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Abstract: Tumor hypoxia has long been recognized as a driving force of malignant progression 

and therapeutic resistance. The discovery of hypoxia-inducible transcription factors (HIFs) has 

greatly advanced our understanding of how cancer cells cope with hypoxic stress by maintaining 

bioenergetics through the stimulation of glycolysis. Until recently, however, it remained perplex-

ing why proliferative cancer cells opt for aerobic glycolysis, an energy-inefficient process of 

glucose metabolism. Furthermore, the role of HIF in cancer has also become complex. In this 

review, we highlight recent groundbreaking findings in cancer metabolism, put forward plausible 

explanations to the complex role of HIF, and underscore remaining issues in cancer biology.
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Introduction
Cellular adaptation to O

2
 deprivation – hypoxia – is a physiological response dur-

ing the course of normal development and aging in metazoans, and is critical for 

continued growth and survival of the organism. Central to this adaptive response 

is  hypoxia-inducible factor 1 (HIF-1), a transcription factor that orchestrates global 

responses to hypoxia in gene expression.1 HIF-1 is a heterodimer composed of HIF-1α 

(gene symbol HIF1A) and aryl hydrocarbon receptor nuclear translocator (gene symbol 

ARNT, and also known as HIF-1β).2 Both subunits possess a basic helix-loop-helix 

domain capable of dimerization and binding to the promoters of hundreds of target 

genes through the recognition of hypoxia-responsive elements that contain the core 

sequence RCGTG.3–7

As the regulatory subunit of HIF-1, the O
2
-labile HIF-1α stabilizes in response 

to hypoxia, leading to heterodimerization, DNA binding, and recruitment of the 

transcription co-activators p300 and CBP.8–10 HIF-1α uses a hydrophobic interface 

including Cys800 to interact with p300 and CBP.11–14 Interestingly, in normoxia, HIF-1 

target genes are transcriptionally active but paused for RNA polymerase II elongation; 

hypoxia-activated HIF-1α employs CDK8-Mediator and the super elongation complex 

to alleviate the pausing for elongation.15 Numerous HIF-1 target genes are activated 

by this canonical mechanism of transcription, such as those involved in angiogenesis, 

metabolic reprogramming, cell survival and proliferation, and migration and metastasis 

(Figure 1).16–18 Also contributing to these cancer biological processes is HIF-2α (gene 

symbol EPAS1),19,20 a paralog of HIF-1α, which shares similar biochemical properties, 

regulatory mechanisms, and target genes, even though distinct, and even opposing, 

functions of HIF-2α have begun to be appreciated.21
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HIF-1α is sensitive to O
2
, owing to the presence of an 

O
2
-dependent degradation domain that mediates ubiquitin-

proteasomal proteolysis.22 The von Hippel-Lindau (VHL) pro-

tein is a part of the E3 ubiquitin ligase,23,24 which  recognizes 

two highly conserved proline residues (Pro402 and Pro564 in 

HIF-1α, Pro405 and Pro531 in HIF-2α) for polyubiquitina-

tion; however, hydroxyl modification of these proline residues 

is a prerequisite for VHL recognition.25–27 Prolyl hydroxylation 

is catalyzed by three prolyl hydroxylase domain-containing 

(PHD) proteins of the Fe(II)- and 2-oxoglutarate (2OG)-

dependent dioxygenase family: PHD1, PHD2, and PHD3 

(gene symbols EGLN2, EGLN1, and EGLN3, respectively), 

which use molecular O
2
 for sensing and signaling.28–34

Likewise, the factor inhibiting HIF-1 (FIH1, gene 

symbol HIF1AN)35 is another type of hydroxylase that 

modifies Asn803 in the HIF-1α transactivation domain to 

block p300 interaction, thereby providing an additional 

mechanism for modulating HIF-1α activity.36,37 Although 

FIH1 is a dioxygenase that uses molecular O
2
 for substrate 

 modification, its in vivo role for HIF-1α regulation requires 

further investigation because mice with a Hif1an-null 

mutation demonstrated no alterations of Hif-1 function but 

exhibited a hypermetabolic state with hyperventilation and 

decreased body mass, which was regulated systemically by 

the nervous system.38

Besides hydroxylation, numerous modulatory mecha-

nisms have been identified, adding the complexity of HIF 

regulation. These include oncogenes and tumor-suppressor 

genes, acetylation and SUMOylation, reactive oxygen  species 

and nitric oxide, and microRNAs. These regulatory mecha-

nisms have been extensively reviewed.39

In addition, both HIF-1α and HIF-2α employ crosstalk 

mechanisms to regulate cell proliferation, DNA repair, 

 mitochondrial biology, and cell stemness.40,41 These  noncanonical 

mechanisms of HIF-1α and HIF-2α actions seem independent 

of ARNT and direct DNA binding; rather, they require protein–

protein interactions (Figure 1). HIF-1α and HIF-2α regulate 

cell-cycle genes in an opposing fashion; HIF-1α inhibits 

cell-cycle progression by suppressing c-Myc activity, whereas 

HIF-2α does the reverse.42–44 By similar mechanisms, HIF-1α 

represses, whereas HIF-2α stimulates, DNA repair genes.45–47 

HIF-1α engages in the Notch signaling pathway to block cell 

differentiation, and  the β-catenin signaling pathway to regulate 

embryonic and adult cell proliferation, albeit in an opposite 

way.48–51 Finally, HIF-1α also inhibits DNA replication through 

direct interaction with the adenosine triphosphatase Cdc6.52 

Further studies are required to elucidate detailed mechanisms 

of noncanonical actions of HIF-1α and HIF-2α.

HIF-1α, HIF-2α, and cancer
Solid cancers frequently harbor hypoxic regions where 

HIF-1α and HIF-2α become overexpressed and activated.53 

 Furthermore, oncogenic signaling and growth factor stimulation 

lead to the activation of the phosphotidylinositol 3-kinase 

(PI3K)/AKT/mammalian target of rapamycin (mTOR) and 

mitogen-activated protein kinase (MAPK) pathways, thereby 

stimulating HIF-1α and HIF-2α synthesis.16,17,54–56 As a result, 

increased expression of both HIF-1α and HIF-2α has been 

observed in a wide variety of human cancers and, in general, is 

associated with poor prognosis.17,57 Likewise, numerous studies 

support the notion that HIF-1α and HIF-2α promote tumor 

angiogenesis and growth.17,18,57 Furthermore, rare somatic, 

gain-of-function mutations in EPAS1 have been identified to 

be associated with paraganglioma with polycythemia58 and 

pheochromocytoma.59

It has been recognized, however, that HIF-1α  expression is 

also associated with favorable prognosis, eg, in patients with 

neuroblastoma and renal cell carcinomas.21,60 Forced expres-

sion of HIF-1α in renal cell carcinoma cell lines retarded tumor 

growth in xenografts,61,62 suggesting a  tumor-suppressing role 
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Figure 1 Hypoxia-inducible factor alpha (HiF-α) regulation and mechanisms of action. 
Notes: in normoxia, HiF-1α and HiF-2α (designated as HiF-α) are subjected to 
prolyl hydroxylation by PHD in the presence of ferrous iron (Fe++) and 2-oxoglutarate 
(2-OG). The e3 ubiquitin ligase vHL recognizes hydroxylated HiF-α (−OH) for 
polyubiquitination (−Ub) and proteasome degradation (shaded HiF-α). Under 
low oxygen conditions, HiF-α is stabilized, leading to dimerization with ARNT, 
recruitment of p300/CBP, and binding to the hypoxia responsive elements (HRe) in 
the target gene promoter. This mechanism of action is responsible for upregulating 
numerous target genes in many cancer-related processes as listed. Under severe 
hypoxia, HiF-α can also act through crosstalk with a number of other interacting 
proteins (iPs) that occupy DNA-binding elements (DBe), resulting in either gene 
upregulation or downregulation. This noncanonical mechanism seems responsible 
for some subtle cellular changes in cancer.
Abbreviations: PHD, prolyl hydroxy lase domain proteins; ARNT, aryl hydrocarbon 
receptor nuclear translocator; vHL, von Hippel-Lindau protein.
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for HIF-1α. Conversely, it is suggested that Hif-1α is not 

required for renal cyst development in conditional Vhl-null 

mice.63 Furthermore, rare somatic, loss-of-function HIF1A 

mutations have been identified in the specimens of clear-cell 

renal carcinoma,64,65 and common focal, homozygous dele-

tions have been detected in cell lines of VHL-deficient renal 

cell carcinomas.66 Despite this cogent evidence, the mecha-

nism by which HIF-1α acts as a tumor suppressor remains 

unclear, and how cancer cells might escape from HIF-1α sup-

pression needs to be addressed, especially in majority of renal 

cell carcinomas where HIF-1α is commonly overexpressed. 

What may explain retarded tumor growth in the xenograft 

studies, however, is that HIF-1α inhibits cell proliferation.40 

Consistently, renal cell carcinomas with HIF-1α expression 

are statistically much smaller than those without, and intrigu-

ingly seem more metastatic.47 Therefore, the role of HIF-1α 

in malignant progression and metastasis cannot be ruled out 

in VHL-deficient renal cell carcinomas.

HIF-2α, on the other hand, is believed to be a major con-

tributor to VHL-deficient renal carcinogenesis.33 However, 

in other experimental settings, HIF-2α seems to be a tumor 

 suppressor; HIF-2α increases apoptosis in glioma67 and 

inhibits oncogenic signaling and activates a tumor-suppressor 

gene in non-small-cell lung cancer.68 Clearly, the role of 

HIF-1α and HIF-2α in cancer biology is complex, and their 

biological functions are likely context dependent.

Critical role of HIF-1α  
in metabolic switch from  
oxidative phosphorylation  
to anaerobic glycolysis
Among the first recognized biological functions of HIF-1α 

was metabolic adaptation to decreased O
2
 availability, 

resulting from transcriptional upregulation of multiple 

genes involved in glucose transport and glycolysis, such 

as those encoding aldolase A (ALDOA), phosphoglycerate 

kinase 1 (PGK1), lactate dehydrogenase A (LDHA), and glu-

cose  transporters (SLC2A1 and SLC2A3).1 Genetic deletion of 

Hif1a gene in mouse embryonic cells confirmed the critical 

role for HIF-1α in glycolysis and lactate production.69,70

Under normal O
2
 tensions, glycolysis catabolizes glucose 

to pyruvate, which is converted to acetyl-CoA by pyruvate 

dehydrogenase for oxidative phosphorylation in the tricarbox-

ylic acid (TCA) or Krebs cycle. Under hypoxia, cells decrease 

oxidative phosphorylation in the mitochondria and adopt 

anaerobic glycolysis and conversion of pyruvate to lactate. 

As a key regulator of this process, HIF-1α actively suppresses 

mitochondrial O
2
 consumption by transcriptionally upregu-

lating both pyruvate dehydrogenase kinases 1 and 3 (PDK1 

and PDK3, respectively),71–73 which subsequently inactivate 

pyruvate dehydrogenase to block pyruvate conversion and 

flux of acetyl-CoA into the TCA cycle. Moreover, HIF-1 has 

been shown to inhibit oxidative phosphorylation by inhibiting 

mitochondrial biogenesis.74

In addition to the critical role in the metabolic switch 

from oxidative phosphorylation to anaerobic  fermentation – 

the Pasteur effect, HIF also stimulates energy storage for 

hypoxic cell survival through the induction of glycogen and 

lipid  synthesis.75 Primarily, HIF-1α promotes  glycogen accu-

mulation through transcriptional activation of several genes 

involved in glycogen biosynthesis, such as GYS1, PPP1R3C, 

and PGM1.76–78 HIF-1α also upregulates  expression of 

the peroxisome proliferator-activated receptor γ (gene 

symbol PPARG), thereby increasing fatty acid uptake and 

triglyceride biosynthesis in cardiac hypertrophy.79  Additional 

HIF-1α target genes responsible for lipid accumulation 

include HILPDA and LPIN1.80,81 Interestingly, conditional 

deletion of murine Vhl in hepatocytes indicates a role for 

Hif-2α, rather than Hif-1α, in lipid synthesis, oxidation, 

and storage,82 another example of context dependence for 

HIF function.

HIF-1α diverts glycolytic  
metabolites into biosynthesis  
by blunting pyruvate production
In comparison to oxidative phosphorylation, glycolysis is 

inefficient in energy generation. Consistent with the role 

of HIF-1α in energy maintenance and conservation,83 it 

stands to reason that cancer cells adopt glycolysis under low 

O
2
  tensions for survival. However, cancer cells generally 

manifest characteristics of increased proliferation  associated 

with high glucose uptake and lactate production even in the 

presence of O
2
 – aerobic glycolysis or the  Warburg effect.84–86 

Until recently, the significance of aerobic glycolysis remained 

debatable because it was unclear why cancer cells prefer 

energy-inefficient glycolysis to support proliferation, not-

withstanding the recognition of the role of HIF-1α in aerobic 

glycolysis.87

A reinterpretation of the Warburg effect is that aerobic 

glycolysis is not merely employed for bioenergetics but, more 

importantly, for biosynthesis of macromolecules (nucleotides, 

amino acids, and lipids) necessary for cell proliferation.85,86,88 

This view has integrated oncogenic signaling (PI3K-AKT-

mTOR and c-Myc) with regulation of  metabolic pathways, 

biosynthesis, and cell proliferation. Recent studies have 
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pointed out the M2 splice isoform of pyruvate kinase (PKM2, 

a splice variant of the PKM gene) as a metabolic switch for 

aerobic glycolysis and tumorigenesis.89,90 In normal adult 

tissues, the splice variant PKM1 catalyzes the final step 

of glycolysis by transferring the phosphate from phospho-

enolpyruvate to adenosine diphosphate, thereby yielding 

pyruvate and adenosine triphosphate, whereas PKM2 is 

expressed primarily in lung tissues and proliferating cells 

including stem cells and cancer cells.91 The transcription 

factor c-Myc promotes PKM2 splicing by inducing the 

expression of three heterogeneous nuclear ribonucleoproteins 

(hnRNPs).92 It has been shown that oncogenic signaling con-

verges on the activation of mTOR to increase HIF-1α levels 

for PKM transcription and concomitantly c-Myc levels for 

PKM2 splicing (Figure 2).90

In addition to being a glycolytic enzyme, PKM2 can 

function as a protein kinase for gene transcription in the 

nucleus.93–95 Activation of epithelial growth factor  receptor 

induces extracellular signal-regulated kinase 2 (gene sym-

bol MAPK1)-mediated phosphorylation and translocation 

of PKM2 into the nucleus. Nuclear PKM2 interacts with 

β-catenin to activate target genes such as CCND1 and MYC 

through phosphorylation of histone H3, which leads to 

the dissociation of HDAC3 and acetylation of histone H3. 

Accordingly, nuclear PKM2 promotes cell-cycle progression 

and cell proliferation by stimulating cyclin D1 and c-Myc 

expression. c-Myc further enhances PKM2 expression in 

a positive-feedback loop and also induces glycolytic gene 

expression.93–95 PKM2 can also phosphorylate signal trans-

ducer and activator of transcription 3 (gene symbol STAT3) 

to drive gene expression.96 In addition, PKM2 is a transcrip-

tional coactivator of HIF-1α transcriptional activity.97 PKM2 

can be hydroxylated by PHD3, and hydroxylated PKM2 

enhances HIF-1α activity through direct interaction. Taken 

together, PKM2 stimulation of c-Myc and HIF-1α further 

promotes glycolysis.

So, is PKM2 essential to tumor growth and lactate 

production? On the contrary, mice with a conditional allele 

that abolishes Pkm2 but not Pkm1 expression show acceler-

ated mammary tumor formation and heterogeneous Pkm1 

 expression.98 Pkm1 was detected in non-proliferating cells 

but not in those in proliferation, which suggests that active 

pyruvate kinase is required for non-proliferating, but not 

 necessarily for proliferating, tumor cells. Interestingly, PKM2 

PI3K-AKT-mTOR Glucose

Nucleotide
amino acid

lipid
synthesis

PKM

HIF-1 c-Myc

Pyruvate
Cell-cycle

progression Lactate

PEP

Figure 2 Role of hypoxia-inducible factor 1 (HiF-1) in regulating bioenergetics and biosynthesis through the induction of pyruvate kinase M2 (PKM2) in proliferating cancer cells.
Notes: increased HiF-1 expression through oncogenic signaling not only promotes glucose uptake and glycolysis, but also cooperates with c-Myc to increase PKM2 
expression through transcriptional upregulation of PKM and PKM2 splicing, respectively. PKM2 is present mainly in the nucleus as a dimer and acts as a protein kinase to drive 
gene transcription for cell-cycle progression. its low activity as pyruvate kinase blunts the conversion of phosphoenolpyruvate (PeP) to pyruvate, thereby diverting upstream 
glycolytic metabolites into the biosynthesis pathways. Although PKM2 can also exist as a tetramer for glycolysis, its glycolytic activity is inhibited by oncogenic signaling.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hypoxia 2014:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

63

Complex role of HiF in cancer

found in tumor cells is usually dimeric with low enzymatic 

activity for glycolysis, whereas the tetrameric form in normal 

cells has a high activity.91 Furthermore, oncogenic signal-

ing inhibits the tetrameric form of PKM2 through direct 

and selective binding to tyrosine-phosphorylated peptides, 

thereby enabling anabolism from glucose metabolites for 

tumor growth.99

Thus, HIF-1α-mediated PKM2 expression provides a 

regulated, bifunctional protein that can act on the one hand 

as a tetrameric glycolytic enzyme for bioenergetics and lac-

tate production but on the other as a dimeric transcriptional 

coactivator/protein kinase for cell proliferation. Most impor-

tantly, loss of glycolytic activity resulting from either a 

dimer or a tyrosine-phosphorylated peptides-bound tetramer 

diverts glycolytic metabolites into the anabolic pathways 

(Figure 2).

Hereditary mutations  
in fumarate hydratase and  
succinate dehydrogenase
Neither HIF-1α nor HIF-2α is known to transcriptionally 

regulate genes in the TCA cycle; rather, it is the intermedi-

ate metabolites including fumarate and succinate that have 

been shown to increase the activities of these transcription 

 factors.100 Whereas germline mutation in the FH gene 

(encoding fumarate hydratase) predisposes individuals 

to hereditary leiomyomatosis and renal cell carcinoma, 

hereditary  mutations in the genes encoding four subunits 

of succinate dehydrogenase (SDHA, SDHB, SDHC, and 

SDHD) and one cofactor (SDHAF2) are linked to famil-

ial pheochromocytomas and paragangliomas.100–102 These 

tumors are characterized by the induction of pseudo-hy-

poxia, ie, increased HIF activities and target gene expres-

sion in normoxia. At the molecular level, inactivation of 

 fumarate hydratase and succinate dehydrogenase leads to 

the accumulation of fumarate and succinate, respectively,103 

resulting in allosteric inhibition of prolyl hydroxylase 

PHDs and induction of HIF-1α and HIF-2α.104–106 Targeted 

inactivation of mouse Fh1 confirmed the resultant activa-

tion of Hif-1α and Hif-2α and development of proliferative 

renal cysts.107 FH-deficient renal cancer cells also exhibit 

aerobic  glycolysis and increased expression of HIF-1α.108 

 Additionally, accumulated fumarate produces succinated 

glutathione, resulting in increased mitochondrial reactive 

oxygen species and HIF-1α activation.109 In fact, it has been 

shown that fumarate can modify numerous proteins includ-

ing  mitochondrial aconitase 2 for the inhibition of aconitase 

activity in Fh1-null mouse embryonic fibroblasts,110 even 

though reduced cytosolic, but not mitochondrial, aconitase 

activity is observed in FH-deficient renal cancer cells associ-

ated with iron deficiency.108

Despite these findings, whether activation of HIF pathway 

has a causal effect on renal cyst formation was questioned.111 

Indeed, in mouse genetic studies, Fh1−/−-associated renal 

cyst formation was independent of Hif-1α and Hif-2α, 

and was further exacerbated by inactivation of Hif-1α but 

not Hif-2α.112 In fact, FH-deficient cysts and tumors were 

associated with upregulation of the KEAP1-NRF2 anti-

oxidant pathway (Figure 3A), resulting from derepression 

of nuclear factor erythroid 2-like 2 (NRF2, gene symbol 

NFE2L2) upon fumarate inhibition of the negative regulator 

kelch-like  ECH-associated protein 1 (gene symbol KEAP1) 

by succination. Consistently, upregulation of antioxidant 

response genes through the KEAP1-NRF2 axis is a distinct 

feature of type 2 papillary renal cell carcinoma caused by 

FH mutation, in contrast to those of clear cell carcinomas 

arising from SDH or VHL mutation.113 Furthermore, NRF2 

apparently decreases HIF-1α levels by reducing reactive 

oxygen species in FH-deficient cells.109 The NRF2-mediated 

antioxidant and detoxification program is involved in 

oncogene-induced tumorigenesis.114 Intriguingly, NRF2 

has also been shown to promote biosynthesis by redirecting 

glucose and glutamine into the anabolic pathways in the 

presence of activated PI3K-AKT signaling.115 Despite the 

lack of involvement of Hif-1α in Fh1−/−-associated renal cyst 

development, upregulation of HIF-1α remains essential to 

glycolytic metabolism and oncogenic growth of FH-deficient 

renal cancer,108 consistent with the aforementioned role of 

HIF-1α in glycolysis and anabolism.

Although mutations in SDHD is linked to hereditary 

paraganglioma,116 heterozygous deletion of Sdhd in mice 

develops no tumor but subtle glomus cell hypertrophy and 

hyperplasia.117 Succinate accumulation has been shown to 

specifically inhibit PHD3 apoptotic activity, thereby blocking 

the apoptosis of sympathetic neuronal precursor cells during 

development and contributing to the pathogenesis of familial 

pheochromocytoma (Figure 3A).118 Interestingly, mice with 

germline deletion of Egln3 also exhibited reduced apoptosis 

and increased cell numbers in the superior cervical ganglia, 

adrenal medulla, and carotid body.119 Furthermore, a com-

bined heterozygous deletion of Epas1 rendered sympathetic 

neurons more sensitive to induced apoptosis, indicating an 

anti-apoptotic role of HIF-2α in this setting. Conversely, 

as mentioned above, rare somatic, gain-of-function muta-

tions in EPAS1,58,59 as well as germline mutations in FH120 

have been associated with malignant paragangliomas and 
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pheochromocytomas. Furthermore, hypermethylation has 

also been identified in tumors with SDH and FH mutations. 

Methylome analysis of a large cohort of paraganglioma 

patients has revealed a hypermethylator phenotype similar 

to that in gliomas.121 Sdhb deletion in mouse chromaffin 

cells led to DNA hypermethylation, resulting from suc-

cinate inhibition of the JmjC domain-containing histone 

demethylases and DNA hydroxylases (Figure 3B). Finally, 

DNA hypermethylation has also been identified in tumors 

with FH mutations.109,121

Somatic mutations in isocitrate  
dehydrogenase
There has been rapid expansion of knowledge in recent 

years of single somatic mutations in cytosolic isocitrate 

dehydrogenase 1 (gene symbol IDH1), and these mutations 

were identified initially in .70% WHO grade II–III gliomas 

and secondary glioblastomas.122 Tumors lacking mutations in 

IDH1 often had single mutations in IDH2, a mitochondrial 

gene in the TCA cycle for interconversion of isocitrate and 

2OG. Similar mutations have also been found in ,23% acute 

myeloid leukemia, albeit mainly in IDH2.123–125  Interestingly, 

all the mutations are heterozygous and affect the same active 

site of the enzyme at a single arginine residue (Arg132 of 

IDH1 and Arg172 of IDH2), thereby reducing the intra-

cellular concentration of 2OG,122 a cosubstrate of the HIF 

prolyl hydroxylases. Accordingly, it was found that mutant 

IDH1 forms a catalytically inactive heterodimer with the 

wild type, resulting in a decrease of PHD activity and an 

increase of HIF-1α levels in human gliomas harboring an 

IDH1 mutation.126

This loss-of-function theory was only part of the story, 

however, because a wild type allele of IDH1 or IDH2 always 

remains in these tumors, raising the possibility of gain of 

function as result of mutations. Indeed, both mutant IDH1 and 

mutant IDH2 acquire the ability to catalyze the nicotinamide 

adenine dinucleotide phosphate-dependent reduction of 2OG 

to (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG).124,127,128 

Accordingly, elevated levels of (R)-2HG are detectable in 

IDH mutant gliomas and acute myeloid leukemias.

So, is (R)-2HG an oncometabolite stimulating hypoxic 

signaling for tumorigenesis? On the contrary, it has been sug-

gested that (R)-2HG downregulates HIF-1α and HIF-2α levels 

by increasing PHD1 and PHD2 activity to promote transfor-

mation of immortalized human astrocytes (Figure 3A).129 This 

finding was supported by the evidence that (R)-2HG can sub-

stitute 2OG for PHD enzymatic  activity in a cell-free reaction, 

and this finding is correlated with diminished expression of 

HIF-1α and HIF-2α in IDH1 mutant cells and reduced HIF 

target gene expression in IDH mutant gliomas. Furthermore, 

decreased HIF-1α expression is conducive to transformation 

by mutant IDH1. Moreover, (R)-2HG is sufficient to pro-

mote leukemogenesis by inducing cytokine independence 

and blocking hematopoietic differentiation, whereas the 
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Figure 3 Pathways of FH, SDH, and iDH mutations leading to tumorigenesis. 
Notes: (A) FH, SDH, iDH mutations result in the accumulation of fumarate, succinate, and (R)-2HG, respectively. During incipient tumor development, accumulation of 
fumarate inhibits KeAP1, thereby activating the NRF2 antioxidant response and resulting in renal cyst development. Similarly, succinate has been shown to inhibit PHD3-
mediated apoptosis of neuronal cells during embryonic development, resulting in hyperplasia in the sympathoadrenal tissues. (R)-2HG stimulates PHD activity as a cosubstrate 
and reduces HiF signaling for glial and leukemic transformation. (B) During tumor progression, increased levels of fumarate, succinate, and (R)-2HG all share a common 
pathway by inhibiting the JmjC domain-containing histone demethylases (KDM) and the TeT family of DNA hydroxylases. This leads to genome-wide DNA hypermethylation 
and tumorigenesis. Furthermore, increased levels of fumarate and succinate, as well as decreased levels of 2OG inhibit the HiF prolyl hydroxylases to activate the HiF 
signaling. inhibited steps are shaded.
Abbreviations: SDH, succinate dehydrogenase; FH, fumarate hydratase; iDH, isocitrate dehydrogenase; PHD, prolyl hydroxy lase domain-containing protein; KeAP1, kelch-
like eCH-associated protein 1; (R)-2HG, (R)-enantiomer of 2-hydroxyglutarate; NRF2, nuclear factor erythroid 2-like 2; 2OG, 2-oxoglutarate; HiF, hypoxia-inducible factor.
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(S)-enantiomer of 2-hydroxyglutarate, despite being a more 

potent inhibitor of 2OG-dependent dioxygenases,129–131 fails 

to do so owing to its inhibition of PHD activity to increase, 

rather than decrease, HIF-1α levels.132

The notion that (R)-2HG inhibits HIF signaling seems at 

odds with the genetic evidence of mouse studies; increased 

Hif-1α protein levels and target gene transcription were 

observed in the embryo of brain Idh1 (R132H) knock-in 

mice where high levels of (R)-2HG were produced,133 and no 

alteration of Hif-1α signaling was found in the hematopoi-

etic stem cells and progenitor cells from the knock-in 

mice of the myeloid lineage.134 Although the mechanisms 

by which HIF-1α prevents astrocyte transformation and 

leukemogenesis remain unclear, a lower level of HIF-1α 

expression in IDH1 mutant cells might be conducive to 

tumor initiation because HIF-1α also upregulates histone 

demethylases,135,136 which have been shown to be inhibited 

by (R)-2HG for transformation.

In addition to PHDs, (R)-2HG is a potent inhibitor of 

other 2OG-dependent dioxygenases,137 including the TET 

family of 5-methylcytosine hydroxylases, which convert 

5-methyl-cytosine to 5-hydroxymethylcytosine for DNA 

demethylation.138–140 In fact, IDH1 somatic mutations in 

glioblastomas and lower-grade gliomas have a CpG island 

methylator phenotype, displaying DNA hypermethylation at a 

large number of loci.141,142 Similarly, acute myeloid leukemias 

with IDH1 or IDH2 mutations also exhibit genome-wide 

DNA hypermethylation with a specific signature shared with 

those harboring mutations in TET2,125 a member of the TET 

protein family. Consistently, expression of IDH mutants was 

found to impair TET2 catalytic function, and mutations in 

IDH1 and IDH2 were mutually exclusive with those in TET2 

in a large cohort of acute myeloid leukemias.125

Although both forms of 2-HG have been shown to be com-

petitive inhibitors of multiple 2OG-dependent dioxygenases, 

including the JmjC domain-containing histone demethylases 

and the TET family of 5-methylcytosine hydroxylases as well 

as PHDs,130 the half-maximal inhibitory concentration of 

(R)-2HG for histone demethylases is 200-fold less than for 

PHD2, indicating more important effects of IDH mutations on 

chromatin remodeling.131 In keeping with this, IDH mutation 

has been shown to inhibit histone demethylation and induce 

DNA hypermethylation in cell culture and animal model, 

thereby blocking cell differentiation.134,143,144  Furthermore, 

targeted inhibition of mutant IDH2 with the small molecule 

AGI-6780 induces differentiation of established erythro-

leukemia cells and primary human acute myeloid leukemia 

cells in vitro.145 The small-molecule inhibitor of mutant 

IDH1 (AGI-5198) also promotes differentiation of glioma 

cells harboring IDH1 mutation and inhibits the growth of 

tumor xenografts.146 Interestingly, AGI-5198 induces histone 

demethylation and expression of genes associated with glial 

differentiation without appreciable changes in genome-wide 

DNA methylation, suggesting additional mechanisms of IDH1 

mutation for glioma growth.

Conclusion
It took nearly two decades to appreciate that HIF-1α stimu-

lation of glycolysis is not merely to maintain bioenergetics 

for cell survival, but equally importantly is to promote 

biosynthesis of macromolecules for cell proliferation. 

HIF-1α does the latter by blunting the glycolytic pathway 

through the induction of PKM2. PKM2 engages in various 

mechanisms as a dimer to drive cell proliferation147 and 

as a glycolytic enzyme in tetramer is further suppressed 

by oncogenic signaling. Although how PKM2 oscillates 

between dimer and tetramer is not well understood, recep-

tor tyrosine kinase-mediated activation of the PI3K-AKT-

mTOR pathway seems essential in orchestrating cellular 

biosynthesis of nucleotides, amino acids, and lipids that 

involves multiple pathways including HIF-1α and c-Myc 

signaling, and glutamine-dependent anaplerosis for cell 

proliferation.148

Yet, rapid cell proliferation induces hypoxia, which 

is known to suppress mTORC1 through multiple mecha-

nisms.21 In fact, HIF-1α is known to inhibit mTORC1 

activity through transcriptional upregulation of DDIT4 

(encoding REDD1), a negative regulator of mTORC1 

activity,149,150 whereas HIF-2α, unrelated to aerobic 

glycolysis, stimulates mTORC1 activity by transcrip-

tionally upregulating SLC7A5 (encoding an amino acid 

transporter).151 So, how do cancer cells escape from these 

mechanisms for proliferation? One possible answer to 

this conundrum is to inactivate HIF-1α, as mentioned 

above, albeit rarely, which implies the benefit of keeping 

HIF-1α expression in cancer cells. Alternatively, cancer 

cells may decrease expression of the stress-sensor protein 

ATM (ataxia telangiectasia mutated, gene symbol ATM), 

which is required for transcriptional activation of REDD1 

through HIF-1α phosphorylation,152 or they may attempt 

to maintain mTORC1 activity by relying on exo genous 

desaturated lipids from serum for survival.153 Lastly, they 

may adopt a “stop-and-go” mechanism by entering cell-

cycle arrest while promoting an angiogenic response to 

alleviate hypoxic stress for continued proliferation.154

By altering the intracellular or intercellular context, 

 cancer cells can adopt aberrant ways of maintaining  survival 

and proliferation. Therefore, the selection of NRF2  signaling 
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for detoxification and anabolism, rather than anti-proliferative 

HIF-1α signaling, might be beneficial to renal cyst develop-

ment at the early stage in FH-mutant cells. Similarly, an initial 

decrease in HIF-1α levels may facilitate DNA hypermethyla-

tion in cells harboring FH, SDH, or IDH mutations, because 

HIF-1α does the opposite by inducing histone demethylases 

and DNA demethylation, as also observed in metastasis of 

VHL-deficient renal cancer.155 It is also noteworthy that none 

of the FH, SDH, and IDH mouse models has recapitulated a 

corresponding phenotype of the human diseases, suggesting 

the requirement of additional genetic/epigenetic alterations 

for tumorigenesis. Further studies are warranted to elucidate 

the mechanisms underlying these changes and the logistics 

of utilizing various signaling pathways to cancer’s best 

advantage. Understanding of these dynamic processes is 

expected to provide more unexpected answers to the mystery 

of cancer.
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