

cytokines and the mechanisms of inflammation, as well as 

immune-associated mechanisms, etc.40 As to preventing 

PDR, the current research goals relate to potential therapies 

for inhibiting or treating the complications of neovasculariza-

tion, eg, anti-VEGF, which was mentioned above. Thus, after 

clarifying the goal of investigation and the related stage in 

DR, researchers can pay attention to the choices for different 

approaches and study models.

N
PD
R

PD
R

Hyperglycemia

Vascular damage: BM thickening,
endothelial cell and pericyte

dysfunction/loss, BRB damage

Neurovascular
dysfunction

Retinal
gliosis

Microaneurysms, retinal 
hemorrhage in dots and flakes

Astrocyte/Müller
cell responses

Retinal neuron
dysfunction/lossMicroenvironment

destroyed

Focal infarct of
nerve fibers

Glial scar
Neovascularization and
vascular proliferation

Severe retinal layer
thinning

Figure 1 Neurovascular hypothesis for the pathogenesis of diabetic retinopathy.
Abbreviations: BM, basement membrane; BRB, blood–retinal barrier; NPDR, nonproliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.
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Different choices to establish study model 
of DR
Currently, in the establishment of animal models for DR, 

there are mainly three approaches: 1) inducing experimental 

hyperglycemia, 2) using animals with spontaneous diabetes 

mellitus, and 3) inducing retinal angiogenesis without dia-

betes mellitus.

As to the approach of experimental hyperglycemia induc-

tion, this mainly includes: a) pharmacological methods, for 

eg, intraperitoneal injection of streptozotocin (STZ)41–45 or 

alloxan;46 b) diet methods, such as feeding a high-galactose 

diet;46 and c) surgical method, for eg, Pancreatectomy.47

a) Regarding induction of pharmacological hyperglyce-

mia, intraperitoneal injection using STZ is the classic 

and most popular approach to establish diabetic animal 

models. The mechanism is that STZ can kill pancreatic 

β cells by its toxicity. Following the hyperglycemia, 

the animal will develop DR. Compared with the other 

methods listed above, STZ injection is time-saving and 

efficient and has been used widely in rodents and large 

animals, for eg, rabbits, cats, dogs, pigs, and monkeys. 

The standard modeling protocol that has been established 

in mice was suggested by the Animal Models of Diabetic 

Complications Consortium.48 It has been reported that the 

STZ-induced model could demonstrate NPDR, however, 

rarely forming microaneurysms.49 In addition, only a few 

studies reported the formation of focal neovasculariza-

tion.50 Alloxan is another drug used to induce hyperglyce-

mia. However, compared with STZ, the alloxan-induced 

model has needed longer time to demonstrate a milder 

level of pathological change of DR – reportedly 3 months 

in mice46 and 12 months in rats.51

b) The high galactose-diet feeding method can be used in 

rodents and other large animals. Compared with the STZ 

method, it is time-consuming. However, it is suitable for 

zebrafish, by just directly elevating the concentration of 

glucose in the fishpond.52

c) Surgical methods, like pancreatectomy, can be used 

in large animals, such as cats,47 pigs,53 and monkeys.54 

However, it is also time-consuming, for eg, in one 

report using cats, although hyperglycemia was induced 

quickly, within 1–2 weeks after the surgery, DR and 

formation of microaneurysms was observed only after 

around 5 years.47 Generally, experimental hyperglycemia-

inducted methods can be applied in wide types of animals, 

without obvious species limitation.

As to the approach of using spontaneously diabetic animals 

for study of DR, this mainly refers to use of genetic technology 

to create animals that develop hyperglycemia and diabetes 

mellitus spontaneously, followed by the development of the 

pathological changes of DR. The spontaneous DR model 

has been established using mice, rats, and zebrafish. The DR 

animal created under this method shares the advantage of 

consistent phenotypes and high successful rate of induction. 

However, higher cost and genetic technology are needed. In 

addition, compared with experimentally induced-DR methods, 

spontaneous diabetic animals need a longer period to demon-

strate DR. There are a relatively small number of animals with 

special strains that can develop diabetes spontaneously, but 

this has been reported in rats and monkeys (Table 2). Similarly, 

these animals with intraspecies variation also need a longer 

period to demonstrate DR, while the phenotypic variation is 

larger than for genetically mutated animals.

As to the method of retinal angiogenesis-induction, this 

refers to inducing retinal blood vessel proliferation without 

elevation of the blood glucose. The popular methods include 

oxygen-induced retinopathy and VEGF ocular delivery. 

Currently, the oxygen-induced retinopathy method is stan-

dardized and popularly applied in mice55 and rats,56 while the 

method of VEGF ocular delivery is more suitable for larger 

animals, for eg, rabbit and monkey.57 Technically, these are 

not specific DR models, since they share phenotypes with 

other retinal neovascular diseases, such as retinopathy of pre-

maturity, retinal vein occlusion, and retinal artery occlusion. 

However, from the view of pathogenesis, neovascularization 

is the same key pathogenesis in PDR. In addition, the angio-

genic method can induce advanced vascular proliferation to 

mimic PDR, while the hyperglycemia-induced models mostly 

mimic NPDR. We summarized the rationale, advantages, and 

limitations for each popular modeling approach currently 

used in DR in Table 1.

Animal choices in vivo and cell culture 
choices in vitro
Genetically, mouse and zebrafish have the greatest poten-

tial as in vivo animal models of DR for the investigation 

of mechanisms and preclinical drug screening. They have 

advantages such as similar gene background to humans and 

ease of manipulation by the current genetic technology. In 

addition, the small size of animal is also easy to handle and 

house, and the short lifespan and large breeding rate can 

shorten the experimental period. These types of animals 

are inexpensive themselves, although gene modification 

enhances their cost. However, with the maturation of gene 

technology, more and more commercial gene-modified 

animals have already been made available for purchase for 
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achieving different experimental goals with a not very high 

price. Detailed description of the characteristics of these 

genetic animals is beyond the purpose in this review; we 

listed the related references in Table 2. In addition, double-

gene transgenic or fluorescent gene-added animals extend our 

understanding and deepen our investigation of the molecular 

nature of human diseases. These are unique advantages when 

compared with other animal models.58–62

Experimentally, mice and rats are still the most popular 

models of DR, not only because of the advantages mentioned 

above, but also since there have been many standardized 

protocols of modeling approaches available for reference 

to researchers, such as the STZ-injection model, oxygen-

induced retinopathy model, and genetic model. In addi-

tion, rodents are suitable for the vast majority of detection 

reagents used in the laboratory. Monkey models share the 

most similar features of human DR compared with other 

animal models, which could be applied in research fields 

like live imaging examinations, diagnosing biomarker 

screening, and medical or surgical therapeutic trials; how-

ever, the approaches for monkeys are far from mature when 

compared with those for rodents. In addition, the large size, 

long lifespan, and inevitable ethical requirements have 

largely limited their applications. Other large animals, like 

cats and dogs, have large-sized eye balls, which are more 

convenient for handling than rodent eyes. However, their 

gene backgrounds are far from human, the number of suit-

able experimental reagents is far less than for rodents, and 

their large size needs more housing space, which all limited 

their usage as the choice of animal models for DR. However, 

compared with all the above species of animals, the zebrafish 

has its own advantages as a potential DR model, for eg, the 

experimental methods of STZ injection,63 high-glucose diet 

feeding,52 and hypoxia-induced retinopathy (HIR)64 are all 

convenient to perform in zebrafish, and the zebrafish with the 

gene vhl–/– mutation is a spontaneous VEGF-overexpressing 

animal model, which makes it suitable to mimic the develop-

ment of PDR62. However, the less similar retinal vascular 

structure to human, difficult handling, because of tiny size, 

and lack of reagents for molecular studies still limit its 

usage.

Compared with the in vivo animal model, in vitro culture 

systems can be used as experimental models of retinal angio-

genesis. Since pathological angiogenesis of the retina is the 

key cause of progression in PDR, the retinal angiogenesis 

assay is suitable for screening novel antiangiogenic drugs 

before testing in vivo animals and in patients clinically. 

In this area, study about various VEGF blockers is the most 

important direction in recent years. Several generations have 

been updated, and some of them have been applied clinically 

to patients, for eg, pegaptanib, ranibizumab, aflibercept, and 

bevacizumab.65,66

Currently, there are two main kinds of in vitro culture 

proposals. Traditional in vitro cell culture uses isolated 

endothelial cells or pericytes, in particular, to maximally 

mimic the human angiogenic process; human-source 

endothelial cells and pericytes can be used more conveniently 

than in vivo study. Moreover, retina-derived endothelial 

cells can be applied67 for the search of specific inhibitors of 

retinal neovascularization. However, the traditional in vitro 

culture has its weakness since without the microenvironment 

of retina, isolated cells may possibly lose their responses 

to angiogenic molecules. Thus, another culture proposal 

has been created, which is the ex vivo retinal model. The 

ex vivo model is established with retinal culture. In PDR, 

isolating the retina from the in vivo DR model for culture 

in vitro can be useful for studying the role of proangiogenic 

factors or antiangiogenic factors in the development of reti-

nal neovascularization.23,25,68,69 We summarized the popular 

methods applied in common modeling animals and culture 

systems in Table 2.

Conclusion
The experimental model is the link between basic and clinical 

research. It deepens our understanding of the mechanisms and 

supports us in discovering novel therapeutic interventions to 

prevent the progression of DR. However, each DR model has 

its own advantages and limitations. Careful consideration in 

choosing the model helps us achieve the research goal with 

high efficiency. The preclinical modeling experiments are 

ultimately beneficial to clinical patients.
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