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Abstract: Aptamers are nucleic acid ligands which have been validated to bind to epitopes with 

a specifi city similar to that of monoclonal antibodies. Aptamers have been primarily investigated 

for their direct function in terms of inhibition of protein targets; however, recent evidence gives 

reason to actively explore aptamers as targeting moieties for delivery of anticancer therapeutics. 

Many aptamers have been developed to bind to extracellular membrane domains of proteins 

overexpressed on cancer cells and have the potential to be modifi ed for use in targeting cancer 

therapeutics. The use of DNA vector-based short hairpin RNA (shRNA) for RNA interference 

(RNAi) is a precise means for the disruption of target gene expression but its clinical usage in 

cancer is limited by obstacles related to delivery into cancer cells. Nucleic acid aptamers are 

attractive candidates for targeting of shRNA therapies. Their small size, ease of production 

and modifi cation, and high specifi city are valued attributes in comparison to other targeting 

moieties currently being tested. Here we review the development of aptamers directed to PSMA, 

Nucleolin, HER-3, RET, TN-C, and MUC1 and focus on their potential for use in targeting of 

shRNA-based cancer therapeutics.
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Introduction
Delivery vehicles optimal for shRNA delivery ideally are targeted in order to maximize 

biodistribution to the cancer cell population, thereby increasing their effectiveness in 

the clinical setting and minimizing potentially adverse off target (ie, nonmalignant) 

cell effects. Tumor cellular uptake at the target site(s) can be enhanced by conferring 

to the delivery vehicle the ability to recognize surface features of the target cells. 

This can be accomplished most readily by recognizing surface antigens or promoting 

receptor mediated endocytosis. Delivery vehicles can be complexed with monoclonal 

antibodies, peptides, small molecule ligands, and aptamers to recognize cell surface 

markers (Lu and Low 2002; Dyba et al 2004; Stefanidakis and Koivunen 2004; Hughes 

and Rao 2005).

Aptamers are noncoding nucleic acid oligomers made from either RNA or DNA. 

Much like tRNA, they fold through intramolecular bonds into varied tertiary structures. 

The folded structure of aptamers creates binding pockets that allow the molecules to 

interact with the three dimensional structure of specifi c domains on a protein’s surface. 

Aptamers bind to epitopes with affi nity comparable to that of monoclonal antibodies. 

Their dissociation constants are often in the picomolar to low nanomolar range. Because 

of their high surface area, the area in contact with the target is large, minimizing the 

chances of off target effects by increasing binding specifi city. In some cases aptamers 

can inhibit the function of a target protein by binding to its active site, or inducing a 

conformational change, or inhibiting dimerization or DNA binding (Lupold et al 2002; 

Umehara et al 2004; Shi et al 2007).
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The idea of developing nucleic acid ligands for therapeutic 

purposes was born out of the study of activation of viral gene 

expression during HIV infection. There exists a nucleic acid 

ligand that binds specifi cally to a transactivator of human 

immunodefi ciency virus type 1 (HIV-1) gene called Tat. The 

Tat protein normally binds to an RNA stem-loop structure 

called a trans-acting response element (TAR) which occurs 

within the fi rst 60 nucleotides of all HIV-1 transcripts, thus 

activating expression of viral genes. A series of studies 

showed that overexpression of TAR sequence decoys con-

ferred HIV-1 resistance to cells, presumably because the TAR 

oligonucleotides bound specifi cally to the Tat protein, thus 

inhibiting it from activating viral gene expression (Sullenger 

et al 1990; Sullenger et al 1991; Held et al 2006).

Since this initial discovery, a wide range of potential 

therapeutic applications for aptamers have been proposed 

and pursued (Bunka and Stockley 2006). Aptamers have been 

successfully developed against extracellular protein ligands, 

such as transforming growth factor receptors, platelet-derived 

growth factor, basic fi broblast growth factor, and vascular 

endothelial growth factor (VEGF) as well as intracellular 

proteins such as NFkb (Jellinek et al 1995; Golden et al 2000; 

Cassiday and Maher 2001; Pietras et al 2001; Ohuchi et al 

2005, 2006; McCauley et al 2006). Pegaptanib, an aptamer 

that binds to and inhibits VEGF has been approved by the 

FDA for treatment of age related macular generation (Ng et al 

2006). Aptamers that bind to blood coagulation factors VIIa 

and IXa are being investigated as anticoagulants (Rusconi 

et al 2002). A subset of aptamers that have been developed 

for therapeutic purposes have the potential to be used as 

targeting moieties for shRNA.

Aptamers represent an attractive alternative to traditional 

methods of targeting cancer gene therapy by circumventing 

many of the stumbling blocks that inhibit the effectiveness 

of these methods. Aptamers are smaller than monoclonal 

antibodies. With a molecular weight of 10–15 kDa they 

are one order of magnitude lighter than antibodies used for 

targeting, which have an average molecular weight of 150 

kDa (White et al 2000). Aptamers are also less immunogenic 

than antibodies (Drolet et al 2000; Pestourie et al 2005; 

Apte et al 2007), making them more suited to systemic 

administration and long term therapy.

Aptamers can facilitate cell entry of an shRNA delivery 

vehicle in similar ways as traditional targeting moieties. 

Aptamers to the extracellular domains of transmembrane 

receptor proteins can penetrate the cell membrane by 

receptor mediated endocytosis (Hughes and Rao 2005). 

When aptamers bind to cell surface proteins they increase 

the proximity of the delivery vehicle and the cell membrane. 

This facilitates charge interactions between a positively 

charged delivery vehicle and the negatively charged 

membrane that result in internalization of the payload. Here 

we will briefl y review the process of aptamer development 

and then give examples of the current development of 

aptamers directed to good candidate proteins for tumor 

targeting.

Here we review the development of aptamers directed 

to PSMA, Nucleolin, HER-3, RET, TN-C, and MUC1 and 

focus on their potential for use in targeting of shRNA-based 

cancer therapeutics. Though most of these aptamers have not 

yet been used as shRNA targeting moieties in vivo this selec-

tion of aptamers represents a group that is well suited to the 

targeting shRNA-based cancer therapies thereby enhancing 

their effi ciency and safety.

Aptamer production
RNA and DNA aptamers with specifi c binding properties 

can now be amplifi ed in vitro from libraries through a 

streamlined, automated iterative selection process. Because 

of their small, relatively simple structure, the chemical 

modifi cation of aptamers to increase serum stability or 

bioavailability can be accomplished readily. The produc-

tion and modifi cation of aptamers is very uncomplicated 

when compared to the production of monoclional antibod-

ies, which require prokaryotic or eukaryotic expression 

systems. The chemical methods involved are well defi ned 

and easily conformable to good manufacturing process 

requirements, which has eased the transition of aptamers 

into the clinical setting.

Aptamers that bind to a specifi c target are isolated from 

a group of candidate oligonucleotides, either RNA or DNA, 

through ‘systematic evolution of ligands by exponential 

enrichment’ (SELEX) (Tuerk and Gold 1990). SELEX 

is an in vitro process that can be automated to allow the 

rapid production of aptamers (Cox et al 2002; Ellington 

et al 2005).

The SELEX process begins with a degenerate sequence 

library of �1015 molecules. With a library of this size it is 

likely that there is a molecule that will bind to almost any 

target (Ellington and Szostak 1990). The library is then 

treated with the target molecule at physiological pH and 

temperature. After some aptamers bind the aptamer–target 

complexes are partitioned from the nonbinding aptamers 

and bound species are regenerated and amplifi ed by PCR in 

the case of DNA aptamers or RT-PCR in the case of RNA 

aptamers. The amplifi ed molecules are then subjected to 
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another round of the selection process. Over this repetitive 

process of binding and amplifi cation the pool is enriched for 

aptamers that bind most effi ciently to the target (Gopinath 

2007). SELEX can also be tailored by ligation and cleavage 

of small 10nt fi xed primer sites before and after amplifi ca-

tion. These smaller primer sequences allow the isolation of 

shorter aptamer sequences which can later be more readily 

synthesized chemically (Vater et al 2003).

Whole-cell SELEX is a procedure that has been developed 

for the selection of aptamers to extracellular matrix proteins 

and transmembrane proteins. It involves the introduction of 

cells overexpressing the protein target of interest to oligomer 

libraries. This procedure offers the advantage of selecting 

molecules more suited to recognizing their target in its natural 

glycosylation state under physiological conditions. Because 

of the great variety of proteins of the cell surface, a second 

set of traditional SELEX with the purifi ed protein is some-

times necessary to obtain a purifi ed specifi c aptamer product 

(Hicke et al 2001; Cerchia et al 2005; Ohuchi et al 2005). This 

method has been used to isolate aptamers that bind to human 

transforming growth factor-beta type III receptor displayed 

on cell surface (Ohuchi et al 2005, 2006).

Naked nucleotide oligomers are in general very unstable 

in the blood and are unsuitable for therapeutic or targeting 

applications. One study showed that an unmodifi ed aptamer 

against thrombin had an in vivo serum half-life of only 

108 seconds (Griffi n et al 1993). A variety of chemical 

modifi cations can be applied to nucleic acid aptamers during 

and after the SELEX process in order to increase their 

suitability for systemic tumor targeting (Table 1). Natural 

nucleotides within aptamers can be substituted with 2′ fl uoro, 

O-methyl, or amino modifi ed or 4′ thio modifi ed nucleotides 

that are poor substrates for nuclease degradation (Beigelman 

et al 1995; Gold et al 1995; Burmeister et al 2005; Kato et al 

2005) 3′ end caps can also be modifi ed to confer nuclease 

resistance (Burmeister et al 2005). Aptamers can be bound 

to bulky lipids or polymers to reduce their renal clearance 

and increase their serum half-life (Boomer et al 2005). 

Aptamer intramolecular bonds can be altered to increase 

structural stability (Schmidt et al 2004). Beyond chemical 

modifi cations to increase stability, aptamers can also be 

modifi ed with small functional groups to facilitate their 

attachment as targeting moieties to polymeric or lipid shRNA 

delivery vehicles. Amino groups have been added to aptamers 

in order to facilitate their conjugation to a nanoparticle 

composed of poly(lactic acid)-block-polyethylene glycol 

copolymer with a terminal carboxylic acid functional group 

(Farokhzad et al 2004).

Likely candidates for aptamer 
mediated cancer targeting
The following cell surface proteins are good candidates for 

tumor targeting. Aptamers are actively being developed for 

all of them, whether for therapeutic or for targeting purposes 

(Table 2).

Prostate-specifi c membrane antigen 
(PSMA)
The most extensively studied aptamer for cancer targeting 

binds to the prostate-specifi c membrane antigen (PSMA). 

PSMA is a well described protein that is expressed in prostate 

cancer epithelial cells (Israeli et al 1994; Murphy et al 1998). 

Its use in targeting of many different types of cancer thera-

peutics is a constantly developing fi eld. In normal prostate 

epithelial cells, it is primarily expressed as the intracellular 

protein referred to as PSM’ but in prostate carcinoma the 

splice variant termed PSMA is overexpressed. PSMA, which 

is more pertinent for targeting purposes, is a type 2 integral 

membrane glycoprotein folate carboxypeptidase expressed 

exclusively in prostate acinar epithelium (Su et al 1995). 

Increased PSMA expression has been documented in pros-

tatic intraepithelial neoplasia, prostatic adenocarcinoma, and 

in tumor associated neovasculature. Its expression generally 

increases with disease progression and metastasis (Bostwick 

et al 1998).

PSMA was originally described as the target for mAb 

7E11in the androgen-dependent LNCaP human prostatic 

adenocarcinoma cell line (Horoszewicz et al 1987). 

Antibodies that bind to the extracellular domain of the PSMA 

are used clinically for imaging and staging of prostate cancer 

(Freeman et al 2002) and are in clinical trials to determine 

therapeutic potential (Bander et al 2005). Monoclonal 

antibodies to PSMA have also been used to target delivery 

of gene therapy in vivo (Moffatt et al 2006).

The practicality of PSMA as a target for various kinds of 

anticancer therapies has placed it in center stage of aptamer-

based cancer targeting research. The fi rst reported RNA 

aptamers selected to bind a tumor-associated membrane 

antigen were two 2′-fl uoro-pyrimidine RNA oligomers that 

bind to the extracellular domain of the PSMA. These two 

aptamers, called xPSM-A9 and xPSM-A10, which share no 

consensus sequences, bind to the PSMA at different extracel-

lular epitopes. Aptamer xPSM-A9 was shown to inhibit the 

PSMA noncompetitively with an average K(i) of 2.1 nM, 

while aptamer xPSM-A10 inhibits the PSMA competitively 

with an average K(i) of 11.9 nM (Lupold et al 2002).
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The nuclease resistant xPSMA-A10 aptamer has been 

exploited to target the delivery of various nanoparticulate 

drug delivery systems. It has peen particularly well studied 

as a targeting moiety for biodegradable nanoparticles conju-

gated with chemotherapeutics. In one study, the xPSMA-A10 

aptamer was bound to a poly(lactic acid)-block-polyethylene 

glycol (PEG) copolymer with a terminal carboxylic acid 

functional group (PLA-PEG-COOH) and used to deliver 

rhodamine-labeled dextran as a model drug in vitro. This 

study showed that the targeted nanoparticles preferentially 

bind to and are taken up in vitro by LNCaP prostate epithelial 

cells which express PSMA, but not by PC3 prostate epithelial 

cells, which do not express detectable levels of the PSMA 

(Farokhzad et al 2004).

In a more recent study, 5′-NH
2
 modifi ed xPSMA-A10 

aptamers were conjugated to poly(D,L-lactic-co-glycolic 

acid)-block-poly(ethylene glycol) nanoparticles with 

terminal carboxylic acid groups (PLGA-PEG-COOH). 

Table 1 Common chemical modifi cations of aptamers for tumor targeting

Modifi cation Effect Reference

surround with lipoproteins Reduced renal clearance Willis 1998
PEGylation Reduced renal clearance Boomer 2005
binding to cholesterol Reduced renal clearance Rusconi 2004 de Smidt 1991
biotin–streptavidin Reduced renal clearance Dougan 2000
2′-fl uoro pyrimidine substitution Nuclease resistance Burmeister 2005
2′-O-methyl nucleotide substitution Nuclease resistance Chelliserrykattil 2004 Beigelman 1995 Burmeister 2005
3′ end cap modifi cation Nuclease resistance Burmeister 2005
2′-amino nucleotide substitution Nuclease resistance Burmeister 2005
use of locked nucleic acid modfi cation Improve structural stability Schmidt 2004
4′thio nucleotide substitution Nuclease resistance Kato 2005
3′-amino nucleotide substitution Facilitation of conjugation to delivery vehicle Lupold 2002

de Smidt PC, Doan TL, de Falco S and van Berkel TJC. 1991. Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifi es the tissue 
distribution. Nucleic Acids Res,19, 4695–700.
Dougan H. et al. 2000. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Bio, 27, 289–97.
Boomer RM. et al. 2005. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and infl amed tissues. Oligonucleotides, 15, 183–95.
Willis MC. et al. 1998. Liposome anchored vascular endothelial growth factor aptamers. Bioconjug Chem, 9, 573–82.
Beigelman L, McSwiggen JA, Draper KG, Gonzalez C, Jensen K, Karpeisky AM, Modak AS, Matulic-Adamic J, DiRenzo AB, Haeberli P, et al. 1995. Chemical modifi cation of 
hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem. Oct 27;270(43):25702-8. PMID: 7592749.
Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD. 2005. Direct in vitro selection of a 2′-O-
methyl aptamer to VEGF. Chem Biol, 12:25–33.
Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G Jr, Scardino E, Fay WP, Sullenger BA. 2004. Antidotemediated control of an anticoagulant aptamer in vivo. 
Nat Biotechnol, 22:1373–84.
Kato, Y. et al. 2005. New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX. Nucleic Acids Res,33, 2942–51.

Table 2 Nucleotide aptamers in development with potential for use in targeting of shRNA therapy

Aptamer Target Testing   
  in vitro in vivo Clinical

AS1411 Nucleolin antiproliferation, growth Antitumor activity in nude mouse Phase 1 and 2 trials
(Agro100)  inhibition xenograft models, synergy for advanced
   with chemotherapeutic agents solid malignancies
TTA1 TN-C Binding  Sucessful aptamer penetration not tested
   in various murine xenograft 
   tumor models 
various MUC1 Binding Sucessful aptamer penetration not tested
   in a murine xenograft tumor model 
xPSM- PSMA Inhbition of PSMA via  Sucessful targeting of a not tested
A10  competetive binding  chemotherapy nanoparticle in 
   a murine xenograft model 
xPSM-A9  PSMA Inhbition of PSMA via  not tested  not tested
  noncompetetive binding  
A30 HER3 Inhibitor of HER-3 signaling not tested not tested
  via noncompetetive binding  
D4 RETC634Y Inhibitor of RETC634Y dimer not tested not tested
  formation
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These nanoparticles were then encapsulated with the 

chemotherapeutic docetaxel and tested in vitro and in vivo. 

The docetaxel-encapsulated nanoparticle-aptamer (Dtxl-

NP-Apt) bioconjugates enhanced in vitro cellular toxicity 

with LNCaP prostate epithelial cells as compared with 

nanoparticles that lack the PSMA aptamer. After a single 

intratumoral injection of Dtxl-NP-Apt bioconjugates using a 

murine LNCaP xenograft model of prostate cancer, complete 

tumor reduction was noted in fi ve of seven nude mice. 100% 

of the mice that received the Dtxl-NP-Apt bioconjugate sur-

vived the 109-day study. In contrast, only two of seven mice 

that received the non-targeted Dtxl-NP had complete tumor 

reduction and only 57% of the mice in this group survived 

the 109-day study. Only 14% of mice treated with Dtxl alone 

survived the 109-day study (Farokhzad et al 2006). A similar 

study tested PLGA-PEG-COOH-xPSMA-A10 conjugates 

encapsulating docetaxel and 14C labeled paclitaxel. It was 

found that the surface association of nanoparticles with 

targeting aptamer signifi cantly enhanced delivery to tumors 

when compared to equivalent but nontargeted nanoparticles 

in a murine LNCaP xenograft model (Cheng et al 2007).

PSMA aptamers are particularly attractive as targeting 

moities for RNAi-based cancer therapeutics because the 

PSMA itself participates in membrane recycling, becoming 

internalized through ligand induced endocytosis, thus facili-

tating entry of the therapeutic payload into the cytoplasm 

(Ghosh and Heston 2004). This property of the PSMA has 

been exploited in the targeting of therapeutic siRNAs to pros-

tate cancers using aptamer-siRNA chimeras and conjugates. 

In one study, a 27mer anti-Lamin siRNA was noncovalently 

bound to xPSMA-A9 aptamers using a modular streptavidin 

bridge and tested in vitro to transfect PC3 cells and LNCaP 

cells that naturally expressed the PSMA. The conjugates were 

successfully transfected with this method and inhibition of 

lamin expression was achieved. The conjugates displayed 

similar transfection effi ciency to oligofectamine controls 

but better specifi city, as they were only taken up by PSMA 

expressing LNCaP cells and not PSMA-negative PC3 cells 

(Chu et al 2006).

In another study, aptamer-siRNA chimeras were used 

to target prostate cancer cells and knock out expression of 

survival genes. Chimeras of the xPSMA-A10 aptamer and 

polo-like kinase 1 (PLK1) and BCL2 siRNAs were gener-

ated via in vitro transcription from DNA templates. The 

chimeras were shown be internalized and promote apoptosis 

preferentially in PSMA expressing LNCaP cells and not PC3 

control cells. This specifi city was retained in murine LNCaP 

xenograft tumor models where chimeras bearing PLK1 

siRNAs mediated pronounced tumor regression while having 

no statistically signifi cant effect on non-PSMA expressing 

PC3 xenografts (McNamara et al 2006).

Nucleolin
An aptamer (AS1411) that binds to the external domain of the 

membrane protein nucleolin is has been well characterized 

because of its therapeutic potential. Due to the properties of 

the aptamer and the properties of nucleolin itself AS1411 

is an excellent candidate for aptamer mediated targeting of 

gene therapy.

Human nucleolin is an abundant multifunctional 76 kDa 

membrane associated phosphoprotein that has 707 amino 

acids in its sequence (Derenzini et al 1995; Sarcevic et al 

1997). It is composed of three main domains, an acidic 

histone-like NH2 terminus, a central domain containing four 

RNA-binding sub-domains, and a carboxy terminal domain 

that contains its four sites of phosphorylation (Lapeyre 

et al 1987; Ginisty et al 1999). Though it was originally 

characterized as a nucleolar protein, nucleolin is also present 

on the external cell membrane where it functions as a 

signaling receptor of poorly defi ned function (Hovanessian 

et al 2000; Storck et al 2007).

Though its function on the surface of cancer cells has 

not been clearly defi ned, Nucleolin has been extensively 

investigated in the context of cancer. It has been shown 

to be associated with survival, growth and proliferation of 

cells, nuclear transport, transcription, packing and transport 

of rRNA, and replication and recombination of DNA 

(Srivastava and Pollard 1999). In addition, overexpression 

of nucleolin is related to poor clinical prognosis for some 

cancer types (Derenzini et al 1995; Derenzini 2000).

One pathophysiologic function of cell surface nucleolin 

that makes it ideal for targeting anticancer therapies is its 

involvement in internalization of specifi c ligands. Nucleolin 

has been shown to bind to and internalize the heparin-binding 

growth factor midkine (Said et al 2002), the iron-binding 

lycoprotein lactoferrin (Legrand et al 2004), acharan sulfate 

(Joo et al 2005), as well as the tumor-homing 34-amino acid 

peptide (F3) (Christian et al 2003).

The aptamer known as AS1411 was fi rst developed as 

AGRO100 by Aptamera (Louisville, KY). It is an unmodifi ed 

guanosine rich 26-mer, which binds to nucleolin. AS1411 

was originally investigated because of observations that 

guanosine-rich oligonucleotides (GRO) had nonantisense-

based in vitro antiproliferative properties against cancer cells 

(Bates et al 1999). These oligonucleotides were further stud-

ied and it was found that the unmodifi ed DNA phosphodiester 
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GRO analog GRO29A-OH, which retains the G quartet 

structure essential for nucleolin binding (Dapic et al 2003), 

displayed resistance against serum nuclease degradation 

(Dapic et al 2002). AS1411 is simply GRO29A-OH with its 

three 5′ thymidines cleaved.

A nontraditional aptamer because of its G quartet-based 

binding to its target, AS1411 has been shown to bind to cell 

surface nucleolin and inhibit growth of many cancer cell 

lines in vitro such as the prostate cancer cell line DU145, the 

breast cancer cell lines MDA-MB-231 and MCF-7, the lung 

cancer cell line A549, as well as the cervical cancer cell line 

HeLa (Bates et al 1999; Dapic et al 2002).

In anticipation of its use as a therapeutic, biodistribution 

studies were realized to characterize the in vivo pharma-

codymanics, distribution, and metabolism of the aptamer 

following IV administration. AS1411 metabolism was stud-

ied in mice bearing lung and renal human tumor xenografts 

derived from A549 and A498 cells using IV administration 

of AS1411 radiolabeled with tritiated thymidine. Follow-

ing 1, 10, and 25 mg/kg IV boluses of [3H]AS1411, 63% 

of the radiolabeled aptamer was excreted in urine within 

5 hours while less than 1% of the injected dose was detected 

upon analysis of bile, thus suggesting that the main mode 

of metabolism is renal. This same study also showed that 

AS1411 displayed dose related pharmacokinetics with an 

elimination half life of 2 days in plasma and whole blood. 

Regardless of the dose administered, tumor/blood ratios 

were 4:6 for the renal carcinoma xenograft and 2:4 and for 

the lung carcinoma xenograft, showing that the aptamer 

effectively accumulated in tumor tissue (Ireson and Kelland 

2006).

In vivo xenograft effi cacy studies have collectively shown 

that AS1411 results in cytostasis rather than cytotoxicity. 

After treatment with AS1411 cells are blocked at S-phase. 

Because of this observation, there has been interest in com-

bining AS1411 with nucleoside analogs such as gemcitabine, 

which act on cells during S-phase. Early in vitro and in vivo 

studies of AS1411 in combination with gemcitabine against 

PANC-1 pancreatic cancer cells have shown enhanced anti-

tumor activity in comparison to either agent alone (Ireson 

and Kelland 2006).

Preclinical toxicology of AS1411 has been evaluated 

in rats and dogs with IV bolus dosages of up to 100 mg/kg 

in rats and 96-hour continuous IV infusions at doses up to 

10 mg/kg/d. No signifi cant toxicity was observed in either 

species, as determined by clinical observations, clinical 

pathology evaluation, and gross examination of tissues at 

necroscopy (Ireson and Kelland 2006).

AS1411 was the f irst nucleic acid-based aptamer 

approved for Phase I clinical testing for the treatment of can-

cer in humans. Results have been published on the progress 

of 17 patients with advanced solid tumors receiving AS1411 

at the Brown Cancer Center in Louisville, KY (Laber et al 

2005). This report describes a continuous IV infusion dose 

escalation study starting from 1 mg/kg/d and thus far reported 

up to 10 mg/kg/d. Fifteen patients received a 4 day infusion 

while 2 patients received a 7 day infusion. No serious toxicity 

related to AS1411 administration was observed. A patient 

with renal cancer achieved a sustained partial response at 16 

months post-treatment and 41% of patients were reported to 

have stable disease at 2 months post-treatment. From these 

initial results the Phase I study has continued with a focus on 

renal and non–small cell lung cancers (Ireson and Kelland 

2006; Laber et al 2006).

The extensive preclinical and burgeoning clinical data 

amassed about AS1411 makes it an ideal candidate for tar-

geting of cancer gene therapy in humans.

Human epidermal growth factor receptor 
3 (HER-3)
Human epidermal growth factor receptor 3 (HER-3) is a 

receptor tyrosine kinase that is overexpressed on the surface 

of many different cancer cells (Yokota et al 1988; Schneider 

et al 1989; Slamon et al 1989; Berchuck et al 1990; Dougall 

et al 1993). The extra-cellular domains of receptor tyrosine 

kinases are rational and accessible targets for anticancer 

therapies. The most prominent example of a therapy targeted 

to the extra-cellular domain of a receptor tyrosine kinase is 

Herceptin, a humanized monoclonal antibody that targets the 

extra-cellular domain of HER-2. This molecule has proved 

effective in the treatment of HER2-overexpressing breast 

cancers (Pegram et al 1999).

An aptamer to the extracellualar domain of HER-3, called 

A30, has been isolated using SELEX. A30 was demonstrated 

to have high binding specificity to HER-3, despite the 

sequence similarities shared by the extracellular domains of 

HER-2 and HER-3. In vitro, A30 inhibits the growth stimu-

latory effects of HER-3’s natural ligand, heregulin, though 

it does not compete for its binding site. A30 also inhibits 

HER-3 from binding to HER-2 which is a necessary step in 

HER-mediated growth induction (Chen et al 2003).

Though A30 is still in the early stages of development 

and would likely need to undergo modifi cations to enhance 

its serum stability prior to its introduction in the clinical 

setting, it represents a possible future targeting moiety for 

shRNA delivery in the therapy of cancer.
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RET
Another receptor tyrosine kinase for which an aptamer has 

been developed is the RET oncoprotein. Mutated forms of 

the RET Receptor tyrosine kinase are implicated as the cause 

of the dominant inherited cancer syndrome MEN2 (Hansford 

and Mulligan 2000). In MEN2, germline to ‘missense muta-

tions of the RET gene result in the conversion of cysteine 

634 to tyrosine (RETC634Y), which causes cancers of the 

neuroendocrine organs. These mutations affect the cysteine 

rich extracellular domain of RET causing the loss of an 

intramolecular disulfi de bond. The loss of this bond allows 

the formation dimmers of mutated RET monomers via an 

intermolecular disulfi de bond. Dimerization results in a con-

stitutively activated receptor (Iwashita et al 1999).

Using 16 cycles of whole-cell SELEX several RNA aptam-

ers that bind to the extracellular domain of RETC634Y have been 

isolated. PC12 cells which expressed the mutant receptor were 

used for the selection procedure. The aptamer with the best sig-

naling inhibition and the most nuclease resistance, termed D4, 

was selected for further development (Cerchia et al 2005).

An aptamer that binds specifi cally to RET could be useful 

for targeting of specifi c anticancer gene therapies and it also 

is another example of the use of whole-cell SELEX to effec-

tively develop aptamers that bind to transmembrane proteins 

in their natural glycosylation states. This method could be 

employed to develop aptamers to other potential targets.

Tenascin-C (TN-C)
Tenascin-C is a hexameric extracellular matrix protein that is 

highly expressed during active tissue development processes 

including wound healing, angiogenesis, embryonic develop-

ment, and tumor growth (Mackie et al 1988; Erickson and 

Bourdon 1989; Koukoulis et al 1991; Zagzag et al 1995). 

TN-C is an ideal candidate for targeting of anticancer shRNA 

therapy because it is highly expressed in tumor and in general its 

expression is expression is limited in normal tissues (Borsi et al 

1992). High TN-C expression has been noted in osteosarcomas, 

lymphomas, glioblastomas, melanomas as well as carcinomas 

of breast, colon lung, and prostate (Chiquet-Ehrismann 2004; 

Orend 2005; Orend and Chiquet-Ehrismann 2006).

Using SELEX with TN-C expressing U251 glioblastoma 

cells RNA aptamers that bind to the extracellular fi brinogen-

like domain of TN-C with high affi nity were isolated. Several 

modifi cations were made to the aptamer in order to increase 

its usefulness as a targeting moiety. Its size was reduced in 

order to increase tissue penetration and effi ciency of syn-

thesis. It was 2′-OCH
3
 substituted, and 3′ capped in order 

to increase nuclease stability. A 5′ amine was also added to 

serve as a conjugation site. After these modifi cations the 

resultant aptamer, termed TTA1, had an increased equilib-

rium Kd but the fi nal value of 5 × 10-9M still represents a 

very high affi nity (Hicke et al 2001).

In a later experiment the potential of TTA1 to be used for 

in vivo drug delivery was evaluated. Uptake and tumor distri-

bution of rhodamine red-X-labeled TTA1 was studied using 

fl uorescence microscopy in a U251 human glioblastoma cell 

line xenograft nude mouse model. Within 10 minutes after 

IV injection of the fl uorescently labeled aptamer, bright 

perivascular fl uorescence was noted in the xenografts. The 

fl uorescence then diffused throughout the tumor stroma over 

the following 3 hours (Hicke et al 2006).

Biodistribution and radioimaging studies were performed 

using (99m)Tc labeled TTA1 and glioblastoma (U251) and 

breast cancer (MDA-MB-435) tumor xenografts in nude 

mice. IV administered (99m)Tc labeled TTA1 showed rapid 

blood clearance with a serum half-life of less than 2 min, 

and rapid tumor penetration. TTA1 was cleared much more 

rapidly from the blood than from the tumor. Both renal 

and hepatobiliary clearance pathways were observed, but 

it is estimated that due to rapid nuclease degredation of the 

aptamer the clearance patterns observed were those of the 

aptamer metabolites. In these studies it was found that TTA1 

affectively targeted a wide variety of TN-C expressing tumor 

types including colon (SW620), breast (MDA-MB-468, 

MDA-MB-435), glioblastoma (U251), rhabdomyosarcoma 

(A673). As a control TTA1 was also tested with a squamous 

cell carcinoma of the head and neck (KB) xenograft that 

did not express TN-C. As expected, KB xenografts did not 

display appreciable aptamer uptake (Hicke et al 2006).

The results of these studies are promising in terms of 

TTA1s potential use in tumor targeting. Before its use in 

targeting of shRNA-based cancer therapies it would prob-

ably need further modifi cations to increase its serum half life. 

While short half lives and rapid elimination are benefi cial for 

minimizing potential toxicity, such a short serum half life 

may inhibit aptamer penetration in areas of the target tumor 

that are poorly perfused (Hicke et al 2006).

MUC1
MUC1 is a large, highly glycosylated transmembrane 

epithelial cell surface protein. Mucin proteins are expressed 

on the apical membrane of various epithelial cell types. They 

have many roles which facilitate the function of mucosal 

cells such as lubrication of epithelial cell surfaces, prevention 

of tissue dehydration, protection of cells from proteolytic 

degradation and provision of a barrier against infection 
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(von Mensdorff-Pouilly et al 2000). Mucins also function 

as signal transduction receptors involved in triggering 

cellular responses such as proliferation, differentiation, and 

apoptosis (Taylor-Papadimitriou et al 1999; Hollingsworth 

and Swanson 2004). MUC1 overexpression has been well 

documented in many human adenocarcinomas including 

breast, pancreatic, ovarian, colorectal, lung, prostate, esopha-

geal (Maeshima et al 1997; Aoki et al 1998; Zhang et al 

1998; Hough et al 2000; Ginestier et al 2002; Kohlgraf et al 

2003; Burjonrappa et al 2007). Its expression has also been 

documented in other types of tumors including astrocytoma, 

melanoma, neuroblastoma, as well as hematological malig-

nancies (Oosterkamp et al 1997; Brossart et al 2001).

The cell surface expression pattern of MUC1 across 

human malignancies makes it an excellent and versatile target 

for cancer targeting with an aptamer. Using 10 rounds of in 

vitro SELEX, a group of DNA aptamers has been isolated 

that binds selectively to synthetic MUC1 peptides. This pool 

of aptamers, when fl uorescently labeled has been verifi ed to 

bind specifi cally to MUC1 expressing cancer cell lines in vitro 

(Ferreira et al 2006). In a later study this group of aptamers was 

demonstrated by radio-imaging to have good tumor penetration 

in a murine xenograft (Perkins and Missailidis 2007). These 

aptamers are in the early stages of development and before their 

transition into the clinic they would need further modifi cation 

to minimize size and maximize nuclease resistance.

Conclusions
Aptamer development could ameliorate many of the traditional 

problems with the introduction of exogenous genetic material 

for therapeutic purposes. There is a wide range of experimen-

tation occurring, from the laboratory to the preclinical setting, 

which has the potential to revolutionize the targeting of gene-

based therapy. The aptamers reviewed here represent the most 

promising areas of current development pertinent to aptamer-

based targeting of shRNA cancer therapeutics and will likely be 

among the fi rst to make transition to targeting in the clinic.
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