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Abstract: Pharmacogenomics is the study of the effects of genetic polymorphisms on medication 

pharmacokinetics and pharmacodynamics. It offers advantages in predicting drug efficacy 

and/or toxicity and has already changed clinical practice in many fields of medicine. Tardive 

dyskinesia (TD) is a movement disorder that rarely remits and poses significant social stigma 

and physical discomfort for the patient. Pharmacokinetic studies show an association between 

cytochrome P450 enzyme-determined poor metabolizer status and elevated serum antipsychotic 

and metabolite levels. However, few prospective studies have shown this to correlate with the 

occurrence of TD. Many retrospective, case-control and cross-sectional studies have examined 

the association of cytochrome P450 enzyme, dopamine (receptor, metabolizer and transporter), 

serotonin (receptor and transporter), and oxidative stress enzyme gene polymorphisms with the 

occurrence and severity of TD. These studies have produced conflicting and confusing results 

secondary to heterogeneous inclusion criteria and other patient characteristics that also act 

as confounding factors. This paper aims to review and summarize the pharmacogenetic findings 

in antipsychotic-associated TD and assess its clinical significance for psychiatry patients. In 

addition, we hope to provide insight into areas that need further research.
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Introduction
Pharmacogenomics is the study of the effect of genetic polymorphisms on medica-

tion pharmacokinetics and pharmacodynamics. This has predictive implications on 

the medication efficacy, toxicity or side effect profile for the individual. It was first 

described in 1999 by Evans et al1 who proposed a prediction of medication response 

can be made from an individual’s genetic constitution. Genetic polymorphisms of 

drug metabolizing enzymes, drug transporter and drug target receptor genes have each 

been implicated. Pharmacogenomics has been used in numerous medical specialties. 

For example, testing for thiopurine methyltransferase metabolizer status prior to aza-

thioprine commencement can predict and avoid life-threatening myelosuppression.2 

Pharmacogenomics offers an advantage in predicting drug efficacy and/or toxicity, 

hence provides cost-effectiveness, and has already changed clinical practice in the 

field of oncology, hematology, and immunology.

Tardive dyskinesia (TD) is a movement disorder that rarely remits3 and poses 

significant social stigma and physical discomfort for the patient. It occurs following 

the initiation, administration or withdrawal of a dopaminergic antagonist or indirect 

dopaminergic inhibitor such as a selective serotonergic reuptake inhibitor.4
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TD comprises of non-rhythmic, repetitive stereotyped 

tongue protrusion, lip smacking, chewing and smacking 

movements, and may also involve the limbs and trunk.5 The 

prevalence of TD is between 9.3%–39.7% of patients on 

dopamine antagonists.6–8 The estimated incidence is 2.9% 

and 5%–7.7% per year for second-generation (atypical) 

and first-generation (typical) antipsychotics, respectively.9 

Several studies found varying prevalence between different 

ethnicities.10,11 African ethnicity is associated with higher 

risk of TD and less likelihood of improvement in a number 

of studies, even after correcting for antipsychotic dose.12,13 

Familial TD has been reported,14,15 even with correction for 

antipsychotic dose and patient age,16 further implicating 

genetic contribution to this condition. This has led to inves-

tigations into the contribution of genetic polymorphism in 

patients with TD following antipsychotic exposure.

The exact pathophysiology of TD to date is unclear. 

A number of hypotheses have been proposed over the decades. 

Genetic predisposition is suggested by reports of familial TD. 

However, environmental influence and increased susceptibil-

ity due to the effects of aging such as accumulated oxidative 

stress could explain the increased prevalence of TD with 

older age. In the 1990s, various studies found polymorphisms 

associated with poor metabolizer status for the cytochrome 

2D6 (CYP2D6) gene are associated with TD.17 This enzyme 

metabolizes all the first-generation (typical) antipsychotics 

as well as second-generation antipsychotics such as aripip-

razole, risperidone and paliperidone.18 However, more recent 

studies and meta-analysis have found no association between 

TD and CYP2D6 polymorphisms. Other case-control and 

longitudinal studies examined the role of dopamine receptor 

D2 and D3 subtypes in TD and found it is associated with TD 

in Caucasian, Chinese and Jewish populations.19–21 Studies 

examining dopamine receptor subtypes from animal models 

and human observations of TD, showing dopamine receptor 

hypersensitivity following prolonged dopaminergic antagonist 

exposure, are another hypothesis for TD. However this hypoth-

esis does not explain the persistence of TD despite cessation 

of the dopaminergic antagonist. An alternative hypothesis of 

neuronal toxicity through oxidative stress was proposed in the 

1990s. In vitro studies that supported this theory found halo-

peridol produced oxidative stress, with subsequent neuronal 

death in vitro.22,23 These neurons are rescued by the addition 

of vitamin E24 and this led to a clinical study which found 

vitamin E reduces TD.25 Subsequent pharmacogenomic stud-

ies examined the various genes involved in oxidative stress 

for their role in TD. Genes that encode the oxidative stress 

pathway enzymes and antioxidants may alter the production of 

free radicals. Some examples of oxidative pathway enzymes 

examined for their role in TD are glutathione-S-transferase, 

manganese superoxide dismutase, nitric oxide synthase, and 

quinone oxidoreductase.

In the last 14 years, novel genetic polymorphisms in the 

alpha-1A adrenergic receptor (ADRA1A),26 G-protein signal-

ing regulator (RGS9),27 solute family carrier 18 (SLC18A2),28 

nitric oxide synthase 3 (NOS3),29 cannabinoid receptor 

(CNR1),30 and beta-arrestin (ARRB2),31 have been associated 

with TD in single studies. Other genes have polymorphisms 

associated with reduced risk of TD. These are: manganese 

superoxide dismutase gene (MnSOD),32 NOS3,33 CYP3A5, 

serotonin receptor 2A (5-HT2A) and dopamine receptor 4 

(DRD4). Recent observational studies investigating the role 

of dopamine receptor subtypes, serotonin receptor subtypes, 

CYP2D6, and CYP1A2 in TD, have yielded conflicting 

results. This may be explained by confounding factors such 

as a small sample size, retrospective study design, hetero-

geneous ethnic cohort, heterogeneous antipsychotic use, 

age, smoking status, and concurrent medication or alcohol 

use.34 Further complicating the matter, meta-analysis and 

genome-wide association studies have found conflicting 

results for dopamine receptor and serotonergic receptor gene 

polymorphisms. Although many pharmacokinetic studies 

have demonstrated elevated serum antipsychotic levels in 

patients who are poor metabolizers according to cytochrome 

enzyme status, they did not find a correlation between TD and 

serum antipsychotic levels. This paper aims to review and 

summarize the pharmacogenetic findings in antipsychotic-

associated TD and assess its clinical significance for psy-

chiatry patients. In addition, we hope to provide insight into 

areas that need further research.

Method
The literature search was performed through PubMed and 

OVID by entering the following keywords: “(pharmacogenetic) 

OR (cytochrome P*) AND (tardive dyskinesiaTD)”. Searches 

were limited to English language articles and publications 

published before March 2014.

Results
CYP2D6
CYP2D6 is the main cytochrome enzyme responsible for 

the metabolism of all the typical and many atypical anti-

psychotic medications such as aripiprazole, risperidone and 

paliperidone18 (Table 1). The prevalence of poor metabolizer 

status varies across different ethnicities (Table 2). CYP2D6 

poor metabolizer status is found in 8% of Caucasian and 
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Table 1 Effect of cytochrome enzyme metabolism state on serum antipsychotic level and its association with tardive dyskinesia

Cytochrome 
enzyme

Antipsychotic Serum antipsychotic level 
PM compared to EM

Serum antipsychotic level 
UM compared to EM

Metabolizer group  
associated with TD

CYP2D6 Aripiprazole 60% higher serum level46, 1.6 fold  
increase in active metabolite46,47

NSD

Clozapine No difference47,156–158 No difference157,158 NSD
Haloperidol increased serum haloperidol and  

metabolite levels38–42,44,45,159

No association with TD44

Risperidone increased serum risperidone42,48 No association with TD58,59

Zuclopenthixol 1.6–2 fold increased serum level49–52 Conflicting results. PM associated 
with TD in one study,51 another 
found no association with TD58,59

Perphenazine 2.9–4 fold increased serum level54,160 No association with TD58,59

Thioridazine 1.8–4.5 fold increased serum level55–57 NSD
Olanzapine No difference161 No association with TD58,59

CYP1A2 Olanzapine No difference161 No association with TD58,59

CYP3A4 Thioridazine 1.8–4.5 fold increase serum level55–57 NSD
Aripiprazole 1.5–1.8 fold increase in serum level,  

1.6 fold increase in active metabolite46

NSD

Ziprasidone NSD NSD
Olanzapine NSD Subtherapeutic serum  

olanzapine level162

NSD

Abbreviations: PM, poor metabolizer; EM, extensive metabolizer; UM, ultrafast metabolizer; TD, tardive dyskinesia; NSD, no studies done.

Table 2 ethnicity and cytochrome enzyme metabolic action

Ethnicity CYP2D6 CYP3A4 CYP1A2

PM UM PM UM PM UM

Caucasian 8%33,34 1%–10%163 2%–9.6%164 14%162 NSD NSD
African 3%–8%33,34 2%–29%165 26%–67%164 67%162 NSD NSD
Asian 6%–10%33,34 0%–2% 0%–22%164 NSD 5%166 NSD
Japanese 0.39%35 NSD NSD NSD 14%166 NSD
Korean 0.22%36 NSD NSD NSD NSD NSD
Australian NSD NSD NSD NSD 5%7 NSD

Abbreviations: PM, poor metabolizers; UM, ultrafast metabolizers; NSD, no study done.
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African cohorts, 6%–10% of Asian cohorts, but is relatively 

rare in Japanese and Korean cohorts.35–38

CYP2D6 poor metabolizers have a 1.5- to 2-fold increase 

in serum levels of haloperidol and its metabolite,39–47 

aripiprazole48 and its active metabolite,48,49 risperidone,44,50 

and zuclopenthixol.51–54 Serum perphenazine and thioridazine 

levels are increased 2- to 4-fold in poor metabolizers com-

pared to extensive metabolizers.55–59 However, pharmacoki-

netic studies have not found higher incidences of TD in poor 

metabolizers for other antipsychotics.46,60,61 One study found 

zuclopenthixol-poor metabolizers are more likely to develop TD 

(odds ratio [OR] =1.7; 95% confidence interval [CI] =0.5–4.9) 

and Parkinsonism53 than extensive metabolizers. However, 

the OR did not reach significance. In addition, a randomized, 

blinded prospective study in Caucasian and African American 

cohorts did not find such an association.60 No pharmacoki-

netic studies have examined if TD is more common in poor 

metabolizers, or associated with higher serum antipsychotic 

levels in aripiprazole or thioridazine users. Small retrospec-

tive case-control studies have found a significant association 

between TD and CYP2D6 poor metabolizer alleles in both 

Japanese and Caucasian cohorts.17,62 However, only two small 

case-control studies, one cross-sectional and one longitudinal 

study, replicated this in both Caucasian and Chinese cohorts.63–66 

Larger case-control studies did not find an association between 

TD and CYP2D6 polymorphisms in Korean,67 Japanese,47 

Chinese,68 Caucasian,69–72 and Indian cohorts.73 These results 

were confirmed in a meta-analysis but no studies have exam-

ined the prospective use of CYP2D6 genotype test in clinical 

practice. Finally, a genome-wide association study on a lon-

gitudinal cohort of 710 subjects, of mixed ethnicity, found no 

correlation between TD and CYP2D6 polymorphisms.74

CYP1A2
CYP1A2 is the primary metabolizer for olanzapine 

and clozapine. CYP1A2 and CYP2D6 are the primary 
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metabolizers for thioridazine and perphenazine.59,75 A case-

control study on 335 Indians found an association between 

CYP1A2*1C and 1545 T.C polymorphisms and TD29. Fu 

et al found CYP1A2 -163 C/A T and C allele were associ-

ated with TD in a Chinese cohort of 182 patients.68 However, 

this was not replicated by a larger study of 291 Chinese 

subjects, which found no association between CYP1A2 

polymorphisms and TD.76 Similarly, two case-control studies 

on a Turkish and a Caucasian cohort found no association 

between TD and CYP1A2 polymorphisms.77,78

Other cytochrome P450 enzymes
CYP3A4 is the primary metabolizer for quetiapine and 

together with CYP2D6 acts as the primary metabolizer 

for haloperidol and loxapine.79 CYP3A4 and CYP3A5 

share sequence homology and substrate specificity80 and 

are capable of metabolizing a large number of substrates. 

A case-control study did not find an association between TD 

and CYP3A4*1B polymorphism in an Indian cohort.73 The 

presence of CYP3A5 was associated with TD in a subgroup 

of Caucasian males, although it did not reach significance 

for the entire cohort.61

Dopamine receptor and its subtypes
Dopamine receptor is upregulated in the post-synaptic mem-

brane of the basal ganglia following chronic antipsychotic 

exposure in animal models.81 Subsequent hypersensitivity 

of the dopaminergic system is thought to be responsible 

for TD.82 Positron emission tomography found increased 

D2 receptor binding potential in subjects on chronic anti-

psychotic drugs compared to control subjects.83 While striatal 

D2 receptor density is not associated with TD, the severity of 

orofacial TD seems to depend on its relative density.84 Only 

one case-control study examined and found no association 

between the D1 dopamine receptor and TD.85 In contrast, 

D2 receptor TaqA A2, C957T and C939T polymorphisms 

were found to be associated with TD. Two case-control studies 

on Chinese cohorts and two meta-analyses on mixed ethnic 

cohorts found the D2 dopamine receptor TaqA A2 allele was 

associated with TD19,32,86,87 (OR =1.80, 95% CI =1.03–1.65; 

P=0.03). In contrast, one longitudinal cohort study in 

Caucasian subjects88 and four case-control studies in Indian, 

Chinese, Japanese, and Korean cohorts did not find such 

an association.85,89–91 There was no association between D2 

receptor gene Ser311Cys or -141C Ins/del polymorphisms 

with TD in three studies.89–91 One case-control study on a 

Caucasian and African American cohort (n=232) found 

D2 receptor gene functional C957T polymorphism was 

associated with TD (P=0.013) and higher abnormal invol-

untary movement scale score (AIMS) (P=0.0087).92 The 

C957T haplotype was also associated with TD in the African 

American subcohort (P=0.047).92 The same study found an 

adjacent C939T polymorphism was also associated with TD 

and a higher AIMS.

The association between the D3 receptor gene  Ser9Gly 

polymorphism and TD seems to depend on ethnicity. 

A number of retrospective studies across Jewish, Rus-

sian and Asian cohorts have found an association between 

D3 receptor Ser9Gly Gly allele and Gly/Gly genotype with 

TD.21,61,89,93–95 However, two longitudinal cohort studies on 

Caucasian cohorts and one genome-wide association study 

found no such association.20,88,96 A meta-analysis found the 

Ser9Gly Gly/Gly genotype was highly associated with TD in 

a large Caucasian cohort,97 (OR =1.52, 95% CI =1.08–1.68, 

P,0.0001) whereas a meta-analysis on the same polymor-

phism in an East Asian cohort (n=1,291) did not replicate 

such finding (OR =0.94; 95% CI =0.78–1.12.)98 The Ser9Gly 

polymorphism was also not associated with TD in Indian and 

African-Caribbean cohorts.85,99 Before routine testing for 

D3 receptor Ser9Gly polymorphisms can be recommended 

in schizophrenia patients, more evidence for its association 

would be required through large prospective pharmaco-

genomic studies.100

While D1, D2 and D3 dopamine receptor polymorphisms 

were not associated with TD in an Indian cohort of 335 patients, 

this study found that homozygosity for a 120 base pair dupli-

cation of the D4 dopamine receptor gene was associated 

with a reduced risk of TD85 (OR =0.52, 95% CI =0.31–0.86, 

P=0.009). Four tag polymorphisms (rs3758653, rs916457, 

rs762502, rs11246226) of the D4 receptor gene were associ-

ated with TD in males in a Caucasian cohort.101 However, 

another case-control study in Caucasian, Jewish, and Korean 

cohorts did not find an association between D4 receptor gene 

polymorphisms and TD.102–104

Dopamine transporter gene
The dopamine transporter (DAT1) mediates the reuptake of 

dopamine from the synapse and plays a role in dopaminergic 

transmission. Individuals with TD were found to have lower 

dopamine transporter density than those without TD.105 The two 

case-control studies (Jewish and Indian cohorts) did not find an 

association between DAT1 gene polymorphism and TD.85,103

Brain-derived neurotrophic factor
Brain-derived neurotrophic factor (BDNF) is capable of 

controlling D3 dopamine receptor (DRD3) expression in 
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animal studies, promoting behavioral sensitization through 

overexpression of DRD3 in the striatum of hemiparkinsonian 

rats.106 It also has an influence on the survival, differentiation 

and function of dopaminergic neurons.107,108 As studies on 

the association between DRD3 and TD are conflicting, one 

case-control study on a Chinese cohort (n=216) examined 

whether DRD3 ser9gly and brain-derived neurotrophic 

factor (BDNF) val66met genetic polymorphisms were 

associated with TD.109 They found patients with the BDNF 

Val66Met polymorphism had significantly higher AIMS than 

Val66Val or Met66Met homozygotes combined. However, 

this association was not replicated in a Caucasian cohort 

of 171 patients, nor was there an association between other 

BDNF polymorphisms and TD.110 Both glycogen synthase 

kinase (GSK)-3beta and BDNF are important in neuronal 

survival, and its regulation is hypothesized to play a role in 

susceptibility for TD.111 A study on a Korean cohort found 

GSK-3beta with C/C genotype and BDNF Val allele were 

associated with a decreased risk of TD (OR =0.1, 95% 

CI =0.02–0.48, P=0.001).112

Glutathione S-transferase
Glutathione S-transferase (GST) is a group of phase II 

detoxifying enzymes that conjugate glutathione to a range of 

compounds. A deletion of GST genes may lead to a build-up 

of toxic intermediates in the basal ganglia from increased 

dopamine turnover secondary to long-standing dopamine 

antagonist use.113 Neuronal toxicity through oxidative stress 

has been hypothesized as the pathophysiology of TD. One 

of the classes of glutathione, GSTM1, if deleted, is associ-

ated with schizophrenia. However, GSTM1 is not associated 

with TD nor correlated with higher AIMS.114,115 In contrast, 

one large Caucasian case-control study (n=516) found an 

association between GSTM1 deletion and TD, particularly 

in the female subpopulation (OR =1.7, 95% CI =1.2–2.4, 

P=0.007).61 Similarly, studies examining the GSTP1 enzyme 

found conflicting results. One cross-sectional study found 

GSTP1 was associated with a reduced risk of TD and lower 

AIMS,116 while another case control study found no such 

association in a mixed ethnic cohort.117 To confirm the asso-

ciation between TD and GSTM1 or GSTP1 deletion, it needs 

to be replicated in future association studies.

Glutathione peroxidase
Glutathione peroxidase 1 (GPX1) is an antioxidant enzyme 

that reduces organic hydroperoxides and hydrogen peroxide. 

Pro197Leu is a functional polymorphism of GPX1, with 

the Leu allele being less responsive to stimulation of GPX1 

enzyme activity,118 and potentially more at risk of oxidative 

stress. Both a cross-sectional study on a Russian cohort 

and case-control study on a Caucasian cohort did not find 

any association between Pro197Leu polymorphism and 

TD.116,119

Manganese dependent  
superoxide dismutase-2
Manganese dependent superoxide dismutase-2 (MnSOD) is 

a mitochondrial enzyme that scavenges the largest amount of 

superoxide anions produced in the mitochondria.120 Neuronal 

toxicity through oxidative stress has been hypothesized as the 

pathophysiology of TD. Three case-control studies in Asian 

cohorts and one genome-wide association study found the 

Ala9Val polymorphism of MnSOD is not associated with 

TD.74,121–123 Whereas a cross-sectional study on a Russian 

cohort found the Val allele of Ala9Val polymorphism was 

associated with orofacial TD.116 This is in contrast with the 

finding from a meta-analysis, where Val allele of Ala9Val 

polymorphism was found to be protective against TD. The 

discrepancy in the results of these studies may be explained 

by the relative high Ala allele carriers in the Russian cohort 

(70%), compared to the Asian cohort where 70% were Val/

Val genotype, 30% were Val/Ala genotype and 0% had Ala/

Ala genotype. If Val allele truly offers a protective effect 

against TD, then this may explain the lack of association in 

the Asian cohort study. However, it would not explain the 

association between TD and Val allele of Ala9Val polymor-

phism in the Russian study.

Catechol-O-methyltransferase  
and monoamine oxidase
Catechol-O-methyltransferase (COMT) is a dopamine-

metabolizing enzyme. Functional excess of dopamine in the 

postsynaptic cleft of the central nervous system has been 

hypothesized as a contributing factor to TD. Researchers have 

examined the possibility of COMT genetic polymorphism 

and its association with TD. The Val158Met is a functional 

polymorphism, where Met/Met genotype confers a 3- to 

4-fold reduction in COMT enzyme activity, compared to 

Val/Val genotype.124 One large case-control study on Indian 

cohorts found the Val/Val genotype had a reduced risk of 

TD (OR =0.24, 95% CI =0.11–0.55),85 whereas a study on a 

Korean cohort found the Val/Val genotype had significantly 

higher incidence of TD than heterozygotes.125 However, 

three case-control studies on Chinese, Japanese and Turkish 

cohorts found no association between Val158Met polymor-

phism and TD.126–128 A meta-analysis of five studies found 
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that Met carriers and Val-Met heterozygotes for Val158Met 

polymorphism of this enzyme, offered a protective effect 

against TD (OR =0.66, 95% CI =0.49–0.88, P=0.005 and 

OR =0.64, 95% CI =0.46–0.86, P=0.004, respectively).32 It 

is difficult to draw a conclusion about the role of COMT in 

TD based on these studies and future prospective studies are 

needed for clarification.

Monoamine oxidase A (MAOA) and monoamine oxi-

dase B (MAOB) both degrade dopamine and are thought 

to implicate susceptibility to TD. Functional polymorphism 

of MAOA such as 30 base pair (bp) repeat is thought to 

mediate transcriptional activity of this enzyme129 and 

intron 13 polymorphism of the MAOB gene is associated 

with MAOB enzyme activity in human platelets.130 Two 

case-control studies on Japanese and Caucasian cohorts did 

not find an association between MAOA 30 bp repeat poly-

morphism or MAOB polymorphism with TD.128,131

Serotonin receptor gene (5HT)
Increased sensitivity of the striatal dopaminergic system 

after chronic dopamine antagonist use is proposed as the 

pathophysiological mechanism of TD.82 Serotonergic pro-

jections from the dorsal raphe lead to tonic inhibition of the 

nigrostriatal dopaminergic system132 and selective serotonin 

reuptake inhibitors have been associated with TD.4 Typical 

and atypical antipsychotic drugs have variable effects on 

the serotonergic system. Therefore investigators postulate 

that the serotonin receptor gene may play a role in the 

pathophysiology of TD. 5-HT2A receptor gene T102C poly-

morphism is a silent mutation,133 but interestingly has been 

reported to predict clozapine response in schizophrenia.134 

A case-control study on a Jewish cohort135 and a longitudinal 

cohort study found the T102C polymorphism C/C genotype 

is associated with TD.88 However, other case-control studies 

and genome-wide association studies have not confirmed 

such an association because age is an additional risk factor 

in TD.74,126,136 The mean age of participants in the nega-

tive studies was between 33 and 40 years, compared with 

52 years in the positive study.135 A meta-analysis combining 

the subjects from these studies by Lerer et al confirmed the 

T102C polymorphism conferred a small risk towards TD 

(OR =1.64, 95% CI =1.17–2.32, P=0.002),137 whereas the 

T/C genotype or T allele is associated with non-TD group 

in Chinese cohorts.138,139 The -1438G/A polymorphism is 

associated with TD in two case-control studies,77,135 but this 

may be explained by its complete linkage equilibrium with 

T102C polymorphism.135 In studies on Indian, Russian, and 

African-Caribbean cohorts, no association between 5-HT2A 

receptor gene polymorphisms and TD has been found.34,95,99 

Two case control studies did not find His452Tyr polymor-

phism conferring an increased risk towards TD.135,136

The role of the 5-HT2C receptor gene has been examined 

in several case-control studies. An 5-HT2C antagonist reduces 

cataplexy secondary to haloperidol140 and an injection of 

5-HT2C agonist in rats induces orofacial dyskinesia,141 there-

fore investigators postulate it may play a role in the pathophys-

iology of TD. The -697G/C polymorphism, located in the 

promoter region of the 5-HT2C gene, has been associated with 

TD in a case study on a Chinese male cohort (OR =2.80, 95% 

CI =1.08–7.27, P=0.03).142 In Jewish cohorts, the Cys23Ser 

polymorphism Ser allele is associated with higher orofacial 

dyskinesia AIMS (P=0.0007) after controlling for age at 

antipsychotic initiation.143,144 In an African-Caribbean cohort, 

the combination of 23Ser allele and 9Ser carriership (DRD3 

receptor gene polymorphism) or -1438A/G (5-HT2A gene) 

polymorphisms in male patients was associated with a higher 

AIMS and TD, respectively.99 Whereas in a Russian cohort, 

the Ser allele of the Cys23Ser polymorphism was associated 

with a lower limb-trunk TD AIMS (OR =0.7, 95% CI not 

published, P=0.034).95 Interestingly, in the Indian cohort, 

there was no association between TD and 5-HT2C gene 

polymorphism.34 The 5HT6 receptor is upregulated in the 

extrapyramidal regions of the brain in animal studies, hence 

implicated in the pathophysiology of TD.145 5HT6 receptor 

267T/C polymorphism has not been found to be associated 

with TD in a case-control study.146 Similarly, no association 

between serotonin transporter gene polymorphism and TD 

has been found.126,139,147

Nitric oxide synthase
The nitric oxide synthase (NOS) enzyme produces nitric 

oxide, which is involved in oxidative stress. Animal studies 

implicated the likelihood of neural nitric oxide synthase 

(NOS1) and endothelial nitric oxide synthase (NOS3) in 

the pathophysiology of TD.148 Two studies examined the 

NOS1 gene and its C276T polymorphism and found no 

association with TD.149 A case-control study of 251 Chinese 

subjects did not find an association between AIMS and 

C276T genotypes.150 Liou et al found no association between 

single nucleotide polymorphisms such as 27-bp VNTR, 

Glu289Asp and -786T/C with TD in a Chinese cohort. 

However, they found the T-4b-Glu haplotype was associ-

ated with the non-TD group after correcting for duration of 

antipsychotic use and mean antipsychotic dose (OR =0.648, 

95% CI =0.432–0.973, P=0.021).33 In an Indian cohort, the 

27-bp VNTR polymorphism was not associated with TD per 
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se, but influences its severity, as 27-bp duplication correlates 

with a higher AIMS.151

Quinone oxidoreductase
Quinone oxidoreductase (NQO1) is a reductase enzyme 

located in the human substantia nigra. It is both an antioxi-

dant and pro-oxidant. Its main function is to counteract the 

toxic dopamine semiquinone. Functional polymorphism of 

NQO1 with T allele is associated with reduced function, thus 

a potential mechanism for cellular damage and TD. Studies 

examining the 609 C.T polymorphism found the T allele 

is associated with a higher risk of TD and higher AIMS in a 

Korean cohort (OR =2.25, 95% CI =1.23–4.13, P=0.004),152 

but not in a Chinese cohort.33 This may be due to differences 

in allelic frequency within different ethnic groups and the 

exclusion of subjects on atypical antipsychotic drug in the 

negative study.

Other gene polymorphisms
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in 

dopamine synthesis. Val81Met polymorphism is a marker 

for dopamine susceptibility traits in the TH gene. A case-

control study on a Korean cohort found no association 

between TD genotype and allele frequency for Val81Met 

polymorphism.153

The N-methyl-D-aspartate (NMDA) receptor has been 

implicated in TD pathogenesis through the glutamatergic 

neurotoxicity hypothesis. The 2B subunit of NMDA receptor 

gene was investigated in a case-control study of 273 Chinese 

subjects. They found no association between genotype, 

allele frequency and TD occurrence, nor a significant differ-

ence between AIMS in the three genotypes.154

Regulators of G-protein signaling (RGS) are involved in 

signal termination of the G-protein coupled D2 dopamine 

receptor. D2 receptor hypersensitivity occurs following 

chronic dopamine antagonist use and is hypothesized as the 

pathophysiology of TD. A Korean case-control study exam-

ining the G-protein beta3 subunit gene found no association 

between the C825T polymorphism and TD.155 In contrast, 

a case-control study found the AGG haplotype is signifi-

cantly associated with TD phenotype (P=0.007).27 To date, 

the function of this haplotype is unknown and this result is 

yet to be replicated.

The cannabinoid receptor 1 (CNR1) activator inhibits 

movement and this effect is blocked by a cannabinoid receptor 

antagonist in animal models.156 Tiwari et al found rs806374 

polymorphism C/C genotype is associated with TD (P=0.036) 

and higher AIMS after correction for age and sex.30 When 

comparing haplotype across groups with or without TD, none 

was significant for TD.

Vesicular monoamine transporter 2 (VMAT2) is encoded 

by the SLC18A2 gene. It is responsible for the release of neu-

rotransmitters implicated in TD, such as dopamine, serotonin 

and gamma-aminobutyric acid. VMAT2 is also the target for 

tetrabenazine, a drug used in TD. Zai et al found a number of 

single nucleotide polymorphisms associated with TD occur-

rence and higher AIMS. This rs363224 marker interacts with 

functional D2 receptor C957T polymorphism.28

The alpha-1A adrenergic receptor (ARRB2) is an impor-

tant target for atypical antipsychotic drugs and linked to 

the potential extrapyramidal side effect of these drugs.157,158 

A case-control study on a Chinese cohort found polymor-

phism rs1045280 (Ser280ser) in the ARRB2 gene is associ-

ated with TD compared to the non-TD group.31 In contrast, 

Saiz et al examined the effect of three single nucleotide 

polymorphisms, -563C/T, -4155C/G and -4884A/G, and 

their effect on TD on 427 Caucasian subjects who were on 

typical and atypical antipsychotics. Apart from the -4155 C/C 

genotype whose association with severe TD trended towards 

significance, they found the other genotypes were not associ-

ated with TD after controlling for age and multiple factors.26 

Future replicable studies for VMAT2, CNR1 and ARRB2 

receptor gene polymorphism and TD are needed.

Akt1 is a protein kinase that provides downstream signal 

transduction for the D2 receptor.159 Akt1 has an important influ-

ence on regulation of neuronal plasticity through receptor phos-

phorylation and upregulation.160 Therefore Akt1 may play a role 

in dopaminergic association conditions such as TD. However 

a case-control study on a mixed ethnic population found no 

significant association between the Akt1 gene haplotypes and 

TD. The same study found a significant interaction between 

theAkt1 rs3730358 haplotype and DRD2 rs6275 haplotype.161 It 

is not known how these haplotypes may cause TD and interac-

tion analysis with larger sample studies is needed.

Conclusion
There is a lack of prospective pharmacogenomic studies inves-

tigating the clinical utility and cost-effectiveness of genetic 

polymorphisms in predicting TD in psychiatric patients. 

Further studies are needed before there is enough evidence to 

recommend routine genotyping with predictive information 

for counselling and/or prevention. To date, meta-analysis of 

retrospective studies suggests that the D3 dopamine receptor 

Ser9Gly polymorphism and D2 dopamine receptor TaqA 

polymorphism are potential targets for prospective pharma-

cogenomic studies. Conflicting results for CYP2D6, CYP1A2, 
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COMT and 5-HT2A T102C polymorphisms may also benefit 

from prospective well-designed studies, gene polymorphism 

interaction studies and studies into the epigenetics of recep-

tor polymorphisms. More association studies are required 

for D4 receptor, BDNF, GSK3-beta, GSTM, GSTP, MnSOD, 

5-HT2C, NOS3, NQO1, RGS9, CRN1, VMAT2 and ARRB2 

genetic polymorphism. To date, studies have shown no 

association between CYP3A4 and CYP3A5, DAT, GPX1, 

MAOA, MAOB, 5-HTT, NOS1, TH, and NMDA 2B genetic 

polymorphisms with TD.
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