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Abstract: Hepatocellular carcinoma (HCC) is the third most common cause of death related 

to cancer diseases worldwide. The current treatment options have many limitations and reduced 

success rates. In this regard, advances in gene therapy have shown promising results in novel 

therapeutic strategies. However, the success of gene therapy depends on the efficient and specific 

delivery of genetic material into target cells. In this regard, the main goal of this work was to 

develop a new lipid-based nanosystem formulation containing the lipid lactosyl-PE  for specific 

and efficient gene delivery into HCC cells. The obtained results showed that incorporation of 

15% of lactosyl-PE into liposomes induces a strong potentiation of lipoplex biological activity in 

HepG2 cells, not only in terms of transgene expression levels but also in terms of percentage of 

transfected cells. In the presence of galactose, which competes with lactosyl-PE for the binding 

to the asialoglycoprotein receptor (ASGP-R), a significant reduction in biological activity was 

observed, showing that the potentiation of transfection induced by the presence of lactosyl-PE 

could be due to its specific interaction with ASGP-R, which is overexpressed in HCC. In addi-

tion, it was found that the incorporation of lactosyl-PE in the nanosystems promotes an increase 

in their cell binding and uptake. Regarding the physicochemical properties of lipoplexes, the 

presence of lactosyl-PE resulted in a significant increase in DNA protection and in a substantial 

decrease in their mean diameter and zeta potential, conferring them suitable characteristics for 

in vivo application. Overall, the results obtained in this study suggest that the potentiation of 

the biological activity induced by the presence of lactosyl-PE is due to its specific binding to the 

ASGP-R, showing that this novel formulation could constitute a new gene delivery nanosystem 

for application in therapeutic strategies in HCC.

Keywords: targeted gene delivery, hepatocellular carcinoma, lactosyl-PE, cationic liposomes, 

gene delivery nanosystems

Introduction
Hepatocellular carcinoma (HCC) is one of the primary hepatic neoplasms of liver 

cancer1,2 and is considered the sixth most common cancer type with the highest 

prevalence worldwide, corresponding to the third most common cause of death 

related to cancer diseases.3,4 This high mortality is due to the fact that HCC is only 

detected at advanced stages of the disease (the early stages are asymptomatic) and 

the current treatment options available, which consist of tumor surgical recession, 

liver transplantation, and chemotherapy, are limited and have a reduced application 

rate.5–7 In this context, the development of efficient and specific antitumor strate-

gies for HCC is urgently required, with gene therapy being considered a promising 

strategy to treat this disease.8
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Gene therapy has been developed over the past years 

and is intended to use genetic material to prevent or treat 

monogenic diseases and acquired genetic pathologies, like 

cancer. However, it still has a limited clinical application, 

mainly due to the reduced gene delivery efficiency and 

specificity into target cells. For that reason, several types of 

gene delivery nanosystems have been investigated in order 

to achieve successful and efficient nucleic acid delivery 

into target cells and consequently the desired therapeutic 

effect.9–11 Among these, cationic liposome/DNA complexes 

(lipoplexes) have been the most extensively studied, since 

they present higher gene delivery efficiency, both in vitro 

and in vivo, than that observed with other non-viral gene 

delivery systems.12,13,14 Our studies have demonstrated that 

cationic liposomes composed of 1-palmitoyl-2-oleoyl-sn-

glycero-3-ethylphosphocholine (EPOPC) and cholesterol 

(Chol), at a molar ratio of 1:1, have the ability to mediate 

efficient gene delivery in different tissues and cells lines.13,15 

Lipoplexes prepared with these cationic liposomes were 

shown to exhibit higher levels of transfection than those 

obtained with nanosystems prepared with other cationic 

liposome formulations.15 In addition, EPOPC, which is 

a derivative of a natural lipid (phosphatidylcholine), has 

revealed lower cytotoxicity due the presence of ester link-

ages and, therefore is suitable for clinical applications of 

gene therapy.13,15–17

Liver has several characteristics that make it very attrac-

tive for application of gene therapy, namely the presence 

of the asialoglycoprotein receptor (ASGP-R). ASGP-R 

is an integral membrane protein specifically expressed in 

hepatocytes and overexpressed in tumoral hepatocytes,18–20 

allowing the development of therapies targeted to these cells. 

In normal hepatocytes, this receptor is distributed in a polar-

ized way, being located at the basolateral zone,18 whereas 

in tumoral hepatocytes this overexpressed receptor loses 

its polarized distribution.20 This receptor specifically binds 

terminal residues of galactose or N-acetylgalactosamine 

present on desialylated glycoproteins or glycolipids.21 In 

this context, our rational was that the incorporation of a 

glycolipid, containing a galactose terminal residue, into the 

lipid-based nanosystem could promote its targeting to HCC 

cells and cellular internalization through receptor-mediated 

endocytosis, consequently leading to a substantial increase 

of gene delivery into these cells.

The main goal of this work was to develop a new gene 

delivery nanosystem, prepared with EPOPC:Chol:lactosyl-PE 

(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lactosyl 

[ammonium salt]) cationic liposomes, and to evaluate its 

efficacy and specificity to deliver genetic material into HCC 

cells, as well as to study the possible mechanisms by which 

this nanosystem mediates biological activity, and to analyze 

its physicochemical properties. 

Materials and methods
cell culture
HepG2 cells (human HCC) and MDA-MB-231 cells (human 

breast adenocarcinoma) were maintained at 37°C, 5% CO
2
, 

in Dulbecco’s Modified Eagle’s Medium-high glucose 

(DMEM-HG) (Sigma-Aldrich Co., St Louis, MO, USA) 

supplemented with 10% (v/v) heat-inactivated fetal bovine 

serum (Sigma-Aldrich Co.), penicillin (100 U/mL) and 

streptomycin (100 μg/mL).

Preparation of cationic liposomes 
and lipoplexes
Small unilamellar cationic liposomes were prepared by 

extrusion of multilamellar liposomes composed of 1:1 molar 

ratio mixtures of EPOPC and Chol, and different amounts 

of lactosyl-PE. EPOPC:Chol:lactosyl-PE liposomes were 

labeled with 1% rhodamine-dioleoyphosphatidyletha-

nolamine (rhodamine-PE), for cell uptake studies. Briefly, 

lipids (Avanti Polar Lipids, Alabaster, AL, USA) dissolved in 

CHCl
3
 were mixed at the desired molar ratio and dried under 

vacuum in a rotator evaporator. The dried lipid films were 

hydrated with deionized water to a final lipid concentration 

of 6 mM and the resulting multilamellar liposomes were 

then sonicated for 3 minutes and extruded 21 times through 

two stacked polycarbonate filters of 50 nm pore diameter 

using a Liposofast device (Avestin, Toronto, ON, Canada). 

The resulting liposomes were then diluted four times with 

deionized water and filter-sterilized utilizing 0.22 μm pore-

diameter filters (Schleicher & Schuell, Dassel, Germany). 

The suspension was stored at 4°C until use. Lipoplexes were 

prepared by sequentially mixing 100 μL of a HEPES-buffered 

saline solution (HBS) (100 mM NaCl, 20 mM HEPES, pH 

7.4), with liposomes (the volume necessary to obtain the 

desired [+/-] lipid/DNA charge ratio) and with 100 μL 

of HBS solution containing 1 μg of pCMVluc-encoding 

luciferase (a gift of Dr P Felgner, Vical, San Diego, CA, 

USA), or 1 μg of pCMVgfp-encoding green fluorescent 

protein (GFP) (Clontech Laboratories, Mountain View, CA, 

USA). The mixtures were further incubated for 15 minutes 

at room temperature. Lipoplexes were used immediately 

after being prepared.
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Transfection activity
For luminescence evaluation of luciferase expression, 80×103 

HepG2 cells/well or 75×103 MDA-MB-231 cells/well were 

seeded in 48-well culture plates 24 hours before transfection. 

Cells were used at 70%–80% confluence, and lipoplexes 

containing 1 μg of pCMVluc plasmid DNA were added 

to cells, previously covered with 0.3 mL of DMEM-HG. 

After 4 hours’ incubation (5% CO
2
 at 37°C), the transfec-

tion medium was replaced with DMEM-HG and cells were 

further incubated for 48 hours. Cells were then washed twice 

with phosphate-buffered saline solution (PBS) and 150 μL 

of lysis buffer (composed of 1 mM dithiothreitol; 1 mM 

ethylenediaminetetraacetic acid; 25 mM Tris (1,3-dichloro-2-

propyl)-phosphate [pH 7.8]; 8 mM MgCl
2
; 15% glycerol; and 

1% [v/v] Triton X-100™), and were added to each well. The 

levels of luciferase expression in lysates were quantified by 

measuring light production by luciferase in an Lmax II 384 

luminometer (Molecular Devices, Sunnyvale, CA, USA). 

The protein content of the lysates was measured by the DC™ 

Protein Assay reagent (Bio-Rad Laboratories Inc., Hercules, 

CA, USA) using bovine serum albumin as the standard. The 

data were expressed as relative light units of luciferase per 

milligram of total cell protein. 

For flow cytometry analysis of GFP expression, 320×103 

HepG2 cells/well were seeded in 12-well culture plates and, 

after 24 hours, lipoplexes containing 4 μg of pCMVgfp were 

added to cells. After 4 hours’ incubation (5% CO
2
 at 37°C), 

the transfection medium was replaced with DMEM-HG, and 

cells were further incubated for 48 hours. Cells were then 

washed twice with PBS and detached with trypsin (5 minutes 

at 37°C). Thereafter, cells were washed and resuspended in 

PBS, and immediately analyzed in a FACSCalibur™ flow 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). 

Live cells were gated by forward/side scattering from a total 

of 25,000 events, and data were analyzed using CellQuest™ 

software.

For fluorescence microscopy analysis of GFP expres-

sion, 320×103 HepG2 cells/well were seeded in 12-well 

culture plates (previously covered with a coverslip) and after 

24 hours lipoplexes containing 4 μg of pCMVgfp were added 

to the cells. After 4 hours’ incubation (5% CO
2
 at 37°C), the 

transfection medium was replaced with DMEM-HG, and 

cells were further incubated for 48 hours. Cells were then 

washed twice with PBS, fixed with 4% paraformaldehyde 

for 15 minutes at room temperature, and then mounted in 

MowiolR mounting medium (Sigma-Aldrich Co.). The 

Images (original magnification: ×20) were obtained on an 

Axioskop 2 Plus microscope (Zeiss, Munich, Germany) using 

an AxioCam HRc camera (Zeiss).

For the competitive studies, the culture medium contain-

ing different concentrations of galactose (20, 40, 80, and 

100 mg/mL) were added to cells 30 minutes before the addi-

tion of the nanosystems and maintained during the 4 hours 

of transfection. In the biological activity studies using an 

antibody against the ASGP-R (Santa Cruz Biotechnology 

Inc., Dallas, TX, USA), the culture medium containing 

40 μg/mL of antibody was added to HepG2 cells 30 minutes 

before the lipoplexes’ addition and maintained during the 4 

hours of transfection.

cell viability
Following transfection under the different experimental 

conditions, cell viability was assessed by a modified Alamar® 

Blue assay. This assay measures the redox capacity of the 

cells due to the production of metabolites as a result of cell 

growth. Briefly, 0.3 mL of 10% (v/v) Alamar Blue dye in 

complete DMEM-HG medium, prepared from a 0.1 mg/mL  

stock solution of Alamar Blue, was added to each well 

47 hours following the initial period of transfection (4 hours). 

After 1 hour of incubation at 37°C, 170 μL of the supernatant 

were collected from each well and transferred to 96-well 

plates. The absorbance at 570 and 600 nm was measured in 

a SPECTRAmax® PLUS 384 spectrophotometer (Molecular 

Devices). Cell viability (as a percentage of untreated control 

cells) was calculated according to the formula:

 
(A

570
-A

600
) of treated cells

 ×100.
(A

570
-A

600
) of control cells

 (1)

cell binding and uptake
EPOPC:Chol (1:1) liposomes or EPOPC:Chol:lactosyl-PE 

(15%) liposomes, labeled with 1% rhodamine-PE, were com-

plexed with 1 μg of pCMVluc at 4/1 and 2/1 (+/-) cationic 

lipid/DNA charge ratios. Twenty-four hours before trans-

fection, HepG2 cells were seeded in 48-well culture plates. 

Thirty minutes before transfection, cells were incubated with 

0.3 mL of DMEM-HG medium, either containing or not 

containing 40 mg/mL of galactose, and the lipoplexes were 

then added to each well. Following 4 hours’ incubation at 

either 4°C or 37°C, cells were washed twice with PBS and 

lysed with 100 μL/well of 1% Triton X-100. Binding (4°C) 

and uptake (37°C) of lipoplexes were monitored in a SPEC-

TRAmax GEMINI™ EM fluorometer (Molecular Devices) 
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by measuring the fluorescence at excitation and emission 

wavelengths of 545 and 587 nm, respectively.

Zeta potential
Nanosystems were characterized with respect to their zeta 

potential using a Zetasizer Nano (Malvern Instruments, 

Malvern, UK) that measures the electrophoretic mobility 

and zeta potential distribution by a phase analysis light 

scattering method. The analysis was performed at 25°C 

in HBS, and the lipoplexes were prepared immediately 

before analysis.

Transmission electron microscopy
Nanosystems were analyzed in terms of their size/structure 

by transmission electron microscopy (TEM). The prepared 

lipoplexes were absorbed on copper grids covered with 

Formvar® film for 2 minutes and then dried until touch-dry 

with filter paper. To enhance contrast, the grids were put on 

a drop of 0.5% uranyl acetate for 15 seconds. Excess stain 

was removed by filter paper. The grids were examined in a 

JEM 1400 transmission electron microscope (JEOL, Tokyo, 

Japan) at 80 kV accelerating voltage. Digital images were 

digitally recorded using a SC1000 ORIUS™ CCD camera 

(Gatan Inc., Warrendale, PA, USA).

ethidium bromide intercalation
The accessibility of ethidium bromide to the DNA of lipo-

plexes was analyzed by fluorescence measurements in a SPEC-

TRAmax GEMINI EM fluorometer (Molecular Devices). 

One hundred microliters of nanosystems, containing 0.5 μg 

of DNA, were transferred into a black 96-well plate (Sigma-

Aldrich Co.), and then 100 μL of EtBr solution was added to 

each well to achieve a final EtBr concentration of 400 nM. 

Following 10 minutes’ incubation, fluorescence was measured 

with excitation and emission wavelengths of 518 and 605 nm, 

respectively. The fluorescence scale was calibrated such that 

the initial fluorescence of EtBr (100 μL of EtBr solution added 

to 100 μL of HBS) was set at residual fluorescence. The value 

of fluorescence obtained with 0.5 μg of naked DNA (control) 

was set as 100%. The amount of DNA available to interact 

with the probe was calculated by subtracting the values of 

residual fluorescence from those obtained for the sample and 

expressed as the percentage of the control.

resistance to deoxyribonuclease I action
Resistance of nanosystems to deoxyribonuclease I (DNase I; 

Sigma-Aldrich Co.), which was maintained in an appropriate 

buffer (50 mM Tris-HCl [pH 7.5], 10 mM MnCl
2
, 50 μg/mL 

BSA), was determined by electrophoresis. Lipoplexes were 

submitted to DNase I action (2 units of DNase I/μg of DNA) 

for 20 minutes at 37°C, followed by inactivation of the 

enzyme upon incubation with 0.5 M EDTA (1 μL/unit of 

DNase I). Parallel experiments were performed by incubating 

samples under the same experimental conditions, with DNase 

I previously inactivated. Electrophoresis was performed in 

1% agarose gel prepared in TBE solution (89 mM Tris-buffer 

[pH 8.6], 89 mM boric acid, 2.5 mM EDTA) and containing 

1 μg/mL of EtBr. Following incubation of lipoplexes with 

DNase I (active or inactive), aliquots corresponding to 0.5 μg 

of DNA to which 5 μL of loading buffer (15% [v/v] Ficoll® 

PM 400; 0.05% [w/v] bromophenol blue; 1% [w/v] SDS; 

and 0.1 M EDTA, pH 7.8) had been previously added, were 

placed in the gel. The electrophoresis elapsed for 1 hour, 

applying a voltage of 80 V.

statistical analysis
Data were analyzed using the Prism software (version 5.0). 

Statistical significance of differences between data was evalu-

ated by one-way analysis of variance using the Tukey test. 

A value of P0.05 was considered significant.

Results
effect of lactosyl-Pe on the biological 
activity and cytotoxicity of the lipoplexes 
in hepg2 cells
Since the ASGP-R is overexpressed in HCC cells, such 

as the HepG2 cell line, and specifically binds galactose, 

we evaluated what effect incorporating lactosyl-PE 

(which has a galactose terminal residue) into the cationic 

liposomes has on the biological activity of the generated 

nanosystem in HepG2 cells. For this purpose, we prepared 

several EPOPC:Chol cationic liposome formulations 

containing different amounts of lactosyl-PE (5%, 10%, 

15%, 20%, and 40%) in order to verify how this lipid 

affects the biological activity of lipoplexes prepared at 2/1 

and 4/1 (+/-) charge ratios. As illustrated in Figure 1A, 

the incorporation of lactosyl-PE into the EPOPC:Chol 

cationic liposomes could significantly increase the bio-

logical activity of the generated nanosystems, this being 

particularly evident for EPOPC:Chol:lactosyl-PE/DNA 

lipoplexes prepared with cationic liposomes containing 

15% of lactosyl-PE at the 2/1 (+/-) charge ratio. For this 

formulation, a 50-fold increase in the transfection activ-

ity was observed when compared to that obtained with 

plain lipoplexes prepared at the same charge ratio with 
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EPOPC:Chol cationic liposomes without lactosyl-PE. 

This level of potentiation was not verified for any of 

the other tested formulations. The effect of lactosyl-PE 

incorporation was evaluated only for lipoplexes prepared 

at 2/1 and 4/1 (+/-) charge ratios, since these formula-

tions were the ones that presented the highest levels of 

biological activity (data not shown). On the other hand, 

results illustrated in Figure 1B show that the viability of 

HepG2 cells was not significantly affected (P 0.05) by 

any of the tested lipoplex formulations. 

effect of the presence of lactosyl-Pe  
on the percentage of transfected 
hepg2 cells
In order to assess the transfection efficiency of the generated 

nanosystems, which shows the amount of cells that could 

directly benefit from a gene therapy strategy, we prepared 

lipoplex formulations with the plasmid DNA encoding the 

GFP and analyzed the percentage of transfected cells by flow 

cytometry and fluorescence microscopy (Figure 2). The results 

obtained by flow cytometry (Figure 2A) showed that the per-

centage of transfected cells obtained with the best formulation, 

EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 lipoplexes, 

was approximately 40%, this being much higher than that 

observed with plain lipoplexes (without lactosyl-PE) prepared 

at the same charge ratio (EPOPC:Chol/DNA [+/-] 2/1). On 

the other hand, for lipoplexes prepared at the 4/1 (+/-) charge 

ratio, the incorporation of 15% of lactosyl-PE promoted only 

a slight increase in the percentage of transfected cells. 

These flow cytometry data were confirmed by fluo-

rescent microscopy analysis of transfected HepG2 cells. 

As illustrated in Figure 2B, transfection performed 

with EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 

lipoplexes (panel III) resulted in a much higher num-

ber of GFP-expressing cells than that obtained with 

lipoplexes prepared at the same (+/-) charge ratio with-

out lactosyl-PE (panel I). Moreover, it was observed that 

EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 4/1 lipoplexes 

(panel IV) were much less efficient than the best formulation 

(panel III), which is consistent with the results obtained by 

flow cytometry (Figure 2A).

Biological activity of the nanosystems 
containing lactosyl-Pe in asgP-
r-non-expressing cells and in the 
presence of galactose or an antibody 
against the asgP-r
In order to verify whether the potentiation of the biologi-

cal activity of lipoplexes, induced by the incorporation of 

lactosyl-PE, was due to the specific interaction of its galactose 

terminal residue with ASGP-R, we evaluated the transfection 

activity of the generated nanosystems in MDA-MB-231 cells, 

that do not express the ASGP receptor, and in HepG2 cells 

both in the presence of galactose, which acts as a competitive 

agent to the binding to ASGP-R, and in the presence of an 

antibody to block the ASGP receptor. 

As opposed to what was observed with HepG2 cells 

(Figure 1A), the results presented in Figure 3 showed no 
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Figure 1 Biological activity (A) and cytotoxicity (B) of nanosystems prepared with or without lactosyl-Pe in hepg2 cells. lipoplexes were prepared at 2/1 and 4/1 (+/-) 
charge ratios, either without or with 5%, 10%, 15%, 20%, or 40% of lactosyl-PE. 
Notes: (A) luciferase gene expression is presented as rlU/mg of total cell protein. (B) cell viability is expressed as a percentage of untreated control cells. asterisks 
(***P0.001) correspond to values that differ significantly from those obtained with complexes prepared without lactosyl-PE. Data are presented as mean ± sD obtained 
from triplicates and are representative of at least three independent experiments.
Abbreviations: lactosyl-PE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lactosyl (ammonium salt); HepG2, human hepatocellular carcinoma; RLU, relative light unit; 
SD, standard deviation; EPOPC, palmitoyl-2-oleoyl-sn-glycene-3-ehylphosphocholine; Chol, cholesterol.
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increase in the biological activity of lipoplexes prepared with 

lactosyl-PE in MDA-MB-231 cells, when compared to that 

obtained with the corresponding plain lipoplexes for both 

charge ratios. On the other hand, as illustrated in Figure 4A, 

the results obtained in the transfection assays performed in 

culture medium containing 40 mg/mL of galactose revealed 

that the presence of free galactose promoted a strong 

reduction in the biological activity of the best formulation 

(EPOPC:Chol:lactosyl-PE [15%]/DNA [+/-] 2/1). In con-

trast, the biological activity of lipoplexes prepared without 

lactosyl-PE was not inhibited by the presence of 40 mg/mL 

of galactose (Figure 4A). Although several concentrations 

of galactose were tested in the transfection studies, the 

concentration of 40 mg/mL of galactose was selected for 

these studies since it was found to be the concentration at 

which a maximum inhibition of biological activity occurred 

without affecting cell viability (data not shown). Moreover, 

transfection studies performed in HepG2 cells treated with an 

antibody against ASGP-R showed that its presence induced 

a substantial inhibition of the biological activity of the 

EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 lipoplexes, 

but not the transfection activity of the corresponding plain 

lipoplexes (Figure 4B).

effect of lactosyl-Pe and galactose 
on the cell binding and uptake 
of the nanosystems
In order to determine if the potentiation of the biological 

activity of the nanosystems, induced by the incorporation 

of lactosyl-PE, was due to the interaction of the galactose 

terminal residue of this glycolipid with ASGP-R, we evalu-

ated the extent of cell binding and uptake of the generated 

formulations in HepG2 cells, in the presence or absence of 

galactose (40 mg/mL). For this purpose, cells were incubated 

with rhodamine-PE-labeled lipoplexes at 4°C (binding) or at 

37°C (uptake). As illustrated in Figure 5, cell incubation with 

the best formulation (EPOPC:Chol:lactosyl-PE [15%]/DNA 

[+/-] 2/1) resulted in a much higher extent of cell binding 

and uptake than that obtained with the corresponding plain 

lipoplexes. This enhancing effect on cell binding and uptake 

promoted by lactosyl-PE was not observed for lipoplexes 

prepared at the 4/1 (+/-) charge ratio.
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Notes: lipoplexes, either containing or not containing 15% of lactosyl-PE, were prepared at 2/1 and 4/1 (+/-) charge ratios. (A) Percentage of transfected cells. asterisks 
(***P0.001) correspond to values that differ significantly from those obtained with lipoplexes prepared at the same charge ratio, without lactosyl-PE. (B) representative 
fluorescence microscopy images: panels (I) ePOPc:chol/DNa (+/-) (2/1); (II) ePOPc:chol/DNa (+/-) (4/1); (III) EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) (2/1); and 
(IV) EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) (4/1). Data are representative of at least three independent experiments.
Abbreviations: HepG2, human hepatocellular carcinoma; lactosyl-PE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lactosyl (ammonium salt); EPOPC, palmitoyl-2-
oleoyl-sn-glycene-3-ehylphosphocholine; Chol, cholesterol; GFP, green fluorescent protein.
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Figure 3 Biological activity of the developed nanosystems in MDA-MB-231 cells. 
complexes were prepared at 2/1 and 4/1 (+/-) charge ratios, without or with 15% of 
lactosyl-Pe. luciferase gene expression is presented as rlU/mg of total cell protein. 
Data are presented as mean ± sD obtained from triplicates and are representative 
of two independent experiments.
Abbreviations: MDA-MB-231, human breast adenocarcinoma; lactosyl-PE, 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine-N-lactosyl (ammonium salt); RLU, 
relative light unit; SD, standard deviation; EPOPC, palmitoyl-2-oleoyl-sn-glycene-3-
ehylphosphocholine; chol, cholesterol.
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On the other hand, the presence of galactose induced a 

significant decrease in cell binding (P0.01) and uptake 

(P0001) of the EPOPC:Chol:lactosyl-PE (15%)/DNA 

(+/-) 2/1 lipoplexes, whereas no significant effect on these 

processes was observed for plain lipoplexes or those prepared 

with lactosyl-PE at the 4/1 (+/-) charge ratio. 

Influence of lactosyl-PE on the 
physicochemical properties  
of the nanosystems
Since the efficacy of the nanocarriers to deliver genetic 

material into target cells is strongly dependent on their 

 physicochemical properties, we determined their size/structure 

by TEM and surface charge by zeta potential. TEM analysis 

(Figure 6A) demonstrated that the lipoplexes prepared at 2/1 

(+/-) charge ratio and containing 15% of lactosyl-PE (panels 

III and IV) presented considerably reduced mean diameters, 

approximately 200 nm, when compared to those obtained 

for the corresponding plain lipoplexes (panels I and II),  

approximately 800 nm. Moreover, TEM analysis showed that 

lipoplexes containing 15% of lactosyl-PE consisted of clusters 

of small nanostructures with sizes around 50 nm (panel III) that 

formed the observed 200 nm nanosystems (panels III and IV).  

The results obtained from zeta potential measurements 
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(Figure 6B) showed that the nanosystems containing 15% of 

lactosyl-PE  prepared at both 2/1 and 4/1 (+/-) charge ratios 

exhibited a positive zeta potential that is much lower than that 

observed for the corresponding plain lipoplex formulations. 

access to DNa associated  
to the nanosystems
In order to evaluate the capacity of the generated lipid-based 

nanosystems to condense and protect the carried DNA, we 

used the EtBr and DNase I assays. As illustrated in Figure 7A,  

nanosystems containing 15% of lactosyl-PE allowed much 

lesser access of EtBr to the carried DNA than that observed 

for the corresponding plain lipoplexes, at both 2/1 and 4/1 

(+/-) charge ratios. The electrophoretic profile of lipoplexes 

submitted to DNase I assay (Figure 7B) showed that the 

intensity of the bands of EPOPC:Chol:lactosyl-PE (15%)/

DNA (+/-) 2/1 lipoplexes, incubated with inactive DNase I,  

was smaller than that observed with the corresponding plain 

lipoplexes (submitted to the same experimental conditions), 

showing a lesser access of EtBr to DNA, in agreement to 

what was observed in the EtBr assay (Figure 7A). More-

over, EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 lipo-

plexes exhibited a smaller difference between the intensity 

of their bands (incubation with inactive DNase I versus 
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Figure 6 Transmission electron microscopy (A) and zeta potential (B) of the generated nanosystem.
Notes: lipoplexes, either containing or not containing 15% of lactosyl-PE, were prepared at 2/1 and 4/1 (+/-) charge ratios. (A) TeM analysis: panels (I) and (II) ePOPc:chol/
DNa(+/-) (2/1); (III) and (IV) EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) (2/1). (B) Zeta potential (mV) is presented as mean ± sD of triplicates and is representative of at 
least three independent experiments. asterisks (***P0.001) correspond to values that differ significantly from those obtained with complexes prepared at the same charge 
ratios without lactosyl-Pe. 
Abbreviations: lactosyl-PE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lactosyl (ammonium salt); TEM, transmission electron microscopy; SD, standard deviation; 
EPOPC, palmitoyl-2-oleoyl-sn-glycene-3-ehylphosphocholine; Chol, cholesterol.
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Figure 7 access of ethidium bromide (A) and resistance to DNase I (B) of DNa carried by nanosystems.
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active DNase I), than the corresponding plain lipoplexes, 

showing that this new nanosystem confers a higher DNA 

protection.

Discussion
The development of specific and efficient gene delivery 

nanosystems for application in HCC will constitute a new 

platform for gene-based therapies for this disease, allowing 

the generation of more effective antitumor gene therapy 

strategies, such as those involving the delivery of the p53 

gene, which is highly altered in this pathology, and those 

involving antiangiogenic approaches, for example against 

VEGF (vascular endothelial growth factor), due to the high 

vascularization of this type of tumor.22,23 

ASGP-R is specifically expressed in hepatocytes and over-

expressed in HCC cells, specifically recognizing galactose ter-

minal residues, which could allow the development of targeted 

gene delivery systems for HCC. In this context, the use of the 

glycolipid lactosyl-PE, which contains a galactose residue in its 

polar group, can promote the nanosystem interaction with the 

ASGP-R and consequently induce its cellular internalization 

by endocytosis.21,24–27 On the other hand, we have previously 

shown that the use of cationic liposomes composed of EPOPC 

and Chol, at a 1:1 molar ratio, results in considerably higher 

biological activities than those obtained with other lipid-based 

formulations.13–17,28 In this regard, the main goal of this work 

consisted of the development of a new gene delivery lipid-based 

nanosystem for HCC, targeting the ASGP-R, based on cationic 

liposomes composed of EPOPC, Chol and lactosyl-PE.

We generated novel nanosystems (EPOPC:Chol: 

lactosyl-PE/DNA) and performed an extensive character-

ization in terms of biological activity and physicochemical 

properties, comparing them with formulations (EPOPC:Chol/

DNA) previously developed in our laboratory.15 Our results 

demonstrated that the incorporation of lactosyl-PE in the 

nanocarriers (EPOPC:Chol:lactosyl-PE/DNA) promoted a 

substantial increase in their biological activity in HepG2 

cells (Figures 1 and 2). This enhancing effect was dependent 

on the amount of lactosyl-PE and on the (+/-) charge ratio 

of lipoplexes, the highest increase in biological activity 

being achieved for nanosystems containing 15% of lacto-

syl-PE and prepared at the 2/1 (+/-) charge ratio. In fact, 

EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 lipoplexes 

exhibited a much higher biological activity than the other 

developed formulations, which might be explained by a much 

better distribution of lactosyl-PE on its surface (due to a 

combination of several factors such as amount of lactosyl-PE, 

charge ratio, and structure of lipoplexes), promoting a higher 

interaction with ASGP-R, and also by a more favorable 

lipoplex structure, allowing a more efficient gene release 

into target cells. These different levels of biological activity 

obtained for the various formulations could not be associated 

with their cytotoxicity, since no significant reduction in the 

viability of HepG2 cells was observed after transfection with 

any of the tested formulations (Figure 1B). This potentia-

tion was most probably due to interaction of the galactose 

residue of lactosyl-PE with ASGP-R, thereby enhancing cell 

binding and internalization of this nanosystem. In fact, the 

incorporation of lactosyl-PE into EPOPC:Chol/DNA (+/-) 

2/1 lipoplexes resulted in a strong increase in their binding 

and uptake in HepG2 cells, as illustrated in Figure 5. On 

the other hand, the results obtained in MDA-MB-231 cells, 

which do not express ASGP-R, showed that the incorporation 

of 15% of lactosyl-PE into EPOPC:Chol/DNA lipoplexes 

did not promote any enhancement of transfection activity 

(Figure 3). These data also support the hypothesis that this 

new nanosystem (EPOPC:Chol:lactosyl-PE (15%)/DNA 

(+/-) 2/1) is specifically recognized by ASGP-Rs present on 

the surface of HepG2 cells, justifying the observed increase 

of biological activity (Figures 1A and 2). In addition, the 

results obtained in the competitive inhibition studies showed 

a strong decrease in the cell binding and uptake (Figure 5) 

of EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1 lipo-

plexes as well as in their biological activity (Figure 4A) in 

the presence of galactose, which is most probably due to 

competition of free galactose with the galactose terminal 

residue of lactosyl-PE for the binding to ASGP-R. Further-

more, the transfection activity of this new nanosystem was 

substantially inhibited by the presence of an antibody against 

ASGP-R (Figure 4B). These results demonstrate that the 

developed lipid-based nanosystem has the ability to specifi-

cally bind to ASGP-Rs of HCC cells through the galactose 

residues present in lactosyl-PE, promoting a high increase 

in their cellular internalization, and consequently, in their 

biological activity. 

The efficacy of nanosystems to mediate gene delivery 

is greatly dependent on their physicochemical properties, 

since these are known to affect their stability and biologi-

cal activity.12,29 TEM analysis (Figure 6A) showed that the 

incorporation of lactosyl-PE into EPOPC:Chol/DNA lipo-

plexes promoted a strong reduction in their mean diameter, 

which was most likely due to the formation of a layer of 

water over the nanosystems, induced by lactosyl-PE, that 

inhibited their aggregation, and thus led to smaller sizes. 

On the other hand, zeta potential measurements (Figure 6B)  

revealed that the incorporation of lactosyl-PE into 
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EPOPC:Chol/DNA lipoplexes significantly reduced their 

positive net charge, which could be due to the ability of 

this glycolipid to mask the positive charge of the cationic 

lipid. Although EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 

2/1 nanosystems presented the lowest surface charge, and 

therefore less ability to establish electrostatic interactions 

with the negatively charged cell membrane, they exhibited 

the highest levels of cell binding, demonstrating that their 

binding was not due to non-specific electrostatic interactions 

but most likely to their specific interaction with ASGP-R. 

These data reinforce the hypothesis that this new nanosys-

tem formulation specifically interacts with ASGP-R, which 

consequently promotes the uptake of these nanosystems 

by receptor-mediated endocytosis in HCC cells. Although 

lipoplexes containing lactosyl-PE presented a lower surface 

charge than the corresponding plain lipoplexes (Figure 6B), 

these new nanocarriers exhibited a greater ability to con-

dense and protect the genetic material, as shown by the lesser 

access of EtBr to DNA and by the smaller DNA degradation 

induced by DNase I (Figure 7). This finding was most prob-

ably due to the presence of the glycolipid lactosyl-PE and 

to its ability to create a shield coating in the nanosystems, 

leading to a higher protection of the genetic material, thus 

ensuring the integrity of the delivered nucleic acids.17 

Conclusion
In this work, we developed a new nanosystem formulation, 

EPOPC:Chol:lactosyl-PE (15%)/DNA (+/-) 2/1, that is easy 

to prepare and is easy to be submitted to scale transposition, 

which presents a high gene delivery efficiency and specificity 

to HCC cells, most probably attributed to its specific binding 

to ASGP-R. Moreover, our results show that this novel for-

mulation exhibits adequate properties for in vivo application, 

namely absence of toxicity, high DNA protection, reduced 

surface charge, and low mean diameters. 

Overall, our findings show that this new lipid-based 

nanosystem could be very useful for the development of 

efficient and specific antitumor gene therapy strategies 

towards application in HCC.
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