A unique case of segmental vasal atresia

Yasen Fayez Alalayet¹
F Alkasim²
N Shiba¹
I Aldhuayan²
S Alhamaidi¹
G Alghamdi²
F Aljobair²
J Shoura¹
R Alkhlaif²

¹Department of Pediatric Surgery, ²Department of Pediatrics, King Saud Medical City, Riyadh, Saudi Arabia

Abstract: We report a case of a 2-year-old boy who presented with an empty left scrotum. Clinical examination revealed a left palpable undescended testis. During orchidopexy, segmental atresia of the vas deferens was found, and microsurgical repair was carried out. Segmental vasal atresia is an extremely rare condition and is infrequently diagnosed, especially in the pediatric age group. This is the first reported case of segmental vasal atresia without an association with cystic fibrosis.

Case history
A 2-year-old boy presented with a history of an empty left scrotum since birth. General physical examination was unremarkable, and local examination revealed a left hypoplastic scrotum with a normal-sized left testis palpated in the groin. The right testis was normal in location and size. Routine blood investigations were within normal limits, and no abnormality was detected on abdominal ultrasound. A conventional orchidopexy was planned.

Orchidolysis was carried out through a left inguinal incision. Upon examination of the left testis and epididymovasal system, the left testis was found to be normal in size, shape, and consistency. A defect in the continuity of the vas deferens near the epididymis was found (Figure 1), in that the peritoneum opened over the vas deferens. A very thin fibrotic band connecting both ends of the vasal defect was isolated (Figure 2) and microsurgically resected by end to end anastomosis using 9-0 polyglactin (Figure 3) to establish normal vas continuity.

The result of a sweat chloride test was normal, and histopathology confirmed the fibrotic consistency of the resected band.

After a 1-month follow-up interval, the patient showed no respiratory or gastrointestinal symptoms of cystic fibrosis (CF). In addition, the family was counseled regarding the low possibility of infertility in the future.

Discussion
Segmental vasal atresia is an extremely rare congenital anomaly and has been infrequently reported in the pediatric age group. A range of vas deferens anomalies can be seen in cryptorchid patients, eg, congenital bilateral or unilateral absence of vas deferens and ectopic, duplication, diverticulum, or segmental aplasia of vas deferens.¹
The cryptorchid testicle has structural and functional alterations, and the rate of infertility is inversely proportional to the age at the time of orchidopexy. The highest fertility indexes are reported with therapy before the age of 2 years. Azoospermia is present in about 18%–20% of adults operated upon for bilateral cryptorchidism. The prognosis of future fertility should be considered when epididymovasal anomalies are detected at orchiopexy, and the incidence of epididymal and vasal abnormalities in undescended testicles is (19%). Flimsy attachment of the head of epididymis to the testis constituted the most common anomaly.

We could not find a similar segmental vasal atresia without CF in a review of the pediatric literature. It is advisable to evaluate the vas for its presence bilaterally and palpate along its entire length to check for defects preoperatively. Hunter reported congenital absence of the vas deferens (agenesis) as long ago as 1737. Congenital bilateral absence of the vas deferens (CBAVD) is a genital form of CF. CBAVD is a frequent cause of obstructive azoospermia, and is generated by mutations in the CF transmembrane conductance regulator gene. Also, congenital unilateral absence of the vas deferens has been reported. Approximately 10% of obstructive azoospermia is congenital and due to mutations in the CF gene. A small subset of men without known CF transmembrane conductance regulator defects may exhibit CBAVD.

Conclusion

Segmental vasal atresia is a rare condition. Careful examination of the testis and epididymovasal system is essential to look for associated anomalies while, at the same time, providing treatment.

Disclosure

The authors report no conflicts of interest in this work.

References

Figure 1 A defect in the continuity of the vas deferens near the epididymis. **Note:** Arrow shows vas defect.

Figure 2 A very thin fibrotic band connecting both ends of the vasal defect was isolated. **Note:** Arrow shows vas defect.

Figure 3 The thin fibrotic band connecting both ends of the vasal defect was microsurgically resected by end to end anastomosis using 9-0 polyglactin to establish normal vas continuity. **Note:** Arrow shows vas defect.
A unique case of segmental vasal atresia

