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Abstract: Advances in nanotechnology are producing an accelerated proliferation of new 

nanomaterial composites that are likely to become an important source of engineered health-

related products. Nanoparticles with antifungal effects are of great interest in the formulation 

of microbicidal materials. Fungi are found as innocuous commensals and colonize various 

habitats in and on humans, especially the skin and mucosa. As growth on surfaces is a natural 

part of the Candida spp. lifestyle, one can expect that Candida organisms colonize prosthetic 

devices, such as dentures. Macromolecular systems, due to their properties, allow efficient use 

of these materials in various fields, including the creation of reinforced nanoparticle polymers 

with antimicrobial activity. This review briefly summarizes the results of studies conducted 

during the past decade and especially in the last few years focused on the toxicity of different 

antimicrobial polymers and factors influencing their activities, as well as the main applica-

tions of antimicrobial polymers in dentistry. The present study addresses aspects that are often 

overlooked in nanotoxicology studies, such as careful time-dependent characterization of 

agglomeration and ion release.

Keywords: cytotoxicity, oxidative stress, genotoxicity, antifungal effect, denture bases, 

dentistry

Nanotechnology and health
Nanotechnology has become a major focus in scientific research efforts. Nanotech-

nology has been used in various fields of science and technology, including physics, 

electronics, medicine, and chemistry, among other areas of interest to the scientific 

community. Interest in nanotechnology is growing and continues to change the way 

we perceive and execute things, has a pronounced effect on therapeutics, and is shap-

ing our ever-evolving society and influencing our daily lives.1–4

Nanotechnology has contributed to the improvement in materials used in 

medicine, as it can provide better functionality, mainly due to the nanometric 

sizes involved (eg, silver nanoparticles [AgNPs] that exhibit different properties 

once they are applied to biological systems, compared with traditional systems of 

treatment). The nanoscale endows the materials with the ability to penetrate into 

different biological membranes, such as bacterial cell walls, thereby increasing 

bactericidal effects; there are numerous examples of such applications in gene and 

drug delivery.5–8

The nanoscale range (1–100 nm) used to describe nanoparticles should not be 

considered strict, due to the variations that may exist in the nanoparticle shape or the 

appearance of nanoscale properties in particles slightly above or below the nanoscale 

limits. This can include other important properties, such as shape, surface area-to-mass 

ratio, and composition.9
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Nanoparticles are being explored extensively because 

of their size-related chemical and physical properties. 

The size of nanoparticles is similar to that of most bio-

logical molecules and structures, making them interesting 

candidates for applications in both in vivo and in vitro 

biomedical research. The results of their integration into 

the field of medicine have led to their applications, mainly 

in targeted drug delivery, imaging, sensing, and artificial 

implants. Another interesting opportunity within the field 

of medicine is the use of nanoparticles as carriers for anti-

microbials to target highly pathogenic and drug-resistant 

microorganisms. However, for the application of nano-

particles in biology, biocompatibility is a greatly desired 

characteristic. Biocompatibility is a material’s ability to 

perform medically without producing undesired local or 

systemic effects.10

The flip side of the benefits of nanoparticle use in medicine 

is their potential toxicity. Nanoparticles react differently when 

administered in various environments.11 The observation of 

dose-related responses is important, because these responses 

help to determine the appropriate amount of nanoparticles 

to administer, in terms of median toxicity and the limits for 

human exposure in order to prevent any side effects.12

Nanoparticles may have different effects on human 

health relative to the bulk material from which they have 

been produced.13 Some nanoparticles are small enough to 

be able to access skin, lungs, and the brain. Currently, no 

sufficient information is available on the adverse effects of 

nanoparticles on human health.14–16

Toxicity of nanoparticles
The in vitro testing methods used to evaluate nanoparticle 

toxicity have revealed the general and biological properties 

of the materials as they acquire a nanoscale structure and 

result in the formation of nanoparticles, thereby leading to 

tremendous applications in therapeutics.

Nanoparticles can cross membrane barriers through trans-

cytosis, which facilitates the function of a drug that is applied 

to these nanoparticles, by means of hydrophilic surfactants 

like Tween® 80 for targeted actions.17 Several studies have 

also shown that the interaction between cells and nanopar-

ticles results in DNA damage, causing cancer and devel-

opmental toxicity that leads to further growth retardation, 

malformation, or death of embryos.18

Traditional in vitro assays of nanoparticles can lead to 

misrepresentation of cellular uptake data, and the results 

are not always dependable. The shape of nanoparticles is 

an important characteristic that must be considered when 

assessing toxicological effects. Some particles may exist 

in different shapes, eg, carbon nanotubes are considered 

potentially toxic due to their resemblance to asbestos 

and other carcinogenic fibers; they are also graphitic and 

therefore are expected to be biologically persistent in the 

body.12,19,20 Several factors such as dose, exposure time, 

size, shape, surface chemistry, and cell type play important 

roles in mediating cellular responses when nanoparticles are 

administered to cells.21 One study evaluated the cell toxicity 

effect after nanoparticle administration, taking into account 

the size and dose administered, significant cell toxicity was 

only evident for 10 nm citrate-coated (P0.05) and 10 nm 

polyvinylpyrrolidone-coated (P0.01) AgNPs after 24 hours 

at their highest doses (50 μg/mL); however, no significant 

alterations of the mitochondrial activity of the BEAS-2B cells 

(human lung cells) were observed for any of the lower doses 

(5 and 10 μg/mL) of the AgNPs.22 Liu et al found that 5 nm 

AgNPs were more toxic than 20 and 50 nm AgNPs in four 

cell lines (A549, HepG2, MCF-7, SGC- 7901), indicating a 

size-dependent effect on cell viability.23

Oxidative stress
Previous studies on the toxicity of nanoparticles have 

related their effects to oxidative stress24,25 and shown that 

nanoparticles can provoke oxidative stress and inflamma-

tory responses in the nervous system, as they travel along 

dendrites and axons.18

Specifically, in vitro studies of AgNP toxicity have 

shown an increase in the production of reactive oxygen spe-

cies (ROS), oxidative stress, mitochondrial damage, DNA 

damage, and cytotoxicity in BRL 3A rat liver cells, human 

liver cells, THP-1 monocytes, human alveolar epithelial cells 

(A549), human mesenchymal stem cells, human fibroblasts, 

and glioma cells.16,26–32

Recent reports have suggested that many nanomaterials, 

especially nanometal oxides, generate O
2
-, a ROS in biologi-

cal systems.15,33–36

Cell viability (cytotoxicity)
Viability and proliferation assays are based on the ability 

of mitochondrial dehydrogenase enzymes, present in living 

cells, to reduce tetrazolium dye 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) to an insoluble, 

purple formazan product or 2,3-bis-(2-methoxy-4-nitro-5-

sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) to a 

water-soluble, orange formazan product.37,38

Toxicity testing of engineered nanomaterials, includ-

ing nano-TiO
2
, has generated many publications in the last 
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several years. Conflicting cell viability and proliferation 

results have been reported from these studies when based 

on the MTT assay.39–42 Nano-TiO
2
 increases the formation of 

ROS in different mammalian cells.43,44 It is known that the 

redox potential of tetrazolium salts is highly dependent on 

their structure and substituents.45,46 In this sense, MTT and 

XTT assays may underestimate a compound’s cytotoxicity 

by overestimating cell viability. Thus, it is safe to assume 

that MTT, XTT, water-soluble tetrazolium salts, and other 

tetrazolium dyes currently used for toxicity testing may have 

different reaction rates with superoxide. Depending on the 

concentration of superoxide dismutase or other molecules 

that also react with superoxide in cells, these competitive 

reactions may well influence estimates and interpretations 

of viability and proliferation. Therefore, tetrazolium dye 

assays for determination of cell viability and cell prolifera-

tion may be affected under experimental conditions that 

influence the level of O
2
 in a biological system.

Acosta-Torres et al summarized common in vitro biologic 

assays that are used to evaluate a nanocompound material’s 

influence on proliferation, viability, genotoxicity, and oxida-

tive stress.47 Two or more assays should be used to analyze 

possible toxicological effects of nanocompounds.

Antimicrobial nanoparticles
In general, various salts of silver and their derivatives have 

been used as antimicrobial agents; these materials have 

also been studied as media for antibiotic delivery and use 

in synthesis of composites for use as disinfecting filters and 

coating materials.

Previously we described reports by some authors who 

described that, under certain conditions, nanoparticles 

were toxic in a diverse variety of cells. Recent studies have 

reported that both AgNPs and metal oxide alginate forms 

(eg, TiO
2
 and Fe

2
O

3
) exhibit antifungal properties when 

they are joined into the polymer formulation, eg, polymethyl 

methacrylate (PMMA), a versatile polymer used in dentistry 

and for which biocompatibility and non-genotoxicity have 

been demonstrated.48–50 Some other dental applications 

of TiO
2
 nanoparticles have been reported in addition to a 

conventional glass ionomer (3% [weight/weight]) to improve 

mechanical and antibacterial properties. These new materials 

will be used for higher stress-bearing site restorations.51

Growing evidence indicates that Candida albicans and 

other Candida spp. are able to adhere to acrylic resin dentures 

(PMMA); this capability predisposes some denture wearers to 

health problems and can also require a prolonged treatment 

period for candidiasis.52

Microbial adhesion on biomaterial surfaces depends 

on the surface structure and the composition of biomateri-

als, as well as on the physicochemical properties of the 

microbial cell surface; so that, AgNPs, have been proposed 

as antimicrobial agents in polymeric materials. Antibacte-

rial, antiviral, and antifungal effects have been reported for 

AgNPs, which are broadly used as antimicrobial agents in 

polymeric nanocomposites.49,52

Other nanoparticles used for C. albicans are the ZnO 

nanoparticles. A concentration-dependent effect of ZnO  

on the viability of C. albicans has been observed.15 The 

minimal fungicidal concentration of ZnO was found to be 

0.1 mg/mL − 1 ZnO; this concentration caused an inhibition 

of over 95% in the growth of C. albicans.15

Factors related to development 
of Candida
Commonly used biomaterials exhibit significant differences 

in surface free energy, ie, the interaction between the forces 

of cohesion that determine whether or not wetting will occur. 

Data have shown that the higher the adherence tendency to 

various base resin materials, the lower the value for the free 

energy change in tests with both C. albicans and Candida trop-

icalis.53 Surface roughness directly influences initial micro-

organism adherence to surfaces, biofilm development, and 

Candida spp. colonization.54 Surface roughness is calculated 

as the arithmetic average deviation of the surface valleys and 

peaks of a given surface. It directly influences initial micro-

organism adherence to surfaces, biofilm development, and 

Candida spp. colonization.54 Materials with rougher surfaces 

usually exhibit higher yeast counts. This happens because 

surfaces can serve as a reservoir, with surface irregularities 

providing an increased chance of microorganism retention and 

protection from shear forces, even during denture cleaning. 

In addition, these irregularities sometimes allow time for the 

entrapped microbial cells to attach irreversibly to a surface.

The antibacterial activity of different metal nanoparticles, 

such as silver colloids, is closely related to their size; that 

is, the smaller the silver nuclei, the higher the antibacterial 

activity. Specific controls of shape, size, and size distribu-

tion are often achieved by varying the methods and reducing 

agents and stabilizers used during synthesis.55

The interaction of nanoparticles with biomolecules and 

microorganisms is an expanding field of research. The interac-

tion of nanoparticles with biomolecules and microorganisms 

is an expanding field of research focused on the bactericidal 

effects; due to the rapid increase in microbes that are resistant 

to conventionally used antibiotics.56
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Inorganic nanoparticles (ZnO, iron oxide, TiO
2
) and 

metal nanoparticles (silver, gold, iron, copper, magnesium) 

have good antibacterial activities. The size of a metallic 

nanoparticle ensures that a significantly large surface area 

of the particle is in contact with the bacterial effluent. Syn-

thesis and characterization of nanoscale materials in terms 

of novel physicochemical properties are of great interest in 

the formulation of bactericidal materials. Additionally, it 

appears that bacteria are far less likely to acquire resistance 

to metal nanoparticles compared to other conventional and 

narrow-spectrum antibiotics.

Nanoparticles in dental applications
There are major challenges to overcome in the area of preven-

tive dentistry, such as tooth decay, treatment of injuries, and 

cavities in teeth. Nowadays, different research laboratories 

have developed solutions and pastes that are composed of 

nanometric materials for tissue regeneration in healing these 

dental lesions.57–59

Beyth et al described the incorporation of quater-

nary ammonium polyethyleneimine nanoparticles in a 

resin composite with antimicrobial effect against a wide 

range of bacteria with no apparent negative effect on 

biocompatibility.60 Quaternary ammonium polyethyl-

eneimine nanoparticles have a strong bactericidal activity 

against Streptococcus mutans, and a wide variety of micro-

organisms rapidly killing bacterial cells when incorporated 

at small concentrations into restorative composites.60

AgNPs are well known for their use in wound dressings 

and catheters, as well as in various processes involving their 

antimicrobial potential; nevertheless, the size-dependent tox-

icity of AgNPs is an expanding field of research. The size of an 

AgNP is decided upon the basis of its biomedical application. 

The cytotoxic effects of AgNPs were observed when admin-

istered directly in several cell lines, including MC3T3-E1 and 

PC12 cells, as they induce cellular death when the AgNPs are 

10 nm in size, and the toxicity is greater than that seen with 

AgNPs that are 50–100 nm.61,62 Additionally, several studies 

have indicated primary size- and agglomeration-dependent 

toxic effects of engineered nanoparticles. A comparison 

of large and small particles/agglomerates revealed greater 

toxicity for smaller particles/agglomerates that were at least 

partly due to differences in cellular uptake.63–66

With the myriad of postulated physicochemical char-

acteristics of engineered nanoparticles that may impact 

toxicity, it is paramount for risk assessments to determine 

the concentration range at which well-characterized nano-

particles of varying composition, size, and surface coatings 

can cause early cellular perturbations, such as an oxidative 

stress response. Particularly for AgNPs, for which it has 

been widely shown that silver ions (Ag+) can induce toxic-

ity, a comparison between the insoluble nanoparticle form 

and soluble ionic form of silver should focus on character-

izing the biological effects of exposure and the impacts of 

differences in solubility, cellular uptake, particle size, and 

particle coating.

One subject of debate with respect to AgNPs is the mecha-

nism of their toxicity, specifically, whether ionic silver is the 

only cause of the toxicity of AgNPs or whether nanoparticles 

have toxicities distinct from those of ionic silver.67–72

Sivolella et al reviewed potential clinical applications 

in alveolar bone and dental implant surgery of AgNP-based 

devices.73 The authors suggested that AgNPs may be an 

alternative strategy for reducing bacterial adhesion and pre-

venting biofilm formation, despite AgNPs having exhibited 

some toxic effects in in vitro and in vivo studies. They also 

proposed that clinical trials should be undertaken to deter-

mine suitability for AgNP applications.

Table 1 summarizes the different metal and metal oxide 

nanoparticle polymer formulations now in development and 

their demonstrated antimicrobial effects.

Future trends for antimicrobial 
denture products
Base materials have been developed in order to reduce and 

redistribute occlusal forces from dentures that might dam-

age the underlying mucosal tissues; in this sense, the use of 

denture liners, either hard or soft, has increased.84 Liners are 

needed in many clinical situations in which patients have 

thin, sharp, or badly resorbed residual alveolar ridges or 

chronic tissue irritation from dentures; even though, these 

liner materials exhibit excellent tissue tolerance, one associ-

ated problem is colonization by Candida spp. on and within 

the material.85

Fungal growth on the surface of a liner, may lead to 

irritation of the oral tissues; these negative effects form the 

rationale for attempts to incorporate antifungal agents in 

these materials.86 The use of antimicrobial nanoparticles in 

dentistry is promising, but effective monitoring strategies 

still remain to be established concerning the toxicity of such 

materials.87
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