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Abstract: We demonstrate that nitrogen doped, multi-walled carbon nanotubes (CN
x
-MWNT) 

result in photo-ablative destruction of kidney cancer cells when excited by near infrared (NIR) 

irradiation. Further, we show that effective heat transduction and cellular cytotoxicity depends 

on nanotube length: effective NIR coupling occurs at nanotube lengths that exceed half the wave-

length of the stimulating radiation, as predicted in classical antenna theory. We also demonstrate 

that this radiation heats the nanotubes through induction processes, resulting in signifi cant heat 

transfer to surrounding media and cell killing at extraordinarily small radiation doses. This cell 

death was attributed directly to photothermal effect generated within the culture, since neither 

the infrared irradiation itself nor the CN
x
-MWNT were toxic to the cells.
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Introduction
Since the discovery of carbon nanotubes by Iijima in 1991 (Iijima 1991), the fi eld of 

nanotechnology has expanded rapidly. An area of particular interest has been nano-

tubes application to medical technologies, which offers opportunities to improve the 

diagnosis, monitoring, and treatment of diseases such as cancer.

Thermal ablation therapies are routinely performed by application of lasers directly 

to the tumor target area. Limitations include thermal degradation of the non-tumorigenic 

surrounding tissues and lack of access to deeply embedded tumors without surgical 

invasion. Therefore, a preferred method is to use a sensitizing agent that couples to 

the incident radiation to increase localized heating and minimizes the intensity of the 

laser source and consequently undesired tissue damage. Photothermal therapies using 

chromophoric dyes like indocyanine green (ICG), which absorbs strongly in the near-

infrared, have been repeatedly studied for effectiveness of tumor destruction (Chen, 

Adams, Bartels et al 1995; Chen, Adams, Heaton et al 1995). However, diffusion 

of dyes can hinder repeated thermal ablations which may be necessary for complete 

eradication (Chen et al 1996).

Carbon nanotubes have physical, mechanical and electronic properties that can be 

exploited for medical applications. Carbon nanotubes are hollow structures that do not 

break easily upon bending and are currently the strongest known fi bers (Schonenberger 

and Forro 2000). Multi-walled nanotubes (MWNT) have a strong optical absorbance 

in the near infrared (NIR) region of light (Brennan et al 2003). Optical coupling of 

light to nanotubes is predicted to be most effi cient for nanotube lengths that are at least 

half the wavelength of the incident light as determined by classical antenna theory 

(Jackson 1999). However, unlike classical antennae, currents within the nanotube have 

extraordinarily long dephasing times. This means that the currents travel essentially 

without scatter (ballistically on/within the tube), resulting in a giant oscillator strength 

material, or a “super-antenna.” Such antenna effects are well known in other materials 

and have been reported in nanotubes as well (Webster et al 2005).
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Intrinsic and engineered defects (dopants) may be used 

to enhance the antenna properties of MWNT. Defects 

result in scattering of currents along the tube and augment 

heating of the tube. Defect density can be controlled by 

introducing substitutional dopants into the carbon lattice 

(Liu, Webster et al 2005). For example, we have previously 

shown that nitrogen can be introduced into the lattice at 

percentages up to ∼5%, and that these result in pyridine-like 

rings within the lattice. The dopants add charge to the nano-

tube in a way that is analogous to N-doping of silicon. The 

extra carriers provided by the pyridines make the nanotubes 

signifi cantly better conductors by fi lling in the small band 

gap of the MWNT. Since the overall “antenna effi ciency” 

of the material also depends on the number of free carriers 

in the system, dopants may enhance optical coupling, as has 

been shown in nonlinear optical experiments on suspensions 

(Xu et al 2004). In addition, CN
x
-MWNT have been found 

to have decreased toxicity as compared to undoped MWNT 

(Carrero-Sanchez et al 2006).

A number of approaches to the treatment of cancer 

involve the local application of heat, including radio fre-

quency ablation, either delivered from external or directed 

intratumoral probes. However, recently, nanomaterials have 

also been explored as heat delivery vehicles for thermal 

ablation of tumors. These methods include gold nanoshells 

(Hirsch et al 2003) and single walled nanotubes (SWNT) 

(Kam et al 2005).

In this manuscript, we examine the use of a novel 

N-doped form of MWNT (CN
x
-MWNT) in light activation 

and heat transfer, and test whether MWNT can be exploited 

to thermally ablate cancer cells. We demonstrate that these 

nanotubes are not inherently toxic to cultured cells, regardless 

of the specifi c form or length. We show that exposure to NIR 

light induces these particles to produce heat and kill cultured 

kidney cancer cells, and that killing occurs effectively when 

suspensed nanotubes are within their heating radial distance 

from the cells. Further, we defi ne the length of the nanotube 

required for optimal heat delivery and cytotoxicity.

Materials and methods
MWNT growth and characterization
CN

x
-MWNT were produced by carbon vapour deposition 

(CVD) as described previously (Liu, Czerw and Carroll 

2005). As precursors the catalyst ferrocene (Fe(C
5
H

5
)

2
) 

and the carbon-nitrogen source pyridine (C
5
H

5
N) were 

used together with hydrogen as carrier gas. X-ray photo-

electron spectroscopy (XPS) was used to determine the 

overall nitrogen concentration in the CN
x
-MWNT, which 

was found to be 1% – 2%. In order to produce CN
x
-MWNT 

of various lengths, the nanotubes were ultrasonicated in a 

mixture of concentrated sulfuric and nitric acid (3:1) for 7, 

24 and 60 hours. After extensive washing and drying, the 

purity and length distribution of all samples were exam-

ined using a Philips 400 transmission electron microscope 

(TEM) operating at 80 keV. All samples showed almost no 

catalytic or carbonaceous particles on the MWNT surface; 

this is indicative of highly purifi ed nanotube material. The 

length distribution of the samples sonicated for 7, 24 and 

60 hours is shown in (Figure 1). Their average length was 

found to 1100 nm (7 hours), 700 nm (24 hours) and 300 nm 

(60 hours). Average widths were 15 nm, 15 nm and 13 nm, 

respectively. Since in the present experiments the ratio of 

nanotubes to cells was varied, all experiments were normal-

ized to nanotubes per cell. In order to count the nanotubes 

in each of the samples, a simple TEM based method was 

devised based on placing a known volume of dispersed 

CN
x
-MWNT on a TEM grid, evaporating the aqueous 

buffer, and counting the number of nanotubes on the grid. 

Before use, CN
x
-MWNT were homogeneously suspended 

in Hepes Buffered Saline (HBS) by sonication in a Bronson 

3510 sonicator for approximately one hour.

Cell culture and viability
CRL 1932 cancer cells were obtained from the American 

Type Culture Collection and cultured at 37 °C in a humidi-

fi ed chamber containing 5% CO 
2
 in Mc Coy’s 5A media 

supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin. Cells were seeded at approximately 

1.5 × 104 cells/well in 48-well tissue culture plates. 0.1 

ml of (CN
x
-MWNT) suspended in HBS were mixed with 

0.9 ml CRL 1932 cancer cells in McCoy’s 5 A modifi ed 

media. The number of viable cells per ml of cell suspen-

sion was determined using a hemocytometer following 

staining with trypan blue. The dishes were incubated at 

37 °C overnight.

The ratio of nanotubes to cells was varied in order to fi nd 

the threshold for cell death. The concentration of nanotubes 

in the original suspension was determined by counting the 

number of nanotubes following deposition of a known vol-

ume of nanotube suspension onto a TEM grid as described 

above. Using this method and the conventional cell counting 

method described above, calculated ratios of nanotubes/cell 

of 1000:1, 100:1 and 1:1 were used. Where necessary, nano-

tubes suspensions were diluted in HBS. The concentrations 

for the 1000:1 samples were 0.083 mg/ml (1100 nm MWNT), 

0.027 mg/ml (700 nm MWNT) and 0.005 mg/ml (300 nm 
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Figure 1 Sonication reduces mean length of CNx-MWNT. CNx-MWNT were sonicated in acid as described in Materials and Methods for 7 hours (a), 24 hours
(b), and 60 hours (c). Average length was assessed by TEM.

MWNT). Furthermore, for each experiment a control sample 

of HBS without nanotubes was prepared. After incubation 

with or without nanotubes for 24 hours, the cells were 

irradiated with a NIR quasi-CW-YAG laser operating at a 

wavelength of 1064 nm and laser power of 3 W/cm2. Each 

well was exposed to the laser for 4 minutes. Cell viability 

was assessed by trypan blue exclusion or in some cases by 

crystal violet staining. Temperature was measured using a 

thin thermocouple wire, attached to a Fluke thermometer, 

suspended in the growth media so that increases in the media 

temperature could be determined as a function of lasing time 

and nanotube length.

Results and discussion
Nanotube length and lack of inherent 
toxicity
Our initial objective was to determine whether CN

x
-MWNT 

exhibit inherent toxicity in the absence of IR treatment. To 

test this, we fi rst used CN
x
-MWNT of a fi xed average length 
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light for 4 minutes. Cells were incubated with CN
x
-MWNT at 

nanotube:cell ratios of 1:1, 1:100, and 1:1000. Control cells 

were incubated with CN
x
-MWNT, but were not treated with 

laser, or were treated with laser in the absence of nanotubes. 

Viability was assessed in all cultures. As shown in Figure 4A, in 

the absence of nanotubes, treatment with NIR had no effect on 

viability. Thus, cells have a high transparency to NIR light, and 

neither exposure to NIR nor exposure to nanotubes alone is suf-

fi cient to induce cell death. However when cells were incubated 

with CN
x
-MWNT and subsequently exposed to NIR, there was 

a dramatic dose-dependent decrease in viability, with over 90% 

cell death at the highest dose tested (Figure 4A). The greatest 

decrease in viability was associated with the greatest increase 

in temperature: the average number of viable cells in 1000x 

sample decreased by 96.25% after exposure to laser, where a 

maximum temperature of 57.7 ± 1.5 °C was attained.

We next cultured cells with CN
x
-MWNT at cell:nanotube 

ratios of 1:1, 1:100, and 1:1000 (designated as 1x, 100x and 

1000x, respectively), irradiated for a fi xed time of 4 minutes 

each, and tested whether temperature increases occurred 

under these conditions. As can be seen in Figure 4B, there 

was a slight increase in temperature in the control, 1x and 

100x samples. The highest temperature change was found in 

the 1000x sample, which reached a maximum temperature 

of 57.7 ± 1.5 °C.

Control of CNx-MWNT nanotube 
properties by length modifi cation
In order to predict and control the properties of CN

x
-MWNT 

nanotubes as heating agents, it was important to determine 

whether their behavior could be modeled by classic antenna 

Figure 3 Effect of nanotube concentration on heating. Concentrations of 
nanotubes used start at 1000 × 105 nanotubes/unit volume (marked as 100%). The 
concentration was then diluted to 500 × 105, 250 × 105, and 100 × 105 nanotubes/
unit volume, (marked 50%, 25% and 10% respectively). Starting temperature was 
approximately 23 °C.

of 1100 nm. These were produced by limited acid treatment, 

as shown in Figure 1A. Cells were mixed with CN
x
-MWNT 

at a calculated ratio of 1000 nanotubes to one cell and effects 

on viability assessed over 48 hrs. As shown in Figure 2, 

CN
x
-MWNT by themselves had no discernible effect on 

cell viability over this timeframe. Thus, CN
x
-MWNT are not 

inherently cytotoxic, in accordance with the recent literature 

(Worle-Knirsch, Pulskamp, and Krug 2006).

Heat generated by CNx-MWNT
We next assessed the degree to which irradiation of 

CN
x
-MWNT with NIR could induce an increase in tem-

perature. These experiments were performed with 700 nm 

MWNT. Nanotubes were diluted in media and irradiated for 

various time at different concentrations. As shown in Figure 3, 

an increase in temperature was attained when nanotubes were 

irradiated with NIR in aqueous media. The concentrations 

used were 1000 × 105 nanotubes per unit volume (marked 

100%), 500 × 105 nanotubes per unit volume (marked 50%), 

250 × 105 nanotubes per unit volume (marked 25%), and 

fi nally 10 × 105 nanotubes per unit volume (marked 10%). 

We note that the heating of media drops as the concentration 

of nanotubes drops. We address this point below.

Cell viability following CNx-MWNT 
induced photothermal effect
To test whether a decrease in viability could be induced by 

combined treatment with 1100 nm CN
x
-MWNT and IR, cells 

were incubated with various concentrations of CN
x
-MWNT, 

allowed to adhere overnight, and then exposed to 3W/cm2 IR 

Figure 2 CNx-MWNT do not inhibit cell growth. 1.5 × 104 cells/well CRL 1932 
cancer cells were plated with 1.5 × 107 1100 nm nanotubes in 35 mm wells. 
Control samples contained no MWNT. Viability was measured using a crystal violet 
absorption assay at 595nm after 8, 12, 24, 36 and 48 hours of culture. Means and 
standard deviations of triplicate determinations are shown. ----•---- is control, ------°------- is 
1000 nanotubes per cell.
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cell ratios of 1:1 or 100:1. However, the average number of 

viable cells in cells treated with nanotubes at a ratio of 1000:1 

decreased by 91.94% after exposure to laser with a maximum 

temperature of 50.65 ± 5.7 °C (Figure 5B). Although the extent 

of cell death and maximal temperature increase were slightly 

less than those observed with 1100 nm nanotubes, these results 

indicate that CN
x
-MWNT of 700 nm length are also effi cient at 

thermal coupling.

Finally, the effect of CN
x
-MWNT of 330 nm average 

length were assessed. Like the 1100 and 700 nm nanotube 

preparations, these exhibited no toxicity in the absence of 

laser (Figure 6A). However, in contrast to results obtained 

with 1100 nm and 700 nm nanotubes, no cell death was seen 

at any concentration of these nanotubes. Maximal increase in 

temperature was correspondingly decreased: the maximum 

temperature reached in 1000x sample was 41.78 ± 2.85 °C 

(Figure 6B). This temperature was only slightly above the nor-

mal incubation temperature of 37°, and was thus insuffi cient 

to cause cell death. Since 300 nm CN
x
-MWNT are less than 

of half the wavelength of light used to activate the nanotubes 

(1064 nm), these results are consistent with the prediction 

that these nanotubes should not exhibit effective coupling 

to the laser. A comparison of all three nanotube lengths and 

corresponding cell survival is shown in Figure 7.

Figure 4 Effect of 1100 nm CNx-MWNT. (a) 1.5 × 104 cells/well were mixed with 
0.1 ml of 1100 nm CNx-MWNT in HBS at various concentrations in 10 mm wells. 
Cells were allowed to attach overnight and exposed to YAG laser for 4 minutes. 
Untreated controls are also shown. Viability was assessed by trypan blue exclusion. 
Means and standard deviations of 6 replicate cultures are shown. Similar results were 
obtained in six independent experiments. (b) Change in temperature of CRL 1932 
cancer cells plated with various concentrations of N-doped MWNT after exposure 
to YAG laser for 4 minutes. Initial temperature was approximately 23 °C. Maximum 
temperature change of 23.5 ± 0.3 °C in 1000x N-doped MWNT sample. Abbrevia-
tions for this and subsequent fi gures are: NT (nanotube), L (laser), NL (no laser).

theory. One prediction of this theory is that optical coupling 

should occur at nanotube lengths that are at least half the 

wavelength of the incident light. In order to assess whether 

the behaviour of CN
x
-MWNT obeyed this prediction, we 

prepared nanotubes of different lengths and compared their 

activities as thermal coupling and cytotoxic agents.

As shown in Figure 1B, by increasing the length of acid 

treatment from 7 hrs (used to produce 1100 nm tubes) to 24 hrs, 

nanotubes of 700 nm average length were produced. Acid treat-

ment for 60 hrs further reduced average length of CN
x
-MWNT 

nanotubes to 330 nm as measured by TEM (Figure 1C).

These nanotube preparations were incubated with cultured 

cancer cells, and their effects compared to those of 1100 nm 

CN
x
-MWNT. As seen in Figure 5A, similar to the results 

obtained with 1100 nm CN
x
-MWNT, cells incubated with 

700 nm N-doped MWNT in the absence of laser exposure 

maintained viability. Laser treatment by itself (in the absence 

of nanotubes) was also non-toxic (Figure 5A). However the 

combination of nanotubes and laser treatment again induced 

a dose-dependent cell death and temperature increase in the 

culture: There was little increase in temperature or effect on 

viability in cultures treated with CN
x
-MWNT at nanotube:

Figure 5 Effect of 700 nm CNx-MWNT (a)1.5 × 104 cells/well were mixed with 
0.1 ml of 700 nm CNx-MWNT in HBS at various concentrations in 10 mm wells. 
Cells were allowed to attach overnight and exposed to YAG laser for 4 minutes. 
Untreated controls are also shown. Viability was assessed by trypan blue exclusion. 
Means and standard deviations of 6 replicate cultures are shown. Similar results 
were obtained in seven independent experiments. (b) Change in temperature of 
CRL 1932 cancer cells plated with various concentrations of N-doped MWNT 
after exposure to YAG laser for 4 minutes. Initial temperature was approximately 
23 °C. Maximum temperature change of 16.35 ± 2.5 °C in 1000x N-doped MWNT 
sample.
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Nanotube NIR coupling and heat transfer
The dependence of heating and cell death on nanotube length 

also suggests that CN
x
-MWNT behave as anticipated by classic 

antenna theory, which predicts that for nanotubes to couple effec-

tively, they must be at least as long as one half the wavelength of 

the incident radiation (Riggs et al 2000, 2001; Wang et al 2004; 

Hanson 2005). These wavelengths allow the antenna to become 

an electrical dipole from incident radiation and absorb light 

effi ciently. Consistent with this prediction, 700 nm and 1100 nm 

nanotubes delivered substantial heat to the cellular media when 

exposed to 1064 nm light, whereas 300 nm nanotubes coupled 

poorly to the radiation fi eld and consequently did not absorb 

enough light to raise the media temperature.

Thermodynamic calorimetrics can be used to estimate 

how far these nanotubes transfer the heat generated within 

them into the surrounding liquid. The calorimetric equation 

that must be satisfi ed on an instantaneous level is:

M
NT

 C
NT

 ∆T
NT

i = M
water

 C
water

 ∆T
water

f + M
NT

 C
NT

 ∆T
NT

f (1)

where the M’s are the masses, the C’s are the heat capaci-

ties, and the ∆T’s are the changes in temperature (Kittel 

and Kroemer 1980). This states that the amount of heat (Q) 

lost from the hot nanotube can be accounted for in the fi nal 

temperature of the water (cellular milieu) and the nanotube 

combined. Because the system is not closed, this is only a 

fi rst approximation of the experimental system. Further, 

bundling of the nanotubes is not accounted for in these 

experiments. However, this can provide us with an expecta-

tion of the simple best case scenario. To estimate the zone 

of heat transfer, we can ignore the second term, because it is 

small compared to the total mass of the water, and rearrange 

equation (1) to obtain equation (2):

 RZONK = 
3
4

100

50

1
3

π

ρ

( )M C

C

NT NT

water water

°C

°C

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

. (2)

R
ZONK

 is the “zone of nanotube killing” (ZONK), the radius 

from the surface of the nanotube that defi nes a volume in which 

the temperature has reached a minimum of 50 °C. ρ
water

 is the 

density of water. If we choose 100 °C as an initial temperature 

of the nanotube, then the zone of cell killing around a single 

N-doped MWNT can be estimated as follows: C
NT

 ∼ 3000, 

C
water

 ∼ 1000 (Hepplestone et al in press), and the radius of a 

MWNT of about 10–8 m. This gives a ZONK radius of roughly 

10–7 m. If we allow for nanotube temperatures to be 1000 °C, 

then the radius extends to approximately one micron. These 

calculations demonstrate that in the best case, a single nanotube 

can effectively heat volumes immediately adjacent to it.

The combined contributions of nanotube mass and 

number may explain why cell killing required high nanotube:

cell ratios. In these studies, we have used a relatively low 

Figure 6 Effect of 330 nm CNx-MWNT (a) 1.5 × 104 cells/well were mixed with 
0.1 ml of 330 nm CNx-MWNT in HBS at various concentrations in 10 mm wells. 
Cells were allowed to attach overnight and exposed to YAG laser for 4 minutes. 
Untreated controls are also shown. Viability was assessed by trypan blue exclusion. 
Means and standard deviations of 6 replicate cultures are shown. Similar results 
were obtained in two independent experiments. (b) Change in temperature of CRL 
1932 cancer cells plated with various concentrations of N-doped MWNT after 
exposure to YAG laser for 4 minutes. Initial temperature was approximately 23 °C. 
Maximum temperature change of 7.2 ± 0.8 °C in 1000x N-doped MWNT samples.

Figure 7 Comparison plot of 300, 700 and 1100 nm nanotube lengths versus cell 
survival. The fewest number of surviving cells corresponds to laser absorption by 
1100 nm long tubes. The greatest number of surviving cells corresponds to the 
shortest nanotube length of 300 nm.



International Journal of Nanomedicine 2007:2(4) 713

Thermal ablation therapeutics

radiation dose (720J) in order to stay within a range that 

would not damage dermal layers should this be applied as 

a therapeutic. At these radiation doses, the heat is relatively 

well localized to one or two ZONK radii for an individual 

nanotube. As the number of nanotubes is increased, for a con-

stant irradiation power, we expect the heat they can transfer 

will increase as the cube root of their mass. However, the 

number of antenna used increases the heat transfer linearly. 

So, from these simple considerations, we expect that larger 

nanotube masses will enhance the total volume of killing, 

but not nearly as rapidly as increasing their numbers. This is 

seen in Figure 3 where the increase in maximum temperature 

is nearly linear with concentration for a given time. The 

solutions used in Figure 3 are well dispersed and therefore 

we expect clumping to have little effect.

Recently, nanomaterials have been applied to ther-

mal ablation of tumors. These include gold nanoshells 

(Hirsch et al 2003), and single walled nanotubes SWNT 

(Kam et al 2005). All of these materials are in early devel-

opmental stages. CN
x
-MWNT have some theoretical and 

practical advantages as a nanomaterials. First, as discussed 

above, MWNT are excellent antenna for electromagnetic 

energy, and will absorb approximately three times the light 

as SWNT. This is important because within the transmission 

window of 700 nm to 1000 nm of human tissues, light is 

attenuated by skin and subcutaneous tissues. Since near IR 

irradiation may be applied through the skin to kill embedded 

cancers, the decreased light intensities required to heat with 

MWNT may reduce damage to dermal layers, particularly 

when the cancer lies at the deeper end of the NIR penetration 

range (2–4 cm). A second advantage of MWNT is that they 

have broad band width compared to the specifi c resonance 

absorptions of SWNT and nanoshells, allowing them to be 

activated by broader band widths of electromagnetic radia-

tion. A third distinction is that MWNT do not require cell 

uptake, since we have shown that if they are within the R
zonk

 

killing radius, they are suffi ciently close to impart enough 

thermal energy for cell damage.

Our experiments demonstrate that N-doped MWNT’s 

can act as highly effi cient heat transduction molecules in the 

extracellular environment. Further, we have shown that heat 

transfer and subsequent cell killing can be achieved extracel-

lularly with relatively low total radiation doses of 1064 nm 

light. We have suggested that both the mass of the N-doped 

MWNTs and their length play an important role in radia-

tion transduction and heat transfer. Since previous studies 

have shown that such long nanotubes cannot be taken up by 

cells in general, the fact that such effective cell killing was 

achieved outside of the cell demonstrates that photo-thermal 

techniques involving “nano-antennae” are not limited to 

those materials that can be endocytosed, which allows for a 

wide variety of therapeutic possibilities for the delivery of 

nanotubes to tissues. Additionally, the radiation wavelengths 

and doses used in this study suggest that such approaches 

might be feasible for the treatment of cancer with externally 

applied electromagnetic radiation.

Conclusion
The overall goal of our experiments was to test whether CN

x
-

MWNT could be used as effective heat transducers for pho-

toablation of cultured cancer cells. We hypothesized that these 

nanotubes would be non-toxic per se, but could be activated 

to release heat by exposure to near-infrared radiation, and that 

this in turn would lead to cell death. We further hypothesized 

that effects of nanotubes would be dependent on their length. 

We observed that nanotube lengths of 1100 and 700 nm, but 

not 300 nm, coupled with the radiation and caused signifi cant 

increases in temperature and cell death. The low power levels 

(3 watts) necessary to effectively kill cells suggests that the 

effi ciency of NIR coupling to the long nanotubes is high. In 

summary, these results demonstrate that CN
x
-MWNT are 

versatile and effective heat-delivery and cytotoxic agents. 

The ability to control their properties through length and other 

modifi cations may facilitate the ultimate clinical application 

of CN
x
-MWNT in the treatment of cancer.
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