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Background: Traumatic events during early infancy might damage infants’ psychobiological 

functioning, such as sleep and cortisol secretion. Infants born with orofacial clefts (OFCs) 

undergo functional, anatomical, and aesthetic surgery. The aim of the present study was to 

determine whether infants with OFC and undergoing OFC surgery show deteriorated sleep and 

cortisol secretion compared with healthy controls and with their presurgery status.

Methods: A total of 27 infants with OFC (mean age: 22 weeks) and 30 healthy controls 

(mean age: 23 weeks) took part in the study. For infants with OFC, sleep actigraphy was 

performed and saliva cortisol was analyzed 5 days before, during, and 5 days after surgery. 

For controls, sleep and saliva cortisol were assessed similarly, except for the period taken 

up with surgery.

Results: Compared with healthy controls, infants with OFC undergoing OFC surgery did not 

differ in sleep and cortisol secretion. Their sleep and cortisol secretion did deteriorate during 

the perisurgical period but recovered 5 days postsurgery. 

Conclusion: In infants with OFC undergoing corrective surgery, the pattern of results for 

sleep and cortisol suggests that OFC surgery does not seem to constitute a traumatic event with 

long-term consequences.
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Introduction
Orofacial clefts (OFCs) are the most frequent birth defects worldwide. One in 500–700 

newborns suffers from an OFC.1–3 Prevalence rates vary as a function of ethnic, geo-

graphical, and socioeconomic factors and mothers’ general health status. The term 

“orofacial cleft” covers a wide range of disorders affecting the lips and oral cavity. 

Typically, cleft lip (CL) (World Health Organization International Classification of 

Diseases, Tenth Edition [ICD-10]: Q36.–), CL and cleft palate (CP) (ICD-10: Q37.–), 

and CP (ICD-10: Q35.–) are distinguished. Additionally, OFCs may be left- or right-

sided (unilateral) or both-sided (bilateral). OFCs result from a failure during embry-

onic development. Specifically, between the fourth and 17th weeks of embryonic 

development, the closure mechanisms for the facial and oral cavity fail. At the very 

beginning of embryonic development, the embryo is particularly sensitive to adverse 

substances, while women are not always aware of being pregnant at this early stage of 

pregnancy.1,4 Overall, there is agreement that factors related to genetic, environment, 

and gene–environment interaction explain best the occurrence of OFCs.1,3 

Numerous studies confirm the importance of sleep and cortisol secretion in 

regulating physiological and psychological homeostasis, and this also holds true for 

infants. However, infants’ sleep schedules and cortisol secretion evolve over the first 

12 months of life.
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With regard to a regular sleep/wake pattern, circadian and 

ultradian processes begin to develop in the newborn period, 

and a circadian rhythm emerges at around 2–3 months of age,5 

with a synchronization of the sleep/wake cycle in relation to 

light/dark cycles and social stimuli such as feeding.5,6 The 

period from 8 to 16 weeks of life is also marked by major 

behavioral reorganization in infants.7 Circadian rhythmic-

ity, sleep, and endocrine processes are associated, and more 

robust patterns are seen at approximately 3 months of age.7

Within the neuronal and neuroendocrine system, the 

activity of the hypothalamic–pituitary–adrenocortical (HPA) 

system demands particular attention. The most prominent 

outcome measure of HPA axis activity is cortisol secretion.8,9 

The HPA axis enables the human organism to cope specifi-

cally and individually with internal and external stressors.9,10 

In this regard, Gruber et al11 demonstrated a significant neu-

roendocrine stress response in infants with well-compensated 

congenital cardiac disease undergoing cardiac surgery but 

without adverse postoperative outcomes. In a similar vein, 

Nakamura et al12 compared HPA axis reactivity to surgical 

stress in 19 neonates, 19 infants, and 20 preschool children 

undergoing major thoracic and abdominal surgery. Regard-

less of age, cortisol levels reached a peak just after surgery. 

These results suggest that in infants aged 6 months, the 

HPA axis predominantly reacts in response to physical rather 

than psychological stressors.9,10,13

Additionally, cortisol peak values seem significantly 

lower in neonates than in infants and preschool children8 (see 

also Mantagos et al14 for opposite results). For this reason, 

it has been proposed that the neuroendocrine transmission 

system in newborns is still immature and that cortisol secre-

tion periodicity is established postnatally. Indeed, in the first 4 

postnatal weeks, cortisol secretion periodicity increases from 

6.4 hours with two daily peaks to 11.2 hours with one daily 

peak.9 By about 8 weeks of age, the HPA system appears to 

be sufficiently mature to produce a 24-hour periodicity, but 

this periodicity is not clearly synchronized with the light/

dark cycle. Synchronization and coordination with emerging 

circadian rhythmicity in nighttime sleep patterns increase 

from 8 weeks onwards, and adult-like coordination of HPA 

periodicity, light/dark cycle, and nighttime sleep rhythms 

begins to emerge by 12–16 weeks. With this synchroniza-

tion, basal cortisol levels increasingly become the peak 

levels seen during the day.15 Therefore, the conjunction of 

increased circadian and day/night organization at around 

3 months and the change in cortisol secretion to a 24-hour 

periodicity suggest that these two phenomena are functionally 

related. In this respect, Larson et al16 showed that infants who 

were reported to sleep at least 6 hours or more continuously 

through the night had a more marked circadian variation 

in cortisol production. Accordingly, infants with an early 

morning peak cortisol level were significantly older, and they 

were also more likely to sleep for 6 hours or more without 

signaling during the night.

Overall, we note that a close association between sleep 

pattern and HPA axis activity has repeatedly been shown 

in adults,17,18 preschool children,19 and infants,20,21 with 

poor sleep related to increased cortisol secretion. However, 

nothing is known about the relationship between sleep and 

the HPA axis activity in infants with OFC and undergoing 

OFC surgery. The aim of the present study was therefore 

to fill this gap in our knowledge and to compare data from 

such infants with data from healthy controls. We believe 

that these issues are of particular concern because, generally, 

parents of infants with OFC are concerned about their infants’ 

long-term development, including the extent to which OFC 

surgery might negatively affect their psychophysiological 

development. This holds particularly true because findings 

from animal and preclinical studies highlight the potential 

relevance of early stress and cortisol secretion for later onset 

of psychiatric disorders.22

The following three hypotheses were formulated. First, 

following Gruber et al11 and Nakamura et al12 and others,9,10,13 

we expected increased cortisol secretions in infants with OFC 

immediately during peri- and postsurgery, but not 5 days 

before or 5 days after surgery. Accordingly, we expected that 

cortisol secretion in infants with OFC 5 days before surgery 

would not differ from the level 5 days postsurgery or from 

the cortisol secretion of healthy controls. Third, following 

Brand et al21 we expected associations between poor sleep 

as objectively assessed via actigraphy and increased cortisol 

secretion.

Methods
sample
A total of 27 infants (13 female infants [48%]; mean age at 

assessment and surgical intervention: 22 weeks; standard 

deviation [SD] =1.5 weeks) with OFC and undergoing OFC 

surgery in the Craniomaxillofacial Surgery Center, Univer-

sity Hospital Basel (Basel, Switzerland), took part in the 

present study. All children were full term, mean birth weight 

was 3,510 g (SD =390.20 g), and mean Apgar scores were 

7–10/8–10/8–10. Four of the 27 children (14.8%) were born by 

cesarean section. The following OFCs were observed: 16 CL 

and CP (ICD-10: Q37; 13 unilateral and three bilateral) three 

CP (ICD-10: Q35), and eight CL (unilateral; ICD-10: Q36).
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In parallel, a total of 30 healthy infants (15 females 

[50%]; mean age at assessment: 24 weeks; SD =2.1 weeks) 

were assessed. Children were full term, mean birth weight 

was 3,800 g (SD =400 g), and mean Apgar scores were 

9–10/9–10/9–10. Five of the 30 children (16.7%) were born 

by cesarean section. These healthy children were recruited 

via word of mouth among staff from the university hospitals 

and personal connections. 

All infants’ parents were fully informed about the aims 

and the procedure of the study and gave written informed 

consent. The study was conducted in accordance with the 

Declaration of Helsinki, and the experimental protocol was 

approved by the local ethics committee of Basel (Basel, 

EKBB: 285/06; Switzerland).

study procedure
Figure 1 depicts the study design. First, a medical examination 

ensured that all infants were physically and physiologically 

healthy (healthy controls; infants with OFC) and that there 

were no health issues such as fever, infections, or similar to 

discourage surgical intervention (infants with OFC). 

Next, infants’ sleep was assessed for 3–4 consecutive 

days via actigraphs as outlined in more detail in the fol-

lowing paragraphs. In parallel, the first morning after sleep 

registration, saliva was sampled to assess cortisol values 

(see following paragraphs). Afterwards, infants with OFC 

underwent surgery. The period of surgery was 3–4 days 

with continuous sleep assessment, whereas saliva samplings 

were performed in the morning of the day of surgery. Dur-

ing this period, healthy controls had an assessment break of  

3–4 days. The third/fourth day after surgery, sleep assess-

ment continued for both groups for a further 3–4 days. Saliva 

sampling was performed in the OFC group on the morning of 

the third day postsurgery. On the last day of sleep assessment, 

saliva sampling was again performed in both the OFC and 

the control group. 

assessment of infants’ sleep 
and cortisol secretion
sleep assessment 
Following a procedure described previously,20,21 sleep was 

assessed in two ways. First, mothers were trained to keep 

a daily log of their infant’s sleep. They indicated for each 

30-minute period of a day whether the infant was sleeping. 

Sleep was defined as follows: the child’s eyes are closed; 

breathing is regular and rhythmical; and body, head, and limbs 

move only incidentally. Mothers additionally noted whether 

any change occurred in sleep routine. The information derived 

from the daily sleep log was also used to check possible dis-

crepancies with, or missing data from, the actigraphy.19–21,23 

The sleep log was also kept during the entire study period.

Second, sleep was objectively assessed under at-home 

conditions for 3–4 consecutive days and nights. According 

to Sadeh et al24 at-home sleep assessment in children has the 

advantage that sleep does not seem to be negatively affected. 

Infants wore a digital movement-measuring instrument 

(actigraph; SOMNOwatch®; SOMNOmedics, Randersacker, 

Germany) on the left ankle. This commercially available tool 

has the dimension of a wristwatch and registers every move-

ment above 0.012 g in a biaxial direction. The data, recorded 

in 30-second intervals, were digitally integrated and translated 

into sleep measures using the software program (based on 

sleep/wake algorithm as defined by Gorny et al25) provided 

by SOMNOwatch®. Mothers were fully instructed in use of 

the device. They were trained to push the “marker button” to 

indicate the beginning and the end of every sleeping period; 

Figure 1 study overview.
Note: X = assessment.
Abbreviation: OFc, orofacial cleft.

5 days
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surgery
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that is to say, they pushed the “marker button” whenever 

the infant fell asleep and whenever the infant woke up. This 

instruction was important because an actigraph computes 

sleep/wake patterns as a function of the wearer’s bodily 

activity. The actigraph identifies sleep when after a specific 

algorithm no further activity is registered. For example, 

the actigraph can erroneously identify the state of a calm but 

awake infant as sleep. Correspondingly, the actigraph can 

register activity and identify the state of a sleeping infant as 

awake when the infant is, in fact, sleeping in a baby carriage 

or in a baby seat while being driven in a car. To avoid false 

hits, mothers were carefully trained to use the actigraph. If 

unsure whether they had pushed the button firmly enough, 

mothers were instructed to push the button a second time. 

As in previous studies,20,21 to become accustomed to the 

actigraph, infants started wearing the instrument during an 

afternoon. Actigraphic measurements have been repeatedly 

shown to provide reliable data23,24 comparable with electro-

encephalography data of infants aged 6 months.26 

The following sleep continuity parameters were collected: 

total sleep time during the day and at night and number of 

awakenings during the day and at night. Interclass correlation 

of night-to-night and day-to-day reliability was very high, 

r0.90. Thus, data for the first 3 days and nights (first time 

point) and for the second 3 days and nights (second time 

point) were each combined to form composite variables. 

assessment of the hPa axis system
Morning cortisol levels have been shown to be a reliable 

biological marker for the HPA activity of infants,20,21,27 ado-

lescents, and adults when measured repeatedly with strict 

reference to the time of awakening.28,29 Therefore, four saliva 

cortisol samples were collected by the mother after the last 

night of actigraphy in the morning at 0, 10, 20, and 30 minutes 

after the infant’s awakening and stored in a refrigerator. 

Waking times ranged from 8 am to 9 am. Feeding occurred 

only after saliva collection. When it turned out that saliva 

sampling on a given morning was too difficult (infant was too 

hungry, irritable; other issues), saliva sampling was repeated 

the following morning. The mothers were instructed and 

trained in saliva sampling before starting the study. Specifi-

cally, the mothers were trained to keep their infants in their 

lap in an upright position. Cotton swabs were provided with 

a tear-resistant nylon yarn. The mother wrapped the end 

of this nylon yarn around one of her fingers and the cotton 

swab was placed in the infant’s mouth for about 1 minute. 

This procedure ensured that the cotton swab could not be 

swallowed in error. 

saliva cortisol sampling technique 
and cortisol analysis
Saliva samples were obtained as described. These were then 

returned to the laboratory, where samples were centrifuged 

at 4°C (2,000 rpm, 10 minutes) and stored at -20°C until 

assay. 

Free salivary cortisol concentrations were analyzed using 

a time-resolved immunoassay with fluorometric detection 

“Coat-A-Count” Cortisol RIA from Diagnostics Products 

Corporation (obtained through H. Biermann GmbH, Bad 

Nauheim, Germany) as described in detail elsewhere.30 Intra- 

and interassay variabilities of this assay were less than 3.5% 

and 5.1%, respectively.

The mean (and SD) was calculated for the cortisol values 

sampled at 0, 10, 20, and 30 minutes after awakening.27 

statistical analysis
To compare both cortisol values and sleep parameters 

between the two groups over time (two time points), a series 

of analyses of variance (ANOVAs) for repeated measures 

was performed. Next, and more specifically, to calculate 

changes in cortisol values among the infants with OFC and 

undergoing OFC surgery, a further ANOVA for repeated 

measures was performed. The same statistical procedure 

was also applied to calculate changes in sleep patterns within 

the OFC surgery group. Post hoc analyses were performed 

using Bonferroni–Holm corrections for P-values. In case 

of deviations of sphericity, ANOVAs were performed 

using Greenhouse–Geisser corrected degrees of freedom 

(df), though the original df were reported with the relevant 

Greenhouse–Geisser epsilon value (ε). For ANOVAs, 

effect sizes are indicated with the partial eta squared (η2), 

with 0.059η20.01 indicating small (S), 0.139η20.06 

indicating medium (M), and η20.14 indicating large (L) 

effect sizes.

A series of correlations was performed between cortisol 

values and sleep variables. 

The nominal α level was set at 0.05. Statistical analy-

ses were performed with SPSS® 20.0 (IBM Corporation, 

Armonk, NY, USA) for Apple MacIntosh®. 

Results
cortisol values over time and between 
infants with OFc and healthy controls
Table 1 gives the descriptive and statistical data for cortisol 

values over time and separately for infants with OFC and 

healthy controls. 
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Cortisol values did not change between presurgery 

and postsurgery periods, and cortisol values did not differ 

between infants with OFC and healthy controls.

cortisol values over time in infants 
with OFc and undergoing OFc surgery
Cortisol values dramatically increased on the day of surgery 

and remained elevated until the third day after surgery; cor-

tisol values reverted to baseline values 5 days after surgery 

(see Table 1).

sleep variables over time and between 
infants with OFc and healthy controls
Table 2 gives the descriptive and statistical data for sleep 

values over time and separately for infants with OFC and 

healthy controls. 

Sleep values did not change over time and did not differ 

between infants with OFC and healthy controls.

sleep variables over time in infants 
with OFc and undergoing OFc surgery
Sleep variables dramatically changed on the day of surgery 

and remained unstable until the second day after surgery 

(data not shown), though these variables reverted to baseline 

values after the third day and remained stable until the end 

of the assessment (fifth day; see Table 2).

correlations between cortisol values 
and sleep values in infants with OFc 
and healthy controls
Cortisol values and sleep parameters correlated moderately in 

healthy controls and in infants with OFC during the periods 

before and after surgery (r=-0.29 to -0.36, P0.02). 

correlations between cortisol values 
and sleep values in infants with OFc 
during the period of surgery
Cortisol values and sleep parameters correlated significantly 

in infants with OFC during the surgery period; higher cortisol 

values were associated with poorer sleep variables (r=-0.32 

to -0.40, P0.01). 

Discussion
The key findings of the present study were that cortisol values 

and sleep patterns of infants with OFC and undergoing OFC 

surgery did not differ from cortisol values and sleep patterns 

of healthy controls. Additionally, in infants with OFC and T
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undergoing OFC surgery, both cortisol values and sleep 

patterns dramatically altered over the period of the surgery 

but returned to baseline values 5 days after surgical interven-

tion. Therefore, data indicate that the cleft malformation does 

not expose the infant to an increased stress level. This finding 

reassures parents and is helpful for a normal infant–parent 

bonding – despite the possibly intimidating facial appearance. 

Additionally, data show no evidence that a single surgical 

intervention for OFC at the age of 5 months might produce 

any long-term damage in sleep and physiological processes 

such as the HPA axis. Accordingly, it seems highly unlikely 

that OFC surgery may be considered a traumatic life event 

during early infancy.22,31,32

Three hypotheses were formulated and each of these 

is considered in turn. First, we expected increased cortisol 

secretions in infants with OFC immediately during peri- and 

postsurgery, but not 5 days before or 5 days after surgery, 

and these expectations were supported. Therefore, we were 

able to confirm previous findings,11,12 though we were also 

able to expand on these in that the pattern of results was 

observed among 5-month-old infants undergoing surgery for 

OFC. Accordingly, our data lend further support to the notion 

that physiological stressors such as a surgical intervention do 

dramatically alter HPA axis activity in infants but that the 

elasticity of the HPA axis is such that 5 days poststimulation 

(here: surgery), cortisol secretion levels return to baseline. 

Our second hypothesis was that the pattern of cortisol 

secretion of infants with OFC would not differ from that of 

healthy counterparts, and this was fully supported. There-

fore, in our opinion, this pattern of results further shows the 

elasticity of the HPA axis and the observation that infants 

with OFC and undergoing surgery are not at increased risk 

for continuing deterioration of the HPA axis. Further, OFC 

surgery does not seem to be a stressor with long-term con-

sequences. In contrast, Essex et al32 reported that other types 

of early life stress such as maternal depression, paternal 

depression, and family expressed anger may have long-term 

deleterious consequences in later childhood and in adoles-

cence. Likewise, Halligan et al31 reported that infants exposed 

to mothers’ postnatal depression were at increased risk of 

showing deteriorated HPA axis activity (ie, increased cortisol 

secretion) during adolescence. Further, Van den Bergh et al33  

reported that exposure to antenatal maternal anxiety led to 

deteriorated HPA axis activity and depressive symptoms in 

adolescence. Again, taking into account these other find-

ings, our view is that OFC surgery on 5-month-old infants 

does not seem to cause adverse effects in the short term, and 

most probably also not in the longer term. In these regards, T
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Orofacial clefts, sleep, and cortisol

Gassling et al34 showed that, against expectations, adults 

with repaired OFC had significantly better stress-coping 

strategies and a faster cortisol return to baseline conditions 

than their healthy peers.

Our third hypothesis was that objectively assessed sleep 

and cortisol secretion would be associated, though the pat-

tern of results did not fully support this hypothesis, in that 

a more fine-grained analysis was necessary to describe and 

interpret the pattern of results. On the one hand, and more 

specifically, cortisol secretion and sleep before and after 

surgery, between subsamples and across the sample as a 

whole, were only marginally associated. Accordingly, the 

present data are at odds with evidence showing poor sleep and 

increased cortisol secretion to be associated in 8-week-old 

infants.21 On the other hand, however, and more specifically, 

this pattern of poor sleep and increased cortisol secretion was 

observed specifically in infants with OFC during the perisur-

gical period. Poor sleep and increased cortisol secretion did 

correlate. From the overall pattern of results, we conclude 

that under most conditions, sleep and cortisol secretion are 

only weakly associated, probably because of low overall 

stimulation, while under conditions such as surgery (the 

present study) or intense somatic pain (infants suffering from 

infantile colic; Brand et al21), the association between poor 

sleep and deteriorated cortisol secretion is more evident. 

Despite the intriguing results, several limitations warrant 

against overgeneralization. Firstly, the samples are rather 

small; thus, from a statistical point of view, the calcula-

tions might be underpowered. Secondly, all the infants with 

OFC and the healthy controls were recruited from the same 

university hospital and the same geographical and socioeco-

nomic area; accordingly, a systematic sample bias cannot be 

excluded. Thirdly, the pattern of results might have emerged 

due to further but unassessed latent physiological and psy-

chological variables. For example, infants’ psychosocial 

development and parents’ interactional behavior were not 

taken into account. Future studies might therefore introduce 

as additional possible confounders parents’ strategies to cope 

with children with OFC, and parents’ (and particularly moth-

ers’) psychological states.31–33 Fourthly, infants with OFC and 

undergoing OFC surgery were treated with anesthetic and 

analgesic, and the influence of these medications on sleep 

and cortisol secretion could not be statistically or experimen-

tally controlled. Fifthly, saliva sampling during the period 

of surgery was not possible, as the oral cavity was contami-

nated with blood. Sixthly, data do not allow predictions as 

to infants’ physiological and psychosocial development in 

the longer term. Seventhly, future studies might change the 

statistical approach in performing multilevel models testing 

lead–lag associations. Lastly, and most importantly, no con-

clusion can be made about “stress-related” increases over the 

course of the study, since no proper control condition was 

implemented. The authors only have comparison data from 

pre- and postsurgery time points but not from time points 

around the time of surgery. Whereas for obvious reasons no 

real comparable event in the healthy control group could be 

performed, future studies might apply a “natural stressor” 

(eg, regular medical examination) as a comparison condition. 

Accordingly, without any information on how a “normal” 

child would respond to a specific event, no conclusion can be 

drawn on the specificity of any potential responses to OFC 

surgery. However, it was most important to us to show that 

both sleep and cortisol secretion returned to baseline 5 days 

after OFC surgery and that, accordingly, adverse long-term 

effects of OFC surgery are unlikely. 

Conclusion
Among a sample of infants with OFC and undergoing OFC 

surgery, cortisol secretion and sleep did not differ between  

5 days before and 5 days after surgery, or from those of 

healthy controls. We conclude that OFC surgery undertaken 

at the age of 5 months does not seem to have long-term 

adverse physiological consequences. 
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