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Abstract: Large-conductance Ca2+- and voltage-gated big K+ (BK
Ca

, MaxiK, or Slo1)  channels 

are expressed in almost every cell of mammalian tissues and participate in a multitude of 

physiological processes such as vascular tone regulation, neuronal excitability, neurotransmit-

ter release, neurovascular coupling, bladder tone regulation, urinary K+ excretion, and retinal 

circulation. BK
Ca

 channel is a tetramer of the pore-forming α-subunit encoded by a single gene, 

Slo. The BK
Ca

-α-subunits are associated with the modulatory β-subunits, which contribute to 

the functional diversity of the channel. BK
Ca

 channels sense and regulate membrane voltage 

and intracellular Ca2+, which then modulates several cell signaling and metabolic pathways. 

This review focuses on the main physiologic roles of BK
Ca

 channels and the pathogenesis of 

diseases associated with their loss or malfunction. The mechanistic information highlighted 

in this review is aimed to enhance the understanding of the unique and diverse roles of BK
Ca

 

channels in various physiological and pathophysiological phenomena.

Keywords: neurovascular coupling, large conductance calcium, Ca2+-activated potassium 

channels, BK
Ca

 channel physiology

Introduction
Calcium (Ca2+)-activated potassium channels (K

Ca
) or the channels possessing large 

conductance (BK
Ca

, MaxiK, K
Ca

1.1) are mainly characterized by a high unitary con-

ductance of ∼100–300 pS.1 Unlike other subfamilies of K
V
, BK

Ca
 channels are both 

voltage- and Ca2+-regulated potassium channels. The native BK
Ca

 channel is formed 

by four pore-forming subunits (α) that are encoded by the Slo1 gene.1–3 Splicing of the 

Slo1 messenger (m)RNA has been shown to contribute to differences in the regulatory 

properties of the channel as a result of variability in the responses to steroids and the 

availability of the phosphorylation sites. Furthermore, studies have demonstrated the 

contributory role of different splice variants between tissues in voltage sensitivity of 

the channels.4 Importantly, the splice variation of an α-subunit may significantly alter 

the localization of BK
Ca

 channels to endoplasmic reticulum.2–7

BK
Ca

 channels belong to the family of voltage-gated potassium channels.5–7 

However, BK
Ca

 channels are also known to be activated solely by a stimulus-evoked 

increase in intracellular Ca2+ concentrations ([Ca2+]
i
). Interestingly, the resultant large 

efflux of K+ ions through the activation or opening of BK
Ca

 channels repolarizes the 

membrane, closes the voltage-gated calcium channels (VGCC), and reduces Ca2+ 

influx into the cells.8–12 The properties of BK
Ca

 channels therefore integrate various 

cellular and molecular signaling events via modulation of membrane excitability and 

Ca2+ homeostasis.
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BK
Ca

 channels have also been outlined as negative feed-

back regulators of membrane potential and Ca2+ homeosta-

sis in numerous physiological processes (Figure 1). These 

include modulating neurotransmitter release,8 neurovascular 

coupling,13 regulating vascular and respiratory tone,14,15 

endocrine secretion,16,17 interspike interval and spike fre-

quency adaptation,8 and urinary bladder tone.18 Given their 

relevance in essential physiological processes, these chan-

nels are encoded by a substantial number of genes in higher 

 organisms. BK
Ca

 channels are implicated in several disease 

conditions including epilepsy,19 diabetes,20 Alzheimer’s 

disease,21 subarachnoid hemorrhage,22 neuromuscular 

abnormalities,23 motor impairment,24 hypertension,14,25 uri-

nary incontinence,26 overactive urinary bladder,27,28 and noise-

induced hearing loss.29 This review discusses the scientific 

know-how on BK
Ca

 channels serving as a key regulator in 

various physiologic and pathophysiologic processes.

BKCa channel structure  
and properties
The native BK

Ca
 channel is composed of four α- and 

four β-subunits, present in a 1:1 ratio (Figure 2).30,31 The 

α-subunit contains seven putative transmembrane-spanning 

α helical segments and is accountable for the ion conduction, 

for selectivity, and for sensing the voltage alteration.32 The 

cytoplasmic carboxy tail contains two intrinsic high-affinity 

Ca2+ binding sites and phosphorylation sites and has been 

implicated in the direct gating of the channel. The β-subunit 

is composed of two transmembrane domains with a long 

extracellular linker, whereas the amino- and carboxy-termi-

nals are located in the cytoplasm. BK
Ca

-β-subunits have been 

shown to influence the Ca2+ sensitivity of channel gating33–36 

and trafficking of channels to the plasma membrane.13,37,38 

Evidence clearly shows that although BK
Ca

 channels exist 

in differing subunit stoichiometries, a full complement of 

four β1-subunits is crucial for the optimal effect of the 

channel.39 Differences in subunit stoichiometry, isoform 

expression, degree of phosphorylation, or the expression 

of splice variants may result in channels of varying volt-

age, Ca2+, and stress sensitivity and selectivity (Figure 2). 

Furthermore the spatial localization of BK
Ca

 channels has 

also been reported to influence its function within a given 

tissue. Interestingly, an efficient activation of BK
Ca

 channels 

(by locally produced Ca2+ transients or sparks) requires a 
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Figure 1 Signaling pathway downstream of BKCa channels involved in the regulation of various physiological processes.
Notes: BKCa channels mediate membrane potential changes that regulate Ca2+ channels. Intracellular stores of Ca2+ released to the cytosol via the ryanodine receptor of the 
sarcoplasmic reticulum activate BKCa channels. An increase in the intracellular Ca2+ levels and an increase in the elimination of K+ regulate several physiological processes, 
including vascular tone, neurotransmission, intraocular pressure, and urinary bladder tone.
Abbreviations: BKCa, large conductance calcium-activated potassium channels; PM, plasma membrane; RyR, ryanodine receptor; IP3R, inositol 1,4,5 triphosphate receptor; 
SERCA, sarcoendoplasmic reticulum ATPase; SR, sarcoplasmic reticulum; NCX, sodium–calcium exchanger; TRP, transient receptor potential channel; MLCK, myosin light 
chain kinase.
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Figure 2 Structure and regulation of BKCa channel.
Notes: Schematic diagram representing the threading of BKCa channel subunits (α and β) through the plasma membrane. Agonist-mediated stimulation leads to the activation 
of PKA, PKC, and PKG and to the phosphorylation of the subunits, an important mechanism through which BKCa channel modulates physiological process. Cytoplasmic 
C-terminal domain consists of four primary Ca2+ binding sites, called the “Ca2+ bowl”. The domains sensitive to voltage, Ca2+, and stretch are also depicted.
Abbreviations: BKCa, large conductance calcium-activated potassium channels; PKA, protein kinase A; PKG, protein kinase G; EM, extracellular side of plasma membrane; 
IM, intracellular side of plasma membrane; STREX, hormonal stress axis exon; PKC, protein kinase C; p, phosphate binding site.

close proximal arrangement between sarcoplasmic reticulum 

(SR) and plasma membrane (PM). It is interesting to note 

that this spatial arrangement is usually observed in smooth 

muscle and endothelial cells where the SR/endoplasmic 

reticulum (ER) is close to PM invaginations.40 In fact, the 

α-subunit of BK
Ca

 is known to contain two Caveolin (Cav) 

binding domains and is associated with Cav-1 and Cav-2 

in endothelial cells.41 It is likely that the binding of BK
Ca

 

channels to Cav-1/2 proteins or its localization in caveolae 

may facilitate its association with other signaling partners, 

either directly or indirectly, such as c-Src tyrosine kinase,42 

nonselective cation channels, the Trp family of proteins,43 the 

G-protein-coupled receptor-mediated signaling cascade,44 

and actin filaments,41,45 to mention a few.

The association of BK
Ca

 channels with specific membrane 

domains has also been implicated in the functional coupling 

of this channel to other ion channels, including nonselective 

cation channels, transient receptor potential and VGCC.46,47 

Thus, the BK
Ca

 channel serves as a physiological regulator 

in association with other proteins. Proteomic analysis of 

BK
Ca

 channel binding partners in mouse cochlea revealed 

that 50% of the proteins have affiliations with K+ and Ca2+ 

channels, whereas almost 20% of the proteins are related to 

mitochondria,26 suggesting a potential role of BK
Ca

 chan-

nels in many aspects of cellular and molecular  dynamics. 

 Therefore, it is imperative to delineate the structure, local-

ization, and function of these channels to develop new and 

effective treatment strategies.

BKCa channels regulation  
of vascular tone
Vascular tone in small arteries and arterioles is the major 

determinant of vascular resistance in response to several 

stimuli, including myogenic (pressure) components and 

vasoactive agents.14 Myogenic constriction is a characteris-

tic of resistance blood vessels and plays an essential role in 

regulating microcirculation blood flow, providing the basal 

tone in resistance arteries. Increased myogenic constriction 

has been reported in several hypertensive models and is 

associated with vascular diseases.

The organs that have a higher vascular tone (eg, myocar-

dium, skeletal muscle, skin, splanchnic circulation) exhibit 
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large vasodilatory capacity, whereas those having relatively 

low vascular tone (eg, cerebral and renal circulation) have 

low capacity. A noticeable exception to this rule is cerebral 

vasospasm occurring after subarachnoid hemorrhage. The 

blood vessels, both arterial and venous, exhibit some degree 

of vascular smooth muscle contraction under basal condi-

tions, which determines the tone, and hence the diameter, 

of the vessel.48 Baseline [Ca2+]
i
, vasoconstrictor-mediated 

increase in [Ca2+]
i
, and Ca2+ sensitivity significantly con-

tribute to the contractile state of the blood vessel wall. These 

processes are orchestrated via different ion channels (K+, 

Cl−, and nonselective cation channels), which govern the 

membrane potential and affect the Ca2+ influx and VGCC 

activity. The Ca2+ flux that activates K+ channels (mainly 

BK
Ca

) indirectly hyperpolarizes the membrane, promoting the 

closure of VGCC. The Ca entry occurring in the vicinity of 

ryanodine receptors on sub-plasma membrane endoplasmic 

reticulum is key because the Ca2+ sparks generated by the  

ryanodine receptor “event” are linked to plasma membrane 

BKCa opening and the extrusion of K  + (Figure1). Thus, 

BK
Ca

 channels serve as a counter-regulatory mechanism 

by reverting vasoconstriction, particularly in the intense 

myogenic constriction of resistance vessels exposed to high 

intraluminal pressures.14,15 Therefore, BK
Ca

 channels are 

the key regulators in protecting excessive vasoconstriction 

through a Ca2+-dependent relaxation mechanism.

The function of BK
Ca

 channels, especially in vascu-

lar smooth muscle cells, is finely tuned by its regulatory 

β1-subunit through enhancing the channel for its Ca2+ 

sensitivity. Using BK
Ca

-β1−/− mice49 and insulin-resistant 

hypertensive rat models,50–52 studies have revealed an increase 

in arterial blood pressure and left ventricular hypertrophy. 

Interestingly, the lack of functional β1-subunit altered the 

coupling between Ca2+ signaling and membrane potential 

changes. Furthermore, pharmacological studies blocking 

BK
Ca

 channels have demonstrated an increase in the decay-

ing conduction of a local depolarization, which basically 

represents the junctional and plasma membrane resistance.50 

A decrease in expression of β1-subunit of the BK
Ca

 channel 

has also been reported in coronary artery aging in humans 

and rats.53,54

BK
Ca

 channels are also present in endothelial cells,14,41,55–58  

where they contribute to hyperpolarization,59 participate 

in endothelial-dependent vasodilation,60 and improve 

endothelial dysfunction.61–63 Interestingly, studies spe-

cifically designed to target endothelial BK
Ca

 channels with 

luminal administration of the specific blocker iberiotoxin 

in arteries demonstrated the restoration of vasoconstrictor 

 responsiveness and the normalization of the membrane 

potential to control levels,64 suggesting an involvement of 

endothelial BK
Ca

 channels in vessel reactivity. Furthermore, 

recent studies have shown a cholesterol-dependent activation 

of BK
Ca

, suggesting the role of Cav-1 in the regulation of its 

activity.65 However, the exact mechanisms by which Cav-1 

proteins or the caveolae invaginations may affect either the 

localization of BK
Ca

 channels to the plasma membrane or 

the downstream signaling molecules, such as nitric oxide 

synthase, are still not clear.

BK
Ca

 channels have also been involved in coronary 

artery vasodilation,66–69 mainly through the endothelium-

mediated stimulation-dependent responses of coronary artery 

smooth muscle cells (CASMCs).70–74 The mediators, termed 

 endothelium-derived hyperpolarizing factor, released from 

endothelial cells activate BK
Ca

 channels in CASMCs.75,76 

 Typically, substances that constrict coronary vessels inhibit 

BK
Ca

 channels in CASMCs, including angiotensin II,77,78 

endothelin 1,75,79 and thromboxane A2.80 Inhibition of BK
Ca

 

channels by these G-protein-coupled receptors may alter 

several of the downstream signaling cascade, mainly pro-

tein kinase C44, c-Src kinase,42 and so on. However, studies 

designed to explore the role of BK
Ca

 channels in ischemic81 

and metabolic vasodilation82 showed no or little effect. Nev-

ertheless, alterations in the activity of BK
Ca

 channels were 

demonstrated in several vascular pathologies, including dia-

betes,20,83,84 atherosclerosis and ischemia,85 hypertension,25,51,76 

cardiac hypertrophy,15 and cardiomyopathy.

BKCa channels in neuronal 
excitability and neurotransmitter 
release
BK

Ca
 channels are ubiquitously expressed in the central 

 nervous system, and their expression is highly variable within 

different brain regions. BK
Ca

 channels play an important 

role in regulating neurotransmitter release at central nervous 

system nerve terminals, controlling action potential duration, 

firing frequency, and spike frequency adaptation, resulting in 

fast after-hyperpolarization.8 Studies intended to explore the 

regional distribution and the level of expression have revealed 

that BK
Ca

 channels are preferentially located at the axon 

terminals11,86 and dendrites.87,88 In neurons, the main functions 

of BK
Ca

 channels are to generate the fast and prolonged after-

hyperpolarization (lasting from  hundreds of  milliseconds to 

seconds) after an action  potential.  Prominently, the genera-

tion of after-hyperpolarization contributes significantly to 

the maintenance of the shape and duration of the action 

potential.89
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BK
Ca

 channels are primarily activated in response to eleva-

tions in [Ca2+]
i
 through the opening of voltage- dependent87 or 

neurotransmitter-gated90 Ca2+ channels, as well as by release 

of Ca2+ stores.91 The activation of BK
Ca

 channels by rise in 

[Ca2+]
i
 shifts the activation voltage concentration dependently 

into a physiological range by limiting the depolarization-

induced bursting activity. In contrast, in Purkinje cells, which 

lack BK
Ca

 channels, the net result is a less-negative resting 

membrane potential and decreased amplitude of the after-

hyperpolarization.92

Several studies point to a possible functional coupling 

between BK
Ca

 channels and voltage-gated Ca2+ channels in 

the central nervous system. It is clear that in several types 

of neurons, BK
Ca

 channels are physically associated with 

voltage-gated Ca2+ channels and that this complex invari-

ably provides a mechanism by which micromolar concen-

trations of [Ca2+]
i
 (calcium sparks) are delivered to BK

Ca
 

channels and tightly control their activity without affecting 

other Ca2+-dependent signaling processes. Moreover, the 

characteristics of BK
Ca

 channels are largely determined by 

the specific subunit of voltage-gated Ca2+ channels to which 

they are associated and adapt BK
Ca

 channel function to the 

requirement of particular neurons or neuronal subcompart-

ments. Interestingly, blocking voltage-gated Ca2+ channels 

correspondingly inhibits BK
Ca

 channels, as observed in 

conditions in which extracellular Ca2+ was removed. In lieu 

of voltage-gated Ca2+ channels bound to BK
Ca

, these chan-

nels have also shown to be operated by more distant Ca2+ 

sources or by a global increase in [Ca2+]
i
. This functionality 

of BK
Ca

 channels has originated the term free BK
Ca

. Free BK
Ca

 

channels are well demonstrated in chromaffin cells93,94 and in 

CA3 pyramidal cells,11 where submillimolar concentrations 

of ethylene glycol tetraacetic acid inhibit the activity of BK
Ca

 

channels. The free BK
Ca

 channels are believed to serve as an 

emergency brake in situations where extraordinarily large 

Ca2+ transients lead to cellular damage or apoptosis.11

Given their role in controlling neuronal excitability, 

BK
Ca

 channels have been increasingly implicated in several 

neurological disorders, including epilepsy, cerebellar ataxia, 

and paroxysmal movement disorders.95–97 In epilepsy, studies 

have indicated a missense mutation (D434G) in the α-subunit 

BK
Ca

 gene, which is characterized by an increase in the 

BK
Ca

 channel’s sensitivity to Ca2+ and increased membrane 

currents, resulting in a gain-of-function effect.98,99 Further-

more, this mutation, also observed in the pathophysiology of 

idiopathic absence epilepsy, confers specific changes in the 

regulatory properties of the BK
Ca

 channel subunits. However, 

a loss-of-function BK
Ca

 channel phenotype was demonstrated 

to be associated with temporal lobe epilepsy, where a poly-

morphism in the BK
Ca

-β4-subunit was revealed.101  Moreover, 

loss-of-function BK
Ca

 channel has been implicated in tonic-

clonic seizures and alcohol withdrawal seizures. Thus, both 

loss-of-function and gain-of-function BK
Ca

 channels might 

serve as molecular targets for drugs to suppress certain 

seizure phenotypes, including temporal lobe seizures and 

absence seizures, respectively.

BKCa channels in mitochondria
Channel activity similar to that of plasma membrane BK

Ca
 

channels have been reported in the inner membrane of mito-

chondria (mitoBK
Ca

). The mitoBK
Ca

 was initially found in the 

glioma cells102 and later in cardiac myocyte103 and rat brain 

neurons.100 Several observations confirmed the existence of 

BK
Ca

 channel β4-subunit in the inner membrane of neuronal 

mitochondria.104 The changes in the cytosolic Ca2+ concen-

tration greatly affect neuronal cell metabolism via modulat-

ing mitochondrial response. Skalska et al105 have clearly 

demonstrated a Ca2+-induced dissipation of mitochondrial 

membrane potential, an underlying process for mitochon-

drial respiration, metabolism, and viability. Thus, the studies 

delineating the presence of mitoBK
Ca

 in neurons, its contri-

bution to mitochondrial Ca2+ signaling, and mitochondrial 

membrane potential changes support the neuroprotective 

role of mitoBK
Ca

 in specific brain structure.

BKCa channels in neurovascular 
coupling
Neuronal activity is thought to communicate to arterioles in 

the brain to promote an adequate blood supply. This phe-

nomenon is known as neurovascular coupling and employs 

multiple mechanisms, including, but not limited to, puriner-

gic signaling, cytochrome P450 products, cyclooxygenase 

products, and K+. One of these mechanisms is through 

astrocytic Ca2+ signaling to cause local vasodilation in the 

activated brain area. In particular, K+ released from astrocytic 

end feet via BK
Ca

 channels is thought to interact with K+ 

inward rectifier channels on pial arteriolar smooth muscle 

cells, inducing hyperpolarization and relaxation.13,106

Paradoxically, this communication may cause vaso-

constriction in some cases. Modest increases in Ca2+ 

induce dilation, whereas larger increases switch dilation 

to  constriction.107 BK
Ca

 channels in astrocytic end feet are 

believed to mediate the majority of the dilation and the 

entire vasoconstriction, implicating local extracellular K+ 

as a vasoactive signal for both dilation and constriction. 

Therefore, BK
Ca

 channels at the astrocytic end foot are able 
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to determine both arteriolar dilation and constriction based 

on the [Ca2+]
i
 changes.

Interestingly, BK
Ca

 channel dysfunction has been recently 

associated with pathophysiologic changes occurring during 

type 1 diabetes mellitus.20 In particular, a significant decrease 

in the pial arteriolar dilations evoked by somatosensory 

activation, via sciatic nerve stimulation, was found in strep-

tozotocin-treated diabetic rats. This depressed neurovascular 

coupling response is likely linked to PKC-mediated changes 

in BK
Ca

 and K+ inward rectifier channel activity, as normal 

dilating responses of pial arterioles to sciatic nerve stimula-

tion and applications of K+-channel openers were readily 

restored by acute PKC inhibition. Interestingly, in a model 

of type 2 diabetes mellitus, whole-cell currents of BK
Ca

 chan-

nels were significantly decreased in cerebral artery smooth 

muscle cells, compared with control, and the sensitivities of 

BK
Ca

 channels to voltage, paxilline, and NS1619 were all 

diminished in diabetic rats.108

BKCa channels in regulating  
retinal circulation
Vertebrate retinas share the same fundamental neuronal 

organization, comprising various cell classes such as photore-

ceptors, bipolar cells, amacrine cells, and ganglion cells. The 

retina receives oxygen and nutrients diffused from the cho-

riocapillaries to the rods, cones, and nerve layers in the inner 

retina. Therefore, to preserve the delicate balance between 

the flow of blood and the needs of the retinal nerve layers, the 

vasculature of the retina is designed to maximize the control 

of capillary perfusion.

Several lines of evidence have demonstrated the existence 

and functional role of BK
Ca

 channels in rod signaling.109 In 

addition, BK
Ca

 channels have been shown to be located at 

the synaptic terminal, contributing to the amplification of 

glutamate release at the rod photoreceptor synapse.110 The 

signaling of BK
Ca

 channels in the cone pathway is poorly 

studied compared with the rod pathways. Work by Yagi and 

Macleish111 has hinted at the absence of BK
Ca

 channels in the 

cones of the primate retina. However, blocking BK
Ca

 chan-

nels induced a reduction in light-evoked input from bipolar 

cells and amacrine cells to ganglions in mouse retina,112 thus 

suggesting a possible existence of BK
Ca

 channels in the cone 

pathway in rodents. Furthermore, genetic deletion of BK
Ca

 

channels has been shown to affect the photoreceptor and 

bipolar cell responses in mouse retina.

Moreover, recent studies have shown the contributions of 

BK
Ca

 channels in the regulation of retinal blood flow via the 

action of several vasodilators in endothelium and vascular 

smooth muscle.113 Administration of a BK
Ca

 channel opener 

(BMS-191011) to male Wistar rats specifically improved reti-

nal circulation without affecting cardiovascular functions.114 

Studies in diabetic retinal models demonstrate a decreased 

Ca2+ sensitivity of BK
Ca

 channels and an uncoupling of 

BK
Ca

 channel activation from Ca2+ release in diabetic retinal 

vascular smooth muscle cells.115 The drastic reduction in 

spontaneous Ca2+ sparks results in delayed activation of BK
Ca

 

channel-mediated K+ outward currents, an underlying process 

for arteriolar vasoconstriction, as commonly observed in 

retinal diseases, mainly diabetic retinopathy.115–117 Hitherto, 

studies delineating the roles of BK
Ca

 channels in retinal cir-

culation and physiology have been unclear. More detailed 

investigations are warranted to enhance the understanding 

of the significance of BK
Ca

 channels in retinal circulation 

physiology.

BKCa channels in the urinary system
Maintenance of K+ concentration within the physiological 

range is vital for various cellular functions, including cell 

volume regulation and regulation of membrane electrical 

properties. The kidney is the primary site where balancing 

K+ concentration and K+ secretion in the distal convoluted 

tubules of nephron is critical for determining the amount 

of K+ excretion. Several segments of the distal convoluted 

tubules of nephron have been shown to express BK
Ca

 and 

renal outer medullary K+ channels. Although renal outer 

medullary K+ channels are considered the primary channels 

involved in K+ secretion because of their open probability, 

BK
Ca

 channels are suggested to contribute to the volume 

regulation in the distal convoluted tubules of nephron.

BK
Ca

 channels have been reported in a variety of renal 

cell types, including urinary bladder smooth muscle cells,118 

afferent arterioles,119 glomerular mesangial cells,120,121 and 

visceral epithelial cells (podocytes) in the Bowman’s  capsule.3 

BK
Ca

 channels have been demonstrated to be negative feed-

back, counteracting agonist-induced contraction, mainly in 

mesangial cells.120,121 BK
Ca

 channels act as a conduit of K+ 

secretion in the distal convoluted tubules, medullary, and 

cortical thick ascending limbs,122 distal connecting tubules,123 

and cortical collecting ducts.124 Investigations on BK
Ca

-β1−/−-

subunit knockout models failed to demonstrate an increase 

in flow-mediated K+ secretion, whereas BK
Ca

-α1−/− mice 

showed diminished capacity to secrete K+,125 suggesting 

the significance of the β1-subunit in maintaining a proper 

renal kaliuretic function via regulating flow-mediated K+ 

secretion.19,126 This may also be explained by the activation 

of BK
Ca

 channel activation in response to cyclic guanosine 
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monophosphate and nitric oxide synthase through the pro-

tein kinase G (PKG) pathway. Activation of BK
Ca

 by PKG 

via its β1-subunit127 synergistically increases BK
Ca

 currents 

under conditions of increased flow via enhancing the Ca2+ 

sensitivity of the channel.35

In addition to mediating flow-induced K+ secretion, BK
Ca

 

channels in the distal nephron have been demonstrated to 

respond to arginine vasopressin via the PLC/Ca2+/PKC sig-

naling pathway. Furthermore, BK
Ca

 channels have also been 

shown to play a role in the renal response to aldosterone 

and/or a high-K+ diet. Studies using iberiotoxin, a specific 

BK
Ca

 channel blocker, confirmed the inhibition of renal K+ 

secretion associated with a high-K+ diet.128 Interestingly, 

a study by Najjar et al129 using the isolated, perfused corti-

cal collecting duct from rabbits administered a high-K+ diet 

showed an increase in the expression of BK
Ca

 channels in 

the apical membrane. However, it is not clear whether an 

accelerated K+ secretion on high K+ diet is a result of an effect 

of aldosterone on BK
Ca

 channel activity or its localization to 

the cell membrane.

BK
Ca

 channels have also been shown to play an important 

role in regulating urinary bladder smooth muscle function, 

which is associated with urinary frequency and overactive 

bladder. Overactive bladder is a common pathologic condi-

tion resulting from the alteration of detrusor muscle excit-

ability linked to several myogenic and neurological factors.130 

BK
Ca

 channels are predominantly involved in the relaxation 

of bladder smooth muscle.131 Therefore, decreased expression 

of BK
Ca

 channels, mainly in the bladder outlet, may result 

in alteration of sensory afferent activity leading to enhanced 

detrusor tone during urine storage.130

Physiological regulators  
of BKCa channels
Studies in recent years have identified an enormous list of 

regulatory physiological mechanisms, which may serve as 

potential drug targets for interfering with BK
Ca

 channel 

 activity. Mechanisms modulating channel function include 

subunit composition,132 phosphorylation,132 palmitoylation,133 

and alternative splicing.134,135 However, channel function 

may be affected at different levels, such as protein synthesis, 

cellular localization, and trafficking. Furthermore, several 

upstream signaling molecules participating in orchestrating 

the above mentioned regulatory mechanisms are the object of 

research. In general, any mechanisms that alter the presence 

or function of BK
Ca

 channels in the plasma membrane may 

profoundly influence the magnitude of whole-cell BK
Ca

 chan-

nel currents and, consequently, cell and tissue physiology.

In addition, investigations aimed to understand the 

molecular aspects of BK
Ca

 channel activity have revealed 

various target sites of the channel protein. Several allos-

teric inhibitors were identified and developed to inhibit its 

activity and functions. Few of the inhibitors, namely, tetra-

ethylammonium, the peptide inhibitors charybdotoxin and 

iberiotoxin, and the fungal alkaloids paxilline and lolitrem B 

are widely used in both in vitro and in vivo models. Among 

these, iberiotoxin is the best characterized inhibitor of BK
Ca

 

channel activity.64,128,136 However, iberiotoxin was identified 

to have several limitations on its use in whole-animal experi-

ments because of its low-activity against channels contain-

ing the β4-subunit,137,138 as well as its impermeable nature 

across the cell membrane. The membrane-permeable fungal 

alkaloid paxilline has become widely used as a BK
Ca

 channel 

inhibitor in molecular physiology because of its ability to 

block BK
Ca

 channels complexes with β4-subunits.139 More 

recently, however, another fungal alkaloid, lolitrem B, has 

been shown to be five times more potent at inhibiting BK 

channels in comparison with paxilline.140,141 Seven loli-

trem compounds have also been shown to be BK channel 

 inhibitors.142 Lolitrem B is the causative agent of ryegrass 

staggers, a nervous disorder of animals that graze perennial 

ryegrass infected with the endophytic fungi Neotyphodium 

lolii. Using a mouse model of ryegrass staggers, it has 

been shown that lolitrem B produces ataxia and tremors 

by inhibiting BK channels.141 In addition to lolitrem B, this 

endophyte-grass symbiosis also produces other structurally 

related lolitrem analogues in which only minor structural 

changes have a dramatic effect on tremorgenicity.143–145

Summary
This review highlights the potential roles of BK

Ca
 channels 

in regulating various physiological processes. Furthermore, 

the functional versatility of BK
Ca

 channels conferred by the 

assembly of auxiliary subunits and alternative splicing of 

the pore-forming subunits has been addressed. The infor-

mation provided in this review strongly suggests that the 

BK
Ca

 channel, its subunits, and its associated proteins are 

promising targets for the regulation of various biological 

and physiological processes, and hence for the treatment 

of several diseases. This review addressed how the under-

standing of BK
Ca

 channel-mediated mechanisms can be 

used therapeutically to treat or prevent several pathologies. 

More studies to understand the allosteric modulations of 

these channels or upstream mediators, which may result in 

both gain- and loss-of-function, will likely result in clini-

cally relevant compounds. In addition, the identification of 
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BK
Ca

 channel subunit variants and their unique contribution 

to physiological processes is crucial to selectively target 

pathophysiological cascades.
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