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Abstract: Genomic imprinting is an epigenetically regulated mechanism leading to 

 parental-origin allele-specific expression. Beckwith–Wiedemann syndrome (BWS) is an imprint-

ing disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function 

CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found 

in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, con-

genital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode 

of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when 

the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS 

are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe 

patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codi-

fies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/

Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror 

phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on 

protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell 

nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability 

of the protein, which probably results in a functional gain of growth inhibition properties. In 

contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and 

promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with 

opposite syndromes.

Keywords: Beckwith–Wiedemann syndrome, IMAGe syndrome, CDKN1C, genomic 

 imprinting, growth disturbances

Introduction
Genomic imprinting is an epigenetically regulated process determining parental-

origin allele-specific expression. Aberrant expression of imprinted genes charac-

terizes imprinting diseases, including Beckwith–Wiedemann syndrome (BWS, 

OMIM 130650, chromosome 11p15.5). To date, eight imprinting diseases have been 

reported:  Prader-Willi (OMIM 176270) and Angelman (OMIM 105830) syndromes 

 (chromosome 15q11-q13), transient diabetes mellitus (OMIM 601410; chromo-

some 6q24), maternal/paternal uniparental disomy 14 syndromes (OMIM 608149; 

 chromosome 14), Silver-Russell syndrome (SRS, OMIM 180860; chromosome 7 

and 11p15), pseudohypoparathyroidism type IB syndrome (OMIM 603233; 20q13) 

and BWS. Generally, the chromosomal regions subjected to imprinting contain genes 

that are involved in growth and development (eg, IGF2 and H19).1,2 This statement is 

in accordance with the model of the “struggle of the sexes”, based on the observation 
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Table 1 Molecular heterogeneity of BwS

Genetic mechanisms Occurrence (%) Methods of detection Genotype/phenotype correlations

Paternal UPD 10–20 Microsatellite/SNP analysis,  
Southern blot, MS-MLPA,  
pyrosequencing, mass  
spectrometry

Hemihyperplasia, high risk of wilms’ 
tumor and hepatoblastoma, severe 
phenotype (high level of somatic 
mosaicism UPD)

iD at iCR1 (gain of methylation) 2–8 Southern blot, MS-MLPA,  
pyrosequencing, mass spectrometry

Macrosomia, macroglossia, 
hemihyperplasia, high risk of wilms’ 
tumor and hepatoblastoma

iD at iCR2 (loss of methylation) 50–60 Southern blot, MS-MLPA, 
pyrosequencing, mass spectrometry

Hemihyperplasia, omphalocele

Paternal 11p structural rearrangements 1–2 FiSH, aCGH Developmental delay
Mutations of the maternal  
CDKN1C allele

5–10 (sporadic cases) 
40 (AD trait)

Sequencing Cleft palate, omphalocele, genital 
anomalies, neuroblastoma

Notes: in column 4, the clinical features associated with the different genetic mechanisms are reported. The description is not exhaustive of the whole clinical presentation of BwS. 
Abbreviations: BwS, Beckwith–wiedemann syndrome; UPD, uniparental disomy; iCR, imprinting control region; iD, imprinting defects; AD, autosomal dominant; 
FISH, fluorescent in situ hybridization; aCGH, array comparative genomic hybridization; MS-MLPA, methylation specific-multiplex ligation-dependent probe amplification; 
SNP, single nucleotide polymorphism.
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that paternally expressed genes are often growth promoting, 

while maternally expressed ones are growth inhibiting.3

Genetic and epigenetic alterations in BWS involve the 

imprinted chromosomal region 11p15.5 containing genes 

with expression controlled by two neighboring imprinted 

domains, ie, ICR1 (imprinting control region 1, regulating 

IGF2/H19 genes) and ICR2 (regulating KCNQ1/CDKN1C 

genes). ICR1 is imprinted in the male germline and operates 

as an insulator; ICR2 is imprinted in the female germline 

and acts as a promoter for the regulatory noncoding RNA 

KCNQ1OT1.4 The pathogenetic alterations recognized in 

BWS (Table 1) comprise CDKN1C loss-of-function muta-

tions present in the maternally derived allele.

The 11p15.5 region is also involved in another two 

syndromes with imprinting defects: SRS and the IMAGe 

(intrauterine growth retardation, metaphyseal dysplasia, adre-

nal hypoplasia congenita, and genital anomalies syndrome, 

OMIM 614732). IMAGe syndrome is not due to primary 

imprinting defects such as BWS and SRS, and is exclusively 

related to mutations of CDKN1C.5 This gene contains three 

exons and encodes p57(KIP2), a potent tight-binding inhibitor 

of several G1 cyclin/Cdk complexes (cyclin E-CDK2, cyclin 

D2-CDK4, and cyclin A-CDK2).6 It is a negative regulator 

of cell proliferation, playing a role in the maintenance of the 

nonproliferative state throughout life, probably acting as a 

tumor suppressor gene. CDKN1C is expressed in the placenta, 

heart, brain, lung, skeletal muscle, kidney, pancreas, and testis, 

in the eye, and in the subcapsular or developing definitive 

zone of the adrenal gland. It is paternally imprinted, with a 

preferential expression of the maternal allele;7 however, the 

imprint is not absolute, as the paternal allele is also expressed 

at levels comparable with the maternal one in the fetal brain.8 

The codified protein consists of three distinct domains, ie, 

a cyclin-dependent kinase inhibitory domain, a proline and 

alanine repeat domain, and a QT domain (Figure 1). The 

cyclin-dependent kinase inhibitory domain contains a cyclin-

binding region; the proline and alanine repeats interact with 

the LIM domain kinase 1 and regulate actin dynamics; the 

proliferating cell nuclear antigen (PCNA) binding domain, 

able to prevent DNA replication in vitro and S-phase entry in 

vivo.6 As in the RET gene,9 different mutations in CDKN1C 

can give rise to different phenotypes.

Beckwith–Wiedemann syndrome
The Beckwith–Wiedemann syndrome, described for the first 

time in 1963 by Beckwith, and again in 1964 by Wiedemann, 

is the most common overgrowth syndrome, with an incidence 

of about one in 13,700 live births.10,11 This occurrence is 

probably underestimated as milder phenotypes may not be 

ascertained.12 Males and females are affected equally, with 

the exception of monozygotic twins who show a female 

predominance.13 BWS occurs sporadically in most cases 

(85%), with the remaining cases having autosomal dominant 

inheritance.14

Clinical diagnosis
Clinical findings of BWS include macrosomia, macroglos-

sia, abdominal wall defects (diastasis recti, omphalocele, or 

umbilical hernia), visceromegaly, hemihyperplasia, anterior 

ear creases and posterior helical pits, kidney abnormalities 

(medullary dysplasia, later development of medullary sponge 

kidney), cytomegaly of the adrenal fetal cortex, a positive 

family history of BWS, and, rarely, cleft palate. Height and 

weight are typically around the 97th percentile in children, 
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Figure 1 Mutations of CDKN1C in iMAGe syndrome (upper part) and BwS (lower part). The mutations in iMAGe syndrome are clustered within the PCNA-binding domain 
and are considered gain-of-function. The pathogenetic variations in BwS are spread throughout the gene and considered loss-of-function. The mutations reported here were 
previously described by Romanelli et al29 and by Hamajima et al.48

Abbreviations: BwS, Beckwith–wiedemann syndrome; iMAGe, intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies; 
PCNA, proliferating cell nuclear antigen.

with head size closer to the 50th percentile, while adult height 

generally settles in the normal range.11,15,16 Additional find-

ings may include neonatal hypoglycemia, nevus flammeus, 

cardiomegaly, structural cardiac defects, cardiomyopathy, 

advanced bone age, and a characteristic facial appearance. 

Most BWS patients have normal psychomotor development, 

but mental retardation has been noted in cases with chromo-

somal abnormalities and/or perinatal complications.17

Pregnancies with fetuses affected with BWS may be com-

plicated by polyhydramnios, large/dysplastic placenta,16,18 

a long and thickened umbilical cord, and an increased risk 

for premature delivery.16 Children conceived by in vitro 

fertilization are at increased risk of developing BWS, and 

the overall risk of BWS with in vitro fertilization is about 

one in 4,000.19–21

Although consensus diagnostic criteria for BWS have not 

been defined, the presence of three major features (eg, prena-

tal and postnatal overgrowth, macroglossia, and abdominal 

wall defects) or two major features and one minor feature 

(eg, ear anomalies, neonatal hypoglycemia, nephromegaly, 

and hemihyperplasia) is required for the postnatal clinical 

diagnosis of BWS.4,22

Early diagnosis of BWS is crucial because of the well 

documented increased risk of cancer, most commonly 

Wilms’ tumor and hepatoblastoma, but also adrenocortical 

carcinoma, rhabdomyosarcoma, and neuroblastoma.11,14,15,23–25 

Isolated hemihyperplasia (OMIM 235000) is a congenital 

overgrowth disorder related to BWS that displays asym-

metric involvement of the body. It may manifest few of 

the abnormal features associated with BWS; however, 

patients with  isolated hemihyperplasia have an increased 

risk for embryonal tumors, primarily Wilms’ tumor and 

 hepatoblastoma, which are usually diagnosed before 10 years 

of age.26  Furthermore, BWS patients with hemihyperplasia 

have a four-fold increased tumor risk compared with BWS 

patients without hemihyperplasia, emphasizing the increased 

risk of tumors in isolated hemihyperplasia.25 Isolated hemi-

hyperplasia cases should also be included in the specific 

follow-up created for BWS patients (Figure 2).27

Molecular genetic testing
Molecular diagnosis is important to confirm the provisional 

BWS clinical diagnosis and to identify BWS patients with 

cancer susceptibility. An etiologic molecular heterogeneity 

is clearly evident in BWS, due to various genetic and/or 

epigenetic alterations in growth regulatory genes located on 

the chromosome 11p15 region.

The genetic and epigenetic abnormalities associ-

ated with BWS are listed in Table 1 and include loss of 

methylation on the maternal chromosome at IC2, gain 

of methylation on the maternal chromosome at IC1, pater-

nal uniparental disomy for chromosome 11p15 (usually as 

mosaicism), mutations in the CDKN1C gene, and cytoge-

netically detectable or submicroscopic genomic alteration 

within 11p15.5.22,28 CDKN1C mutations are found in about 

5%–10% of sporadic cases, whereas dominant maternal 

transmission of germline mutations are found in 40% of 

familial BWS cases.4,11

It is largely accepted that the variability of oncologic 

risk in BWS mostly depends on genetic heterogeneity 

(Figure 2) and duration of the observation. It is now well 

established that patients with a molecular abnormality 
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of the telomeric domain (ICR1 hypermethylation) and 

11p15 paternal uniparental disomy have an increased risk 

of embryonal tumors (especially Wilms’ tumor), whereas 

patients with defects of the centromeric domain only (ICR2 

hypomethylation and CDKN1C mutations) are at lower 

risk of such tumors.22

CDKN1C mutations in BwS:  
genotype-phenotype correlations
Focusing on CDKN1C mutations, subfertility in males, 

predisposition to aneurysmal arterial dilation, renal abnor-

malities, hearing loss, and, perhaps, increased risk for adult-

onset malignancy are known.12 Romanelli et al29 reviewed 

the CDKN1C-related phenotypic features in BWS patients, 

and suggested that these patients show a peculiar pattern 

of clinical malformations in comparison with those with 

other molecular defects, and therefore the peculiar clinical 

presentation of the patients can be useful to address the 

molecular analysis. Genotype-phenotype studies indicate 

that mutations in CDKN1C are more frequently associated 

with omphalocele,30 clefting,31 and genital anomalies29,32 

and less frequently with development of tumors,30 with the 

exception of rare cases with neuroblastoma.33–35 Focusing on 

cleft palate, although this finding has been rarely reported in 

patients affected by BWS (2.5%),15,29,36–39 it has usually been 

associated with CDKN1C alterations; instead, cleft lip has 

never been documented in these patients.

In addition, CDKN1C seems to be highly expressed 

in the placenta, and therefore may have importance in the 

pathophysiology of pre-eclampsia/HELLP syndrome dur-

ing pregnancy.40 Furthermore, a few patients with other 

rare  malformations such as polydactyly and supernumerary 

nipples have been reported.29

IMAGe syndrome
IMAGe syndrome is a rare developmental disorder, mainly 

characterized by growth restriction and described for the 

first time in 1999 by Vilain et al.41 To date, there are only 

12 familial or isolated cases reported in the literature, but this 

condition could be underestimated as the causative gene and 

the mode of inheritance have only recently been identified 

by Arboleda et al.5

Clinical features
The acronym IMAGe indicates the presence of  Intrauterine 

growth restriction, Metaphyseal dysplasia, congenital Adre-

nal hypoplasia, and Genital anomalies. The first sign that 

becomes evident after birth is adrenal insufficiency, which 

can be severe and life-threatening if not recognized and 

treated early; it usually manifests in the first days of life with 

adrenal crises, but a case of late onset has been reported.42 

Radiologic identification of metaphyseal dysplasia is often 

crucial for the diagnosis, but this could be very mild and iden-

tifiable only in late infancy or in childhood and then progress 

with age. A more precocious sign, ie, delayed endochondral 

ossification associated with osteopenia, hypercalcemia, and/

or hypercalciuria, can be present at birth and normalizes later 

in infancy.43,44 Growth hormone deficiency has also been 

described in some patients,40 and it has been shown that an 

early substitutive therapy assessment could help to improve 

the linear growth.

Dysmorphic craniofacial features in IMAGe syndrome 

include nonspecific signs, such as prominent forehead, 

ICR1
hypermethylation

pUPD
11p15

ICR2
hypomethylation

Low tumor riskIntermediate tumor riskHigh tumor risk

>6 years: yearly clinical examinations

0–12 months: monthly clinical
examination + abdominal US every 3 months

0–24 months: monthly clinical
examination. Abdominal US at clinical
diagnosis

2–6 years: clinical examination every

3–6 months

1–6 years: abdominal US every 3 months
and clinical examination between US scans 

CDKNIC
mutations

Figure 2 Suggested follow-up for BwS according to risk classes.
Abbreviations: BwS, Beckwith–wiedemann syndrome; pUPD, paternal uniparental disomy; iCR, imprinting control region; US, ultrasound.
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low-set ears, flat nasal bridge, and short nose, while genital 

abnormalities seem to be confined to males and include 

micropenis, undescended testes, and varying severity of 

hypospadias.42

Molecular genetic testing
The IMAGe causative gene and inheritance model have 

been recently identified.5,45–47 To date, six missense muta-

tions, all of them occurring in the PCNA-binding domain 

in the carboxy-terminal region of CDKN1C, were reported 

(Figure 1).5,45 Recently, Hamajima et al48 demonstrated 

that the IMAGe-associated mutations cause a dramatically 

increased instability of the CDKN1C proteins that prob-

ably results in a functional gain. This hypothesis is also 

supported by evidence of CDKN1C truncation mutants 

lacking PCNA binding (ie, F276X10; Figure 1) identified 

in BWS patients showing the loss-of-function phenotype 

of CDKN1C.49

For molecular diagnosis of IMAGe syndrome, CDKN1C 

sequencing is recommended. Notably, familial analysis 

demonstrated de novo mutations or an imprinted mode of 

inheritance, exclusively with maternal transmission of the 

mutation. This means that each child of a woman heterozy-

gous for the CDKN1C mutation has a 50% chance of inher-

iting the pathogenic variant and being affected, whereas 

each child of a man with the mutation has a 50% chance of 

inheriting the CDKN1C pathogenic variant but is expected 

to be  unaffected.50 This pattern of transmission suggests that 

IMAGe can be considered as an imprinting disease, albeit 

characterized by point gene mutations.

Same gene, mirror phenotypes
The mechanisms underlying genomic imprinting are very 

complex, in particular regarding the 11p15.5 imprinted 

region. Indeed, different mutations (or epimutations) in 

the same gene (CDKN1C) or imprinted region can result 

in opposite phenotypes. CDKN1C can be associated with 

BWS, SRS, and IMAGe syndrome, and IC1 opposite 

imprinting defects with BWS (IC1 hypermethylation) and 

SRS (IC1 hypomethylation). Among these syndromes, 

BWS is mainly characterized by overgrowth, and IMAGe 

and SRS by growth restriction.46 A detailed description of 

the mirror phenotype in BWS and IMAGe is reported in 

Table 2.

BWS-associated CDKN1C mutations are most often 

truncating mutations distributed throughout the gene, or mis-

sense mutations in the aminoterminal CDK inhibitor domain, 

and those associated with IMAGe are missense variants in 

Table 2 Mirror phenotypes in BwS and iMAGe syndrome

BWS IMAGe syndrome

Macrosomia/hemihyperplasia Short stature
Abdominal wall defects –
visceromegaly, macroglossia, increased  
risk of cancer

–

Adrenal hyperplasia Adrenal hypoplasia
Anterior ear creases, posterior helical pits,  
cleft palate, nevus flammeus

–

Kidney abnormalities (cytomegaly  
of the adrenal fetal cortex, medullary  
dysplasia, delayed development of medullary  
sponge kidney), increased risk of cancer

Adrenal insufficiency

Neonatal hypoglycemia –
Structural cardiac defects –
Advanced bone age Delayed endochondral 

ossification associated 
with osteopenia, 
hypercalcemia, and/or 
hypercalciuria

Fetal macrosomia (LGA), polyhydramnios, 
large/dysplastic placenta, long and  
thickened umbilical cord, increased  
risk for premature delivery

intrauterine growth 
restriction

– Metaphyseal dysplasia
– Micropenis, undescended 

testes, and varying 
severity of hypospadias

Abbreviations: BwS, Beckwith–wiedemann syndrome; iMAGe, intrauterine 
growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital 
anomalies; LGA, large for gestational age; SGA, small for gestational age.

the PCNA-binding domain (Figure 1), suggesting that the 

 mutations causing these two imprinting disorders have dif-

ferent biologic consequences.

CDKN1C mutations in BWS act as a “double-negative”, 

promoting proliferation due to loss of cell cycle inhibition, 

and then predisposition to cancer. In contrast, IMAGe syn-

drome is caused by mutations leading to a gain-of-function 

of CDKN1C protein, most probably related to increased 

stability of the protein.5 IMAGe-associated mutations 

inhibit binding to PCNA and ubiquitination of CDKN1C. 

Evidence for a gain-of-function effect was detected in 

Drosophila melanogaster, in which expression of the mutant 

but not the wild-type human protein reduced eye and wing 

size.5 It is conceivable that CDKN1C mutations in IMAGe 

patients can trigger an excess of inhibition of growth and 

differentiation.

A good example of the effects of these mutations on 

the single organ has been provided by Arboleda et al,5 who 

showed how CDKN1C was strongly expressed during the 

embryonic development of the adrenal glands in mice. In 

BWS, the decreased inhibition of G1 CDKs due to loss-of-

function mutations causes adrenal cytomegaly (one of the 
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most common signs in BWS fetuses) and adrenocortical 

tumors (also sporadic adrenocortical tumors can display 

CDKN1C inactivation), while in IMAGe syndrome the 

increased inhibition of the cell cycle due to augmented sta-

bility of CDKN1C results in congenital adrenal hypoplasia 

(Table 2).

Finally, in the fetal brain, as mentioned before, CDKN1C 

is biparentally expressed. This observation could explain 

why the occipitofrontal circumference in IMAGe syndrome 

is relatively well preserved in comparison with length/height 

and weight that are severely compromised.45

The link between the nature of CDKN1C mutation and 

the mirror phenotype of BWS and IMAGe can be explained 

by the importance of p57Kip2 in embryogenesis, which is 

also highlighted by the finding that knockout mice exhibit 

gastrointestinal tract defects, omphalocele, abnormal endo-

chondral ossification, cleft palate, adrenal cortex enlargement, 

renal medullary dysplasia, increased body weight, and placen-

tal abnormalities. p57Kip2 excess in mice increases embryonic 

lethality and decreases body size, suggesting that embryonic 

growth requires accurate control of p57Kip2 dosage.51

In conclusion, after the discovery that SRS is character-

ized by the opposite growth defect compared with BWS, 

IMAGe syndrome represents an additional imprinting dis-

order with a mirror phenotype of BWS, strengthening the 

primary role of the 11p15.5 imprinted region in prenatal and 

postnatal growth regulation.
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