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Abstract: Due to the high mortality rate in India, the identification of novel molecules is 

important in the development of novel and potent anticancer drugs. Xanthones are natural 

constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated 

heterocycles with a variety of biological activities along with an anticancer effect. To explore the 

anticancer compounds from xanthone derivatives, a quantitative structure activity relationship 

(QSAR) model was developed by the multiple linear regression method. The structure–activity 

relationship represented by the QSAR model yielded a high activity–descriptors relationship 

accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accu-

racy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the 

logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), 

and the solvent-accessible surface area – were significantly correlated with anticancer activity. 

Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. 

A molecular docking study was also carried out to predict the molecular interaction between 

proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinet-

ics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also 

calculated, and later an appraisal of synthetic accessibility of organic compounds was carried 

out. The strategy used in this study may provide understanding in designing novel DNA topoi-

somerase IIα inhibitors, as well as for other cancer targets.

Keywords: drug likeness, ADMET, regression model, HeLa cell line

Introduction
Drug discovery and development is not only a time-consuming process, but also a costly 

procedure. Therefore, we wanted to apply computational methods for lead generation 

and lead optimization in the drug discovery process. This emerging trend has immense 

importance in reducing the phase time, as well as in amplifying the design of small 

molecule-based leads with better biological activity and minimal side effects for a 

disease-specific target. After the development of the first peptide-based HIV protease 

inhibitors,1 followed by a target for antihypertension2 and inhibitors of the H5N1 avian 

influenza,3 scientists are paying more attention to the in silico approach. Even with such 

improvements, the design of a novel anticancer drug that works effectively on a patient 

is still out of reach. Cancer, which is the uncontrolled growth and proliferation of cells 

due to mutation of genes which accelerate cell division rates and evade the programmed 

cell death, is the leading cause of death in the world.4 The frequency of one particular 

manifestation of cancer, cervical cancer, is dramatically increasing. A link between 

cancer and human deoxyribonucleic acid (DNA) topoisomerase type IIα (Top2A) 
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(enzyme commission number [EC]: 5.99.1.3)5 has already 

been ascribed, and there is an interest in developing a specific 

inhibitor as a new therapeutic regimen for the cancer.

Xanthones, which are used in this study, comprise a large 

number of oxygenated heterocycles which play an important 

role in medicinal chemistry. Their derivatives are widely dis-

tributed in various plants, and they have a variety of biological 

properties, such as antioxidant, hepato-protective, anti-

inflammatory, anti-α-glucosidase, and anticancer properties.6 

Due to their antitumor effect, xanthones are attracting more 

interest. Until now, there have been only a few computational 

studies on xanthone; also, the protein targets of xanthones 

have not yet received a great deal of attention.6

Traditionally it is difficult to select the best chemical 

moiety of compound that plays an effective role in treating or 

preventing cancer, so we used computational strategies that 

include quantitative structure activity relationship (QSAR) 

modeling, virtual screening, shape similarity screening, 

pharmacophore searching, molecular docking, and ADMET 

(absorption, distribution, metabolism, excretion, and toxic-

ity properties of a molecule within an organism) studies 

to identify potential protein targets of xanthone and other 

phytochemicals.7 Using these computational methodolo-

gies, we demonstrate a multiple linear regression QSAR 

model for activity prediction that successfully predicts the 

anticancer activities of newly designed xanthone derivatives. 

In the QSAR model, the regression coefficient (r2), which 

indicates the relationship correlation, was 0.84, while the 

cross-validation regression coefficient (r2CV), which indi-

cates the prediction accuracy of the model, was 0.82. The 

QSAR study indicates that dielectric energy, group count 

(hydroxyl), LogP, shape index basic (order 3), and solvent-

accessible surface area were significantly correlated with 

anticancer activity. After successful validation of this model, 

it was then used to design and virtually screen 50 compounds 

and identify 39 with IC
50

 values of #20 µM. Lipinski’s rule 

of five was used to filter the compounds and was further 

accompanied by molecular docking studies, which were 

performed for predicting active compounds against highly 

promising anticancer drug targeting (Figure  1). Since in 

humans the drug target protein for doxorubicin (DrugBank 

ID: DB00997) is Top2A, we selected it as a target protein. 

This target is widely used for existing anticancer agents: eg, 

etoposide; anthracyclines (doxorubicin, daunorubicin); and 

mitoxantrone. These drugs work either through the poison 

of topoisomerase II cleavage complexes or by inhibiting 

the ATPase activity by acting as noncompetitive inhibitors 

of adenosine triphosphate (ATP).8 A docking study was 

carried out to identify the putative binding site of active 

xanthone derivatives (which could be helpful in explaining 

the underlying structure–activity relationship), by using a 

crystal structure of inhibitor-bound Top2A. Based on the 

QSAR model, molecular docking, ADMET, and synthesis 

accessibility, we then identified four inhibitors with IC
50

 

values of 7.94 µM, 0.63 µM, 2.51 µM, and 0.16 µM, as 

potent inhibitors of Top2A (Figure 1). This study is a sig-

nificant approach in the identification of hits compounds 

with structural diversity, which may provide further helpful 

insights to screening and designing novel anticancer com-

pounds and their respective protein targets. Moreover, this 

study is also projected to explore the molecular mechanism 

by which xanthone derivatives can be further utilized with 

better activity by rational modifications.

Methods and computational details
Structure cleaning
Drawing and geometry cleaning of compounds with anti-

cancer activity was performed using ChemBioDraw Ultra 

version 12.0 (2010) software (PerkinElmer Informatics, 

Waltham, MA, USA). The two-dimensional (2D) structures 

were transformed into three-dimensional (3D) structures 

using the converter module of ChemBio3D Ultra. The 3D 

structures were then subjected to energy minimization, 

which was performed in two steps. The first step was energy 

minimization using molecular mechanics-2 (MM2) until the 

root mean square (RMS) gradient value became smaller than 

Xanthone derivatives

Compounds with predicted
IC50=20 µM

Rule of five filter

Molecular docking

ADMET

Synthetic
accessibility

Hit
compounds

50

39

34

11

10

4

4

Figure 1 Virtual screening protocol for the identification of novel DNA Top2A 
inhibitors.
Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and 
toxicity properties of a molecule within an organism; DNA, deoxyribonucleic acid; 
IC50, inhibitory concentration to 50% of the population; Top2A, topoisomerase 
type IIα.
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0.100 kcal/mol/Å; then in a second step, minimized MM2 

(dynamics) compounds were subjected to reoptimization 

through the MOPAC (Molecular Orbital Package, Chem-

BioDraw Ultra version 12.0 [2010] software; PerkinElmer 

Informatics, Waltham, MA, USA) method, until the RMS 

gradient attained a value smaller than 0.0001 kcal/mol/Å.

Parameters for QSAR model 
development
In the present study, cancer cell line-based QSAR modeling 

was performed. Initially, a total of 64 compounds with reported 

anticancer activity against the human cervical cancer cell line 

(HeLa) were used as a training data set while developing the 

QSAR model (Tables 1 and S1).6,9–16 The anticancer activity 

was in IC
50

 form. A total of 52 chemical descriptors (physico-

chemical properties) were calculated for each compound. The 

selection was made on the basis of structural/pharmacophore 

or chemical class similarity. Similarly, in order to select the 

best subset of descriptors, highly correlated descriptors were 

excluded. Finally, a model was developed based on the forward 

stepwise multiple linear regression method. The resulting 

QSAR model exhibited a high regression coefficient. The model 

was successfully validated using random test set compounds 

(Table S2), and was evaluated for the robustness of its predic-

tions via the cross-validation coefficient.

Various descriptors like steric, electronic, and thermo-

dynamic were calculated by the Scigress Explorer software 

(Fujitsu, Tokyo, Japan). For the validation of QSAR models, 

the leave one out method was used;17 the best model was 

selected on the basis of various statistical parameters, such as 

a square of the correlation coefficient (R2), and the quality of 

each model was estimated from the cross-validated squared 

correlation coefficient (rCV2).

Statistical calculations  
used in QSAR modeling
The stepwise multiple linear regression method calculates 

QSAR equations by adding one variable at a time and testing 

each addition for significance. Only variables that are found 

to be significant are used in the QSAR equation. This regres-

sion method is especially useful when the number of variables 

is large and when the key descriptors are not known. In the 

forward mode, the calculation begins with no variables and 

builds a model by entering one variable at a time into the 

equation. In the backward mode, the calculation begins with 

all variables included and drops variables one at a time until 

the calculation is complete; however, backward regression 

calculations can lead to overfitting.

Table 1 Comparison of experimental and predicted activities of 
training data set molecules based on QSAR model

Serial  
number

Compound  
ID

Experimental  
activity6,9–16,*

Predicted  
activity*

Error 
factor**

1 Xtr-1 3.7 3.466 -0.23
2 Xtr-2 3.8 3.92 0.12
3 Xtr-3 3.9 3.549 -0.35
4 Xtr-5 3.78 3.701 -0.08
5 Xtr-6 3.87 3.952 0.08
6 Xtr-7 3.7 3.833 0.133
7 Xtr-8 3.7 3.782 0.08
8 Xtr-10 3.7 3.604 -0.06
9 Xtr-11 3.7 4.322 0.622
10 Xtr-12 4.21 4.313 0.103
11 Xtr-13 3.7 3.493 -0.207
12 Xtr-14 3.7 4.172 0.472
13 Xtr-15 3.8 4.57 0.77
14 Xtr-16 3.7 3.642 -0.058
15 Xtr-17 3.71 3.84 0.13
16 Xtr-18 4.24 3.857 -0.383
17 Xtr-20 3.75 3.693 -0.057
18 Xtr-21 5.37 5.266 -0.109
19 Xtr-22 3.74 3.607 -0.133
20 Xtr-23 5.46 5.381 -0.079
21 Xtr-24 5.46 6.313 0.853
22 Xtr-25 5.46 5.94 0.48
23 Xtr-27 5.18 4.866 -0.314
24 Xtr-31 5.18 5.467 0.287
25 Xtr-32 5.18 4.957 -0.223
26 Xtr-34 5.18 5.443 0.357
27 Xtr-35 8.38 7.63 -0.75
28 Xtr-36 4.98 4.476 -0.504
29 Xtr-37 5.2 4.769 -0.431
30 Xtr-38 4 4.259 0.259
31 Xtr-40 4.23 4.54 0.31
32 Xtr-41 5.33 5.096 -0.234
33 Xtr-42 4.84 4.546 -0.294
34 Xtr-43 3.7 3.626 -0.074
35 Xtr-44 4.17 4.421 0.251
36 Xtr-45 5.82 5.879 0.059
37 Xtr-47 4 4.619 0.619
38 Xtr-50 4.16 4.145 0.015
39 Xtr-52 4.21 4.401 0.191
40 Xtr-53 4 4.466 0.466
41 Xtr-54 4 3.988 -0.012
42 Xtr-55 4.01 3.9 -0.11
43 Xtr-56 4.63 4.851 0.221
44 Xtr-57 3.86 3.76 -0.1
45 Xtr-58 4.3 4.129 0.171
46 Xtr-59 4.62 4.814 0.194
47 Xtr-61 4.59 4.783 0.193
48 Xtr-62 4 4.005 0.005
49 Xtr-63 4 4.198 0.198
50 Xtr-64 4.6 4.633 0.033
51 Xtr-65 5 4.973 -0.027
52 Xtr-66 4 4.254 0.254
53 Xtr-67 3.83 3.853 0.023

(Continued)
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Multiple regression correlation coefficient
Variations in the data are quantified by the correlation 

coefficient (r), which measures how closely the observed 

data track the fitted regression line. This is a measure of 

how well the equation fits the data (ie, it measures how good 

the correlation is). A perfect relation has r=+1 (positively 

correlated) or −1 (negatively correlated); no correlation has 

r=0. The regression coefficient, r2, is sometimes quoted, and 

this gives the fraction of the variance (in percentage) that is 

explained by the regression line. The more scattered the data 

points, the lower the value of r. A satisfactory explanation 

of the data is usually indicated by an r2. Errors in either the 

model or in the data will lead to a bad fit. This indicator of 

fit to the regression line is calculated as:

R2= �(sum of the squares of the deviations from the 

regression line)/(sum of the squares of the  

deviations from the mean)� (1)

	 R2= (regression variance)/(original variance)	 (2)

where the regression variance is defined as the original 

variance minus the variance around the regression line. The 

original variance is the sum of the squares of the distances 

of the original data from the mean.

Validating QSAR equations and data
The cross-validation coefficient, rCV2, can be calculated as

	 rCV 2
2

2
1= −

−
−

Σ
Σ

( )

( )
.

y y

y y
i j

i z

	 (3)

Here, y
i
 and y

j
 are the measured and predicted values of 

dependent variables, respectively. y
z
 is the averaged value 

of dependent variable of the training set.

Leave one out cross-validation
Leave one out cross-validation (LOOCV) is one of the most 

effective methods for validation of a model with a small 

training dataset. Here, training is done with a data size of 

(N–1) and tested the remaining one, where N represents the 

complete set of data. In the LOOCV method, the training and 

testing are repeated for N amount of time, so as to pass each 

individual data through the testing process.

Virtual designing of novel  
xanthone derivatives
The 50 compounds (Table S3) were virtually designed and 

then validated. The QSAR model was used to predict the 

biological responses to these chemical structures.

Rule of five filters
All the chemical structures are evaluated for good oral bio-

availability in order to be an effective drug-like compound, 

subject to Lipinski’s rule of five.18 According to this rule, 

a drug-like molecule should have not more than one of the fol-

lowing violations: no more than five hydrogen bond donors; 

no more than ten hydrogen bond acceptors; molecular weight 

no more than 500; and LogP no more than 5.

Protein preparation
The protein preparation protocol is used to perform tasks 

such as inserting missing atoms in incomplete residues, 

deleting alternate conformations (disorder), removing 

waters, standardizing the names of the atoms, modeling 

missing loop regions, and protonating titratable residues by 

using predicted pKs (negative logarithmic measure of acid 

dissociation constant). CHARMM (Chemistry at HARvard 

Macromolecular Mechanics; Cambridge, MA, USA) is used 

for protein preparation with an energy of -31.1116, initial 

RMS gradient energy of 181.843, and grid spacing of 0.5 

angstrom (Å). The hydrogen atoms were added before the 

processing. Protein coordinates from the crystal structure 

of Top2A (PDB [Protein Data Bank] ID: 1ZXM) Chain A 

determined at a resolution of 1.87 Å were used (Figure 2).

Protein–ligand docking
Molecular docking studies were performed to generate the bio-

active binding poses of inhibitors in the active site of enzymes 

by using the LibDock program from Discovery Studio, 

Table 1 (Continued)

Serial 
number

Compound  
ID

Experimental  
activity6,9–16,*

Predicted  
activity*

Error 
factor**

54 Xtr-69 5.66 4.967 -0.693
55 Xtr-71 5.82 5.367 -0.453
56 Xtr-73 5.38 4.869 -0.511
57 Xtr-74 5.11 5.551 0.441
58 Xtr-75 5.07 5.032 -0.038
59 Xtr-76 3.78 3.802 0.022
60 Xtr-78 4.91 4.734 -0.176
61 Xtr-80 5.04 4.963 -0.077
62 Xtr-81 5 4.344 -0.656
63 Xtr-82 4.81 4.864 0.054
64 Xtr-83 6.05 5.505 -0.545

Notes: *Measured and predictive value is in pIC50; **the difference between 
predicted activity values and experimental activity values is represented as error 
(ratio between the predicted and experimental activity), with a negative sign if the 
actual activity is higher than that of the predicted activity.
Abbreviations: pIC50, negative of the log inhibitory concentration to 50% of the 
population; QSAR, quantitative structure activity relationship; ID, identification.
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version 3.5 (Accelrys, San Diego, CA, USA). LibDock uses 

protein site features, referred to as hot spots, consisting of 

two types (polar and apolar). The ligand poses are placed into 

the polar and apolar receptor interactions site. In the current 

study, the Merck Molecular Force Field was used for energy 

minimization of the ligands. The binding sphere was primarily 

defined as all residues of the target within 5 Å from the first 

binding site. Here, the ATP binding site was used to define the 

active site, referred to as the hot spots (Figure 2). Conformer 

Algorithm based on Energy Screening And Recursive build-up 

(CAESAR) was used for generating conformations. Then, the 

smart minimizer was used for in situ ligand minimization. All 

other docking and consequent scoring parameters used were 

kept at their default settings.

We also analyzed the protein ligand complexes to better 

understand the interactions between protein residues and 

bound ligands, along with the binding site residues of the 

defined receptor. The 2D diagrams helped to identify the 

binding site residue, including amino acid residues, waters, 

and metal atoms.

The score ligand poses protocol was used for the scor-

ing functions, such as LibDock score, Jain, LigScore 1, 

LigScore 2, piecewise linear potential (PLP) and potential 

of mean force (PMF) 04, to evaluate ligand binding in a 

receptor cavity.

Validation using AutoDock Vina
AutoDock Vina19 software (Scripps Research Institute, La 

Jolla, CA, USA) was also used for molecular docking stud-

ies to validate the LibDock score. For this, the designed 

compounds were optimized and then used for docking 

experiments. The same binding site and receptor used in 

the LibDock program are used for this study. The docking 

program takes the PDBQT file format of ligands and receptor, 

A

B

Ligand binding site

Figure 2 (A) Structural model of human DNA Top2A (PDB ID: 1ZXM) with ATP binding site (yellow); (B) ATP binding site pocket residues.
Abbreviations: ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; Top2A, topoisomerase type IIα.
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a modified PDB file, which has added polar hydrogens and 

partial charges. Other docking parameters were set to the 

software’s default values.

Pharmacokinetics parameters
ADMET refers to the absorption, distribution, metabolism, 

excretion, and toxicity properties of a molecule within an 

organism, and were predicted using ADMET descriptors in 

Discovery Studio 3.5 (Accelrys). In this module, six math-

ematical models (aqueous solubility, blood–brain barrier 

penetration, cytochrome P450 2D6 inhibition, hepatotoxicity, 

human intestinal absorption, and plasma protein binding) are 

used to quantitatively predict properties of a set of rules that 

specify ADMET characteristics of the chemical structure of 

the molecules. These ADMET descriptors allow us to elimi-

nate compounds with unfavorable ADMET characteristics 

early on to avoid expensive reformulation, preferably before 

synthesis, and also help to evaluate proposed structural refine-

ments that are designed to improve ADMET properties.

Validation of synthetic accessibility  
for hit compounds using SYLVIA
Synthetic accessibility scores for hit compounds were used to 

validate the synthetic possibilities. For this, the SYLVIA-XT 

1.4 program (Molecular Networks, Erlangen, Germany) was 

used to calculate the synthetic accessibility of these optimized 

compounds.20 The appraisal of synthetic accessibility of 

organic compounds using SYLVIA provides a score on a scale 

from 1 (very easy to synthesize) to 10 (complex and challeng-

ing to synthesize). A number of criteria, such as complexity 

of the ring system, complexity of the molecular structure, 

number of stereo centers, similarity to commercially avail-

able compounds, and potential for using powerful synthetic 

reactions have been independently weighted to provide a 

single value for synthetic accessibility.

Toxicity
To predict a variety of toxicities that are often used in drug 

development, the models in Table 2 are used and calculated 

through TOPKAT parameters/protocols using Accelrys DS 

3.5. These predictions help in optimizing therapeutic ratios 

of lead compounds for further development and assessing 

their potential safety concerns. They will help in evaluat-

ing intermediates, metabolites, and pollutants, along with 

setting dose range for animal assays.

Results and discussion
Predicting anticancer activity  
with the QSAR model
Prior studies of xanthone showed its promising role in the 

development of novel anticancer compounds.6 In the present 

work, we studied the structure activity relationship of xanthone. 

Table 2 In silico screening of xanthone derivatives for toxicity risk assessment

Compound X-19 X-44 X-45 X-49 Doxorubicin

Rat oral LD50 (g/kg body weight) 0.260364 0.549378 0.178021 0.172969 0.310213
Rat inhalational LC50 (mg/m3/h) 1.32143 4.93263 11.5492 2.02801 0.075216
Carcinogenic potency TD50  
(mg/kg body weight/day)
  Mouse 40.3644 1.9133 4.26132 5.22761 6.97341
 R at 26.5929 0.081498 0.241939 0.522321 0.655332
Rat maximum tolerated dose  
(g/kg body weight)

0.121509 0.026051 0.029689 0.030165 0.2767

Developmental toxicity potential Toxic Toxic Toxic Toxic Toxic
US FDA rodent carcinogenicity
  Mouse female Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen
  Mouse male Multicarcinogen Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen
 R at female Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen
 R at male Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen Noncarcinogen
Ames mutagenicity Nonmutagen Mutagen Nonmutagen Nonmutagen Mutagen
Daphnia EC50 (mg/L) 0.702644 0.229936 0.653473 0.631841 9.77997
Skin sensitization Strong Strong Strong Strong Weak
Rat chronic LOAEL (g/kg body weight) 0.012629 0.0097 0.012985 0.005815 0.013216
Fathead minnow LC50 (g/L) 8.03e-05 0.001833 0.000446 3.35e-03 0.26038
Aerobic biodegradability Degradable Nondegradable Nondegradable Nondegradable Nondegradable
Ocular irritancy Mild Mild Mild Mild Mild
Skin irritancy Mild None None None None

Abbreviations: EC50, effective concentration 50%; US FDA, United States Food and Drug Administration; LC50, lethal concentration 50%; LD50, lethal dose 50%; LOAEL, 
lowest observed adverse effect level; TD50, tumorigenic dose 50%.
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Figure 3 Regression plot representing training, testing, and cross-validation of model.
Abbreviations: pIC50, negative of the log inhibitory concentration to 50% of the population; LOOCV, leave one out cross-validation; R2, correlation coefficient.

The structure–activity relationship denoted by the QSAR model 

yielded a high activity–descriptors relationship accuracy of 84% 

referred by regression coefficient (r2=0.84) and a high activity 

prediction accuracy of 82%. Five molecular descriptors  – 

dielectric energy, group count (hydroxyl), LogP, shape index 

basic (order 3), and the solvent-accessible surface area – were 

significantly correlated with anticancer activity. The QSAR 

model equation is given below, showing the relationship between 

experimental activity in vitro (ie, the inhibitory concentration 

to 50% of the population [IC
50

]) as the dependent variable and 

five independent variables (chemical descriptors):

Predicted-log IC
50

  

(pIC
50

) (µM) =�+2.19682 × dielectric energy 

+0.22309 × group count (hydroxyl) 

-0.543107 × LogP 

-0.469003 × shape index basic (order 3) 

+0.0175389 × solvent-accessible surface area 

+2.57271.� (4)

Here, the rCV2 is 0.82, which indicates that the newly 

derived QSAR model has a prediction accuracy of 82%, and 

the r2 is 0.84, which indicates that the correlation between 

the activity (dependent variable) and the descriptors (inde-

pendent variables) for the training data set compounds was 

84% (Figure 3); the LOOCV R2 is 0.79. It is evident from the 

above equation that among the molecular descriptors, dielec-

tric energy, group count (hydroxyl), and solvent-accessible 

surface area are positively correlated, meaning the biologi-

cal activity increases when the values of these descriptors is 

positively increased. On other hand, the descriptors LogP and 

Shape index basic (order 3), are both negatively correlated 

with activity; the activity decreases when the values of these 

descriptors increases. Thus, we successfully developed a 

QSAR model for prediction of in vitro anticancer activity. 

A multiple linear regression QSAR mathematical model was 

developed for activity prediction that successfully and accu-

rately predicted the anticancer activities of newly designed 

xanthone derivatives.

Experimental validation of QSAR model
The multiple linear regression-based QSAR model for the 

inhibitory activity of xanthone derivatives against HeLa cell 

lines has been validated with four compounds, Xan-1, Xan-2, 

Xan-3, and Xan-4 (Table 3).21 It was found that the predicted 

results through the QSAR model show compliance with their 

experimental results.

Virtually designing and filtering of novel 
xanthone derivatives
Using this multiple linear regression QSAR mathematical 

model, which was developed for activity prediction against 

HeLa cell line, we predicted the anticancer activities of some 

newly designed xanthone derivatives (Table S3). The pre-

dicted IC
50

 value of final hit compounds X-19, X-44, X-45, 

and X-49 are 7.94 µM, 0.63 µM, 2.51 µM, and 0.16 µM, 

respectively. The QSAR model quantified the activity-

dependent chemical descriptors and predicted the inhibitory 

concentration (log IC
50

) of each derivative, thus indicating 

its potential range of inhibition (Table 3).

Protein–ligand docking studies
Following development of the model and filtering through 

Lipinski’s rule of five, we first analyzed Top2A, and five 

active sites were obtained. We chose one of these with ATP 

binding sites, shown in Figure 2. In order to understand the 

ligand recognition in Top2A, we initially carried out docking 

with the known Top2A inhibitor/anticancer drug doxorubicin, 

and later with the most active 34 among the designed and 
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filtered compounds. Out of 34, 20 failed to dock and three 

showed lower scores than the control. The docking program 

produces several poses with different orientations within the 

defined active site. All poses produce a different LibDock 

score. The best score was taken into account for further 

study. The compounds X-12, X-19, X-29, X-32, X-35, X-39, 

X-40, X-44, X-45, X-48, and X-49 (Table S3) were selected 

as candidate compounds based on their high docking score 

compared to doxorubicin. The analysis of the protein ligand 

complexes revealed binding site residue, including amino 

acid residues, waters, and metal atoms. A 2D diagram show-

ing various interactions, such as hydrogen bonds, atomic 

charge interactions, and Pi-sigma interactions between the 

surrounding residues and the ligand, was also displayed. 

Different interactions were represented by different colors: 

eg, pink indicates electrostatic interaction; purple indicates 

covalent bond; and green indicates van der–Waals molecular 

interaction. Solvent accessibility of the ligand atom and the 

amino acid residues are shown in light blue shading sur-

rounding the atom or residue. High shading indicates more 

exposure to solvent. The inhibitory activity of xanthone has 

been explained by two major factors: H-bond and pi-sigma 

interactions (Figure 4).

To evaluate ligand binding in a receptor cavity, the score 

ligand poses protocol was used for the scoring functions 

for LibDock score, Jain, LigScore 1, LigScore 2, PLP, and 

PMF 04. The H-bond and pi-sigma interactions residues are 

also provided (Table 4).

Assessment through pharmacokinetic 
parameters
Since the docking studies were found to be promising, the 

chemical descriptors for the pharmacokinetic properties were 

also calculated, so as to check the compliance of study com-

pounds with standard range. For this, the aqueous solubility, 

blood–brain barrier penetration, cytochrome P450 2D6 bind-

ing, hepatotoxicity, intestinal absorption, and plasma protein 

binding were calculated. Calculating these properties was 

intended as the first step toward analyzing the novel chemi-

cal entities in order to check the failure of lead candidates, 

which may cause toxicity or be metabolized by the body 

into an inactive form or one unable to cross the membranes. 

The results of this analysis are reported in Table 5, together 

with a biplot (Figure  5). The pharmacokinetic profiles of 

all the compounds under investigation were predicted by 

means of six precalculated ADMET models provided by the 

Accelrys Discovery Studio 3.5 program. The biplot shows 

the two analogous 95% and 99% confidence ellipses for 
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Figure 4 2D diagrams illustrating protein–ligand interactions: (A) Compound X-19; (B) Compound X-44; (C) Compound X-45; (D) Compound X-49.
Abbreviation: 2D, two-dimensional.

Table 4 LibDock scoring functions, SYLVIA synthetic accessibility scores, and AutoDock binding affinity of identified potential xanthone 
derivatives inhibitors for DNA Top2A

Compounds LibDock  
score

Jain LigScore 1 LigScore 2 PLP 1 PLP 2 PMF 04 SYLVIA 
score

H-bonding  
analysis

Pi-sigma  
interaction  
analysis

AutoDock 
binding 
energy 
(kcal/mol)

X-19 138.108 5.8 0.28 -2.26 99.22 99.26 -66.4 6.35 ASN-91,  
SER-148,  
SER-149

ASN-91 -7.3

X-44 133.709 4.57 1.18 2.11 107.27 99.08 -9.01 6.35 ALA-167 ILE-141 -7.2
X-45 120.382 5.63 -0.89 -3.12 103.5 107.69 -24.12 5.91 TYR-165,  

LYS-168(2)
No Pi-sigma  
interaction  
found

-7.1

X-49 137.133 4.34 0.78 0.35 109.22 100.56 8.32 6.98 LYS-168,  
HIS-130

SER-149 -7.3

Doxorubicin 71.47 2.62 -4.87 -8.71 45.3 48.91 -9 6.16 PRO-371,  
LYS-378

TYR-151 -6.4

Abbreviations: DNA, deoxyribonucleic acid; PLP, piecewise linear potential; PMF, potential of mean force; Top2A, topoisomerase type IIα.
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the blood–brain barrier penetration and human intestinal 

absorption models, respectively. The polar surface area 

(PSA) was shown to have an inverse relationship with percent 

human intestinal absorption, and thus cell wall permeability, 

although a relationship between PSA and permeability has 

been demonstrated. Moreover, when we calculated the PSA 

as a chemical descriptor for passive molecular transport 

through membranes, the results showed a lower PSA value 

of hit compounds than doxorubicin, but still within the limit; 

ie, ,140 Å2. The aqueous solubility predictions (defined in 

water at 25°C) show that hit compounds are soluble in water. 

LogP value, which is a measure of lipophilicity and is the 

ratio of the solubility of the compound in octanol compared 

to its solubility in water, was found to be in range of the hit 

compounds and follows Lipinski’s rule of five, implicating a 

better oral bioavailability. The excretion process that elimi-

nates the compound from the human body also depends on 

LogP. The hit compounds are highly ($90%) bound to car-

rier proteins in the blood. This binding shows the efficiency 

of drugs. The drugs which are orally administered must be 

absorbed by the intestine; here the predicted result shows that 

all the compounds can be easily absorbed by the intestine, 

in comparison to doxorubicin (Table 5). The hit compounds 

are found to be noninhibitors of cytochrome P450 2D6 

(CYP2D6), which indicates that all compounds may be well 

metabolized in Phase I metabolism. The CYP2D6 enzyme 

is one of the important enzymes involved in drug metabo-

lism.22 Obtained results (Table 5) were cross-checked with 

the standard levels listed in Table S4.

Molecular docking validation
To validate the LibDock score, a further docking study 

through AutoDock Vina was completed. The docking 

study with DNA Top2A (PDB:1ZXM) revealed that the 

final hit compounds have shown a high binding affinity, 

as compared to the standard anticancer drug doxorubicin 

(Table 4).

Validation of final hits using SYLVIA
To further validate our compounds, the synthetic accessibility 

of the compounds was also measured using the SYLVIA-XT 

1.4 program. The synthetic accessibility of known drug 

doxorubicin was also calculated for comparison purposes. 

The SYLVIA score of hit compounds and doxorubicin is 

given in Table  4 for comparison. The SYLVIA score for 

the final hits illustrates that these compounds may be syn-

thesized easily.
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Toxicity risk assessment screening
Toxicity risk assessment screening was performed for all 

the hit compounds. Results showed that all the compounds 

are noncarcinogenic. There is mild ocular irritancy for 

all the compounds. Likewise, there is no skin irritancy, 

with the exception of X-19, which has mild irritancy. The 

other properties, such as rat oral LD
50

, Ames mutagenicity, 

developmental toxicity potential, rat inhalational LC
50

, rat 

maximum tolerated dose, fathead minnow LC
50

, and aerobic 

biodegradability, are also provided in Table 2.

Conclusion
Xanthones are natural constituents of plants which contain 

a variety of biological activities, along with anticancer 

effects. The present study deals with the multiple linear 

regression-QSAR modeling for xanthone derivatives 

against human cancer cell line HeLa and anticancer 

target Top2A. Four compounds (X-19, X-44, X-45, and 

X-49) were screened out through the QSAR model, dock-

ing, ADMET screening, and synthetic accessibility. The 

screened leads can be used for further analysis and drug 

development. Aside from this, this study also provided 

a significant approach in the identification of novel and 

potent anticancer compounds from xanthone derivatives, 

and can be utilized as a guide for future studies for screen-

ing and designing the structurally diverse compounds from 

the xanthone family.
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