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Abstract: The primary prevention of cardiovascular (CV) disease is hindered by the inadequacy 

of traditional risk factors to stratify CV risk. The presence of cardiac target organ damage 

(cTOD), as detected by measures of left ventricular (LV) hypertrophy and dysfunction, is 

associated with future CV outcomes, but is not currently assessed in asymptomatic individuals. 

Arterial stiffness contributes to cTOD and may represent a biomarker that can detect vascular 

dysfunction before the clinical manifestations of cTOD. Measurement of arterial stiffness may 

provide insight into premature risk for cTOD and afford opportunity for early intervention to 

prevent further damage. The purpose of this review is to examine the utility of arterial stiffness 

as a noninvasive biomarker of subclinical cTOD. To this end, we will examine the evidence sup-

porting the association between arterial stiffness and measures of cTOD. We will then explore 

the developmental origins of arterial stiffness and cTOD and outline the progression of CV 

damage that occurs with age. We discuss the mechanistic role of pressure from wave reflections 

as a crucial link between arterial stiffness and cTOD. Finally, we examine these associations 

in context by exploring sex and racial differences in arterial stiffness as related to cTOD. Our 

comprehensive examination of the literature suggests that early identification of arterial stiffness 

would be a useful biomarker of future cTOD risk.
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Biomarkers of cardiac target  
organ damage (cTOD)
Prevention of cardiovascular (CV) disease (CVD) remains a major public health 

priority.1 Hypertension and its associated complications serve as a primary substrate 

for the pathogenesis of CVD. Increasingly, new recommendations in the management 

of hypertension and hypertensive CVD risk prediction call for the assessment of sub-

clinical target organ damage.2,3 Subclinical (asymptomatic) target organ damage is 

an intermediate step between chronic risk factor exposure and future clinical events 

(eg, stroke, myocardial infarction, heart failure).4,5

The National Institutes of Health define a biomarker as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention.”6 

A biomarker can be a circulating biomarker, in which sampling occurs in the blood, 

urine, or tissue, or can be an imaging or tissue biomarker recorded from an ultrasound 

(eg, left ventricular [LV] hypertrophy [LVH] or carotid intima media thickness) or 

other “imaging” modality (eg, applanation tonometry, pulse wave analysis).7–9
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Desirable features of a biomarker for cTOD are as 

follows: the biomarker should be reproducible, stable, 

cost-effective, acceptable to the patients, capture known 

physiology, provide novel insight into pathophysiology, and 

be responsive to therapy; it should explain a significant pro-

portion of the outcome independent of other risk factors and 

aid in incremental risk prediction; it should have established 

normal/reference limits and standardized methodology; and, 

finally, change in the biomarker should alter outcome and 

help guide disease management.9 This biomarker should be 

applicable to men and women as well as different ages and 

different races/ethnicities.9

In order to truly understand the structural and/or func-

tional changes of target organs, use of novel tissue biomark-

ers have been proposed. Measurement of arterial stiffness 

may be such a tissue biomarker. Arterial stiffness integrates 

the cumulative impact of genetic factors, epigenetic fac-

tors, lifestyle factors, CV risk factors, and environmental 

factors on the arterial wall over time. This is important, 

as individual risk factors can fluctuate over time and their 

measurement, recorded at the time of risk assessment, may 

therefore be unreliable and not reflect their true impact on the 

arterial wall. The purpose of this review will be to explore 

the potential utility of measuring arterial stiffness and its 

associated hemodynamic sequelae (ie, increased pressure 

from wave reflections and pulse pressure [PP] amplification) 

as novel biomarkers of subclinical cTOD. Earlier detection 

and/or prediction of cTOD with measures of arterial stiff-

ness may afford opportunity for prevention before overt 

damage occurs.

Arterial stiffness as a  
biomarker for cTOD
Arterial compliance reflects the ability of large central elastic 

arteries such as the aorta and carotid to expand and recoil 

during systole and diastole. This buffering capacity functions 

to dampen the amplitude of fluctuations in pressure and flow 

in the systemic circulation, thereby preventing transmission 

of excess pulsatile energy into target organs.10 Loss of arte-

rial compliance or an increase in the stiffness of the vessel 

alters ventricular–vascular coupling such that arterial load 

is increased, contributing to the pathogenesis of cTOD and 

ultimately heart failure (described in more detail below).11–13 

Increased arterial stiffness is associated with systemic sub-

clinical target organ damage, including but not limited to 

renal dysfunction, brain white matter hyperintensities and 

infarcts, retinal damage, and peripheral skeletal muscle 

perfusion.14–16 Arterial stiffness can be influenced by any 

factor that alters vascular wall structure (elastin, collagen, 

smooth muscle) or function (endothelium). Age and blood 

pressure (BP) remain the most consistent correlates of arte-

rial stiffness17 and, while traditional CVD risk factors are 

loosely associated with arterial stiffness, this is not always a 

consistent finding.18 Numerous factors that may alter vascular 

structure (atherosclerosis, calcification/medial calcific sclero-

sis, tortuosity, elastin breakdown, collagen deposition, fibro-

sis) and function (inflammation, oxidative stress, autonomic 

nervous system modulation, renin–angiotensin–aldosterone 

system activation, and endothelial function) appear to associ-

ate with arterial stiffness at any given moment in time, but key  

moderators of change in arterial stiffness over time include 

hemodynamic load (quantified as the product of heart rate 

and BP)19–22 and change in central obesity.23 Thus it must be 

stressed that, although the atherosclerotic process affects 

arterial stiffness (ie, presence of a plaque/atheroma may  

alter the mechanical function of the vessel wall), arterial 

stiffening is a process distinct from atherosclerosis.24 A weak 

relationship exists between postmortem aortic plaque burden 

and antemortem arterial stiffness.25

The current gold standard measure of arterial stiffness 

is aortic pulse wave velocity (PWV). Aortic PWV can be 

measured by assessing the transit time between the PP wave 

at the carotid and femoral artery.8,26,27 PWV is simple, non-

invasive, and reproducible;28,29standardized measurement 

protocols exist;8,30 and reference values have been established 

in adults31–34 and children.35 Finally, with recent advances in 

technology, the measure is on its way toward being almost 

entirely automated.36

Aortic stiffness using PWV predicts adverse CV 

events26,37–43 independent of traditional risk factors (eg, BP).37,38 

Aortic stiffness also helps to discriminate between patients 

at low and high risk of adverse CV outcomes when added 

to conventional risk factors.42 Addition of aortic PWV to 

the Framingham Risk Score improves model fit for CVD 

event prediction, reclassifying 15.7% of intermediate risk 

patients properly into higher (14.3%) or lower (1.4%) risk.42,43 

Finally, limited data in select patient populations suggest 

that failure to improve PWV, despite normalizing other risk 

factors, confers increased risk for CV mortality.44 Guidelines 

set out by the European Society of Hypertension have also 

recognized arterial stiffness in the stratification of CV risk 

as a marker for asymptomatic target organ damage,27 but the 

decision to adopt assessment into US guidelines remains 

controversial.45

Arterial stiffness is not only a measure of target organ 

damage itself, but may prove useful in identifying individuals 
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at risk for subclinical cTOD.46–52 LV mass can increase from 

either wall thickening in response to pressure overload, 

termed “concentric remodeling,” or from chamber dila-

tion in response to volume overload, termed “eccentric 

remodeling.” The cause for ventricular enlargement comes 

from the increase in myocardial oxygen demand as a result 

of the increase in pressure load from the peripheral arteries, 

referred to as vascular afterload, in an attempt to regulate 

stress placed upon the ventricle (ie, compensation, preserved 

wall tension). If left unchecked, the left ventricle may dilate, 

leading to ischemia, scarring, fibrosis, and, ultimately, heart 

failure (decompensation). In addition to structural changes in 

the myocardial wall, cTOD is also associated with alterations 

in cardiac function, manifesting as diminished myocardial 

contraction velocity/prolonged myocardial contraction, inad-

equate relaxation, and reduced diastolic filling.

As alluded to above, elevated BP is considered to be 

the primary driving factor underlying the development of 

LVH.53 Interestingly, changes in arterial stiffness precede 

longitudinal increases in BP and development of hyperten-

sion.54–56 As will be discussed in detail below, changes in 

arterial stiffness and central hemodynamic burden are inti-

mately entwined in each step of LVH development (Figure 1). 

Numerous studies now note associations between arterial 

stiffness and markers of subclinical cTOD57–59 in numerous 

clinical cohorts (Table 1).60,61 Regression of LVH via various 

pharmacological interventions is associated with reductions 

in arterial stiffness.62–64 Even when BP is controlled with 

antihypertensive agents, aortic stiffness remains a continued 

indicator of LV mass in hypertensive patients,65 suggesting 

continued utility as a marker of cTOD and true measure of 

vascular afterload in response to therapy.

Arterial stiffness is associated with LV systolic and dia-

stolic dysfunction.57,59,66–69 Arterial stiffness also contributes 

to altered LV twist mechanics, reduced LV synchronicity, 

myocardial deformation, coronary flow reserve, and left 

atrium enlargement.68,70–72 Stiffening of the large central 

arteries (ie, aorta and carotid) has also been implicated in 

the progression of LVH to heart failure.12–14 Animal models 

have demonstrated that experimentally decreasing aortic 

compliance via prostheses or silicon gel application result 

in significant increases in LVH/LV mass, without affecting 

diastolic pressure, cardiac output, or peripheral resistance 

per se.73,74 Interestingly, change in arterial stiffness has also 

been implicated in the transition from chronic compensated 

to acute decompensated heart failure.75 Taken together, these 

findings suggest a strong association between arterial stiff-

ness and cTOD.

Arterial stiffness and pressure  
from wave reflections: mechanistic  
insight into cTOD
The association between arterial stiffness and cTOD is 

partially moderated by effects on pressure from wave reflec-

tions. In clinical practice, brachial BP is often used as a 

crude proxy of vascular afterload; however, brachial pres-

sures are poor surrogates for central pressure (considered a 

much better indicator of true afterload and coronary perfu-

sion pressure), owing to the elastic properties of the central 

arteries and subsequent stiffness-mediated effects on timing 

and magnitude of PP transit and transmission. According 

to wave transmission/reflection theory, the BP waveform 

is an amalgam of forward- and backward-traveling waves. 

LV ejection instigates the genesis of a forward-traveling 

pressure wave,76 the magnitude of which depends largely on 

the ventricular contraction and the elastic properties of the 

aorta.77 This pressure wave may be partially reflected from 

peripheral vessels as it travels down the vascular tree, with  

the speed and intensity/magnitude of this reflection affected 

by several hemodynamic factors, including arterial stiff-

ness and physical distance to the peripheral reflection sites 

(ie, a smaller arteriole, vessel branch point, regional disconti-

nuity in arterial compliance, etc).78,79 In this manner, increases 

in forward- and/or backward-traveling waves play a role in 

determining afterload and PP amplitude via augmentation 

of systolic pressure.76

↑ Arterial stiffness

↑ Wave reflections

↑ Afterload

↑ Myocardial work

↑ Ventricular remodeling

LVH

Heart failure

Untreated

↓ LV function

Figure 1 working theoretical framework linking arterial stiffness and wave 
reflections to increased LV work and hypertrophy.
Abbreviations: Lv, left ventricular; LvH, Lv hypertrophy.
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Table 1 Measures of arterial stiffness associated with cTOD

Study cTOD measure Measure of stiffness Population studied

Saba et al97 echo of Lv rAix (+), ep (NS), β (NS) 67 NT subjects (age 47±15 years, 72% M)
Marchais et al98 echo of Lv cfPwv (NS), rAix (++) 44 eSRD subjects (estimated age 43±14 years, 82% M,  

55% treated HTN)
Roman et al167 echo of Lv β (+) 276 subjects (estimated age 53±15 years, 65% M,  

71% untreated HTN)
Nitta et al61 echo of Lv baPwv (++) 49 eSRD subjects (age 60±2 years, 55% M)
Lekakis et al100 echo of Lv rAix (+), AP (++), rPwv (–) 48 untreated HTN subjects (age 56±12 years, 69% M)
Hashimoto et al99 echo of Lv cfPwv (NS), rAix (++) 77 untreated HTN subjects (age 56±10 years, 70% M)
watabe et al168 echo of Lv baPwv (+) 798 subjects (age 63±11 years, 33% M, 21% treated HTN)
Schillaci et al169 echo of Lv cPwv (NS ,40 years ,+),  

aAix (NS ,40 years ,+)
237 HTN subjects (estimated mean age 47 [range 18–88] 
years, 58% M)

Hashimoto et al87,117 echo of Lv cfPwv (+), rAix (++), AP (++),  
aAix (++)

46 untreated HTN subjects (age 57±8 years, 70% M)

Chow et al170 echo of Lv rAix (+) 47 total subjects, 68% with systemic lupus erythematosus 
(age 17±5 years, 13% M)

Ou et al171 MRi cPwv (++), β (++), C (+) 60 total subjects, 67% with aortic coarctation repair  
(age 12±8 years, 60% M)

Hashimoto et al81 echo of Lv cfPwv (NS), aAix (++) 98 untreated HTN subjects (age 55±9 years, 67% M)
Hashimoto et al93 echo of Lv cfPwv (NS), aAix (++) 61 HTN subjects underwent anti-HTN treatment  

(age 57±8 years, 64% M)
weber et al66 echo of Lv iPwv (++), rAix (NS), AP (NS) 336 subjects undergoing coronary angiography  

(age 63±11 years, 49% M, 69% HTN)
Toprak et al161 echo of Lv afPwv (+), ep (+) 786 subjects (age 36±5 years, 42% M, 7% treated HTN)
Urbina et al136 echo of Lv cfPwv (+), rAix (+), GSi (++) 670 subjects (age 18±3 years, 35% M)
Andrikou et al172 echo of Lv cfPwv (+) 428 untreated HTN subjects (age 52±10 years, 60% M)
Rabkin and Chan65 echo of Lv hfPwv (++), cfPwv (NS)  

rAix (NS)
20 subjects underwent anti-HTN treatment  
(age 68±9 years, 60% M)

Su et al173 echo of Lv baPwv(++) 1,146 subjects (estimated age 61±12 years, 57% M,  
69% HTN)

Russo et al145 echo of Lv GSi (−, F) (NS, M) 983 subjects (estimated age 72±9 years, 38% M, 80% HTN)
Chung et al174 eCG baPwv (+) 984 HTN subjects (estimated age 61±12 years, 60% M)
Kırış et al175 echo of Lv cfPwv, rAix (+) 75 subjects (estimated age 51±7 years, 72% M, 47% HTN)
Hsu et al176 echo of Lv; 

eCG
baPwv (+) 270 subjects (estimated age 57±12 years, 56% M, 61% HTN)

wongphen and  
Boonyasirinant177

MRi cPwv (NS) 113 HTN subjects (age 69±10 years, 49% M)

Notes: (++) indicates a strongly positive association with cTOD; (+) indicates a moderately positive association with cTOD; (−) indicates a negative association with cTOD; 
(NS) indicates that association with cTOD was not significant.
Abbreviations: aAix, aortic augmentation index; afPwv, aortofemoral Pwv; rAix, radial augmentation index; AP, augmented pressure; baPwv, brachial–ankle Pwv; β, beta 
stiffness; cfPwv, carotid–femoral Pwv; cPwv, central Pwv; cTOD, cardiac target organ damage; DM, type 2 diabetes mellitus; eCG, electrocardiography; ep, pressure–
strain elasticity modulus; eSRD, end-stage renal disease; F, female; GSi, global stiffness index; hfPwv, heart–femoral Pwv; HTN, hypertensive; iPwv, invasive Pwv; Lv, left 
ventricle; M, male; MRI, magnetic resonance imaging; NS, not significant; NT, normotensive; PWV, pulse wave velocity; rPWV, radial PWV; Echo, echocardiography.

As the pressure wave travels from the heart to the 

 periphery, both systolic and PP increase markedly, while 

mean pressures decrease only slightly (∼2 mmHg) due to 

viscous dampening.78 Thus, both systolic pressure and PP 

are greater in the arm and leg than in the ascending aorta.80 

This PP amplification ensures that pulsatile load is lower in 

central versus peripheral arteries, minimizing excessive car-

diac pressure effort and subsequent LV workload.81 Reduced 

PP amplification occurs with aging82,83 and disease (hyper-

tension, diabetes, hypercholesterolemia, coronary artery 

 disease)84 and is associated with traditional CV risk factors84,85 

and overall vascular burden.86 Moreover, PP amplification is 

associated with overt cTOD86 and regression of cTOD with 

therapy (ie, LVH regression with antihypertensive therapy)87 

and independently predicts future CV mortality.88 Thus, PP 

amplification has been proposed as a potential mechanical 

biomarker of CV risk and global arterial function.88

With an increase in arterial stiffness, as occurs with 

aging89 and in the presence of disease, the speed at which 

the pulse wave travels is increased such that the reflected 

wave arrives in mid-late systole, augmenting pressure dur-

ing this phase of the cardiac cycle.90,91 Reflected waves that 

arrive during LV ejection increase the mid-to-late systolic 

workload of the left ventricle.92–94 This may be important 
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because the myocardium appears to be particularly  vulnerable 

to late systolic load. Changes in late systolic pressure are 

particularly crucial, as animal-based research has shown 

greater hypertrophy and fibrosis compared to early systolic 

loading, independent of pressure.95 In vivo research has 

demonstrated that cardiac myosin heavy chain synthesis 

increases approximately 35% within hours after a pres-

sure overload,96 suggesting that reflection-based increases 

in afterload may precipitate cardiac remodeling in various 

clinical populations.81,97–100 Moreover, chronic pressure wave 

reflection-based increases in afterload adversely affect coro-

nary perfusion and ventricular function.78

Wave reflections influence myocardial work during late 

systole, resulting in greater myocardial stress,101 a primary 

determinant of systolic function and myocardial oxygen 

demand.102,103 Wave reflections arriving in late systole 

rather than diastole can impair diastolic function through 

decreased perfusion time,104 and are inversely associated 

with the isovolumetric relaxation period.105 Furthermore, 

LV early diastolic velocity, a measure of ventricular relax-

ation, is strongly associated with late systolic load,106 which 

is substantially determined by wave reflections and central 

arterial stiffness.107 Wave reflections have been associated 

with altered ventricular–vascular coupling,108 and may 

have sufficient magnitude to directly alter ventricular wall 

motion.109 Reflected wave pressure adds to incident wave 

pressure but subtracts from forward flow, thereby negatively 

impacting ventricular ejection.110 Thus, the combination of 

increased cardiac stress, work, and oxygen demand, together 

with decreased cardiac perfusion, ejection, and relaxation, 

has been speculated by some as sufficient to precipitate 

exertional angina.103,111

Two primary measures of wave reflection are augmenta-

tion index (AIx) and backward/reflected wave pressure (Pb) 

obtained from wave separation analysis. AIx is a measure of 

global wave reflections and is typically defined as the ratio of 

the reflected wave contribution to PP (known as augmenta-

tion pressure) relative to PP (Figure 2).78 AIx is dependent 

on both the timing of the reflected wave and magnitude,112 

and cannot differentiate between the two. By simultane-

ously measuring pressure and flow in a vessel (or deriving 

a pseudo-flow waveform from the contour of the BP wave-

form), Pb can be measured. This method has been suggested 

as a more robust measure of pressure attributable to wave 

reflections (ie, wave reflection magnitude).113 Recently, Pb 

and AIx have been shown to be independently predictive of 

CV events, with Pb further predictive of all CV events and 

strongly predictive of congestive heart failure development 

following a median follow-up of 7.61 years.114 Additional 

findings suggest that Pb predicts CV mortality independent 

of conventional risk factors in men and women115 and high-

risk patients,116 and is associated with hypertensive end 

organ damage.116 Moreover, changes in pressure from wave 

reflections are strong determinants of change in LV mass 

index following antihypertensive treatment, independent 

of changes in conventionally measured brachial BP.87,93,117 

Taken together, these findings suggest that pressure from 

wave reflections with subsequent increases in late systolic 

load contributes to altered ventricular–vascular coupling, 

increased LV work, reduced coronary perfusion, and, ulti-

mately, LVH (Figure 1).

Developmental origins  
of arterial stiffness and cTOD
It is well established that arterial stiffness and pressure from 

wave reflections increase with advancing age.118 In fact, it 

has been posited that one is only as old as his/her arter-

ies.119 Factors in early adulthood and even childhood may, 

however, impact vascular and hemodynamic properties in 

later adulthood, importantly contributing to cTOD long 

before “old age” sets in.120–122 Our arteries may be the first 

organ to age, beginning from the moment we are born, and 

possibly even before we are born. Genomic analysis from 

the Framingham Heart Study suggests that the heritability 

of pressure wave reflections and PWV range from approxi-

mately 40%–66%.123,124 Heritability of PWV and AIx were 

19% and 41%, respectively, and were significant, in a study 

of European families.125 Data from the Strong Heart Family 

Study revealed statistically significant heritability of arterial 

stiffness and AIx to range from approximately 18%–23%.126 

Heritability of arterial stiffness has been estimated to be as 

high as 54% in young African Americans.127

During prenatal life, if conditions in the intrauterine 

environment are suboptimal (due to poor maternal diet or 

other stressors), growth is restricted. The fetus responds by 

choosing a developmental pathway that will ensure survival 

given the particular intrauterine environment, and this is 

known as “fetal programming.”128,129 Fetal programming 

likely induces morphological and physiological changes that 

predispose the individual to increased arterial stiffness.130–135 

This is extremely important, as elevated arterial stiffness in 

adolescence is highly associated with LV mass, independent 

of BP and traditional CVD risk factors.136 Low birth weight 

is associated with LV mass in adolescents137 and with higher 

arterial stiffness in mid-adulthood.138 The fetal program-

ming response within blood vessels may lead to increased 
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intima-media thickness, smaller arterial diameters, and 

overall stiffer arteries (possibly due to reduced production 

of elastin).134 The life-long consequence of these adaptations 

is an increased risk for cTOD.

Sex differences in arterial stiffness, 
wave reflections, and cTOD
Women are more likely than men to present with concentric 

remodeling, while chamber dilation is more common in 

men.139 A potential reason for this has been predicted to be 

due to sex differences in arterial hemodynamics.46 Namely, it 

is well established that women have higher arterial stiffness 

when compared to age-matched men.140 Women have larger 

reflected wave magnitude than men due to their shorter height 

and reduced distance between the heart and the peripheral 

reflecting sites.121,143 Additionally, smaller PP amplifications 

in women have been reported across studies.118,141,142 A recent 

study examined prepubescent children and showed that girls 

had a significantly higher aortic pulse wave augmentation 

when compared to boys of the same age and height.143 This 

is important, as this study also implies that body height does 

not account for all sex differences in wave reflections.143

Given that women have greater pressure from wave reflec-

tions compared to men, sex differences in central hemodynamic 

burden may contribute to greater LV diastolic dysfunction and 

afterload in women.142,144,145 Interestingly, associations between 

arterial stiffness and LV mass may be greater in women com-

pared to men.146 Similarly, the correlation between AIx and LV 

diastolic function has also been reported to be greater in women 

than in men.147 Regression of LVH with antihypertensive 
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Abbreviations: rAix, radial augmentation index; AP, augmented pressure; PP, pulse pressure; P1, early systolic pressure peak; P2, late systolic pressure peak.
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therapy is attenuated in women compared to men, and it  

has been suggested that this is due to sex differences in arte-

rial stiffness and pressure from wave reflections.148 Therefore, 

women may be particularly susceptible to the deleterious 

effects of increased arterial load from increased arterial stiff-

ness and pressure from wave reflections.144

Racial differences in arterial 
stiffness, wave reflections, and cTOD
cTOD is not only common but epidemic in African Americans, 

irrespective of the presence or absence of hypertension.149–151 

cTOD occurs earlier in African Americans than in Caucasians 

and is associated with greater CV mortality in the African 

American population.152 African Americans are more sus-

ceptible than Caucasians to BP-mediated cTOD.153 Several 

studies note increased arterial stiffness, augmented pressure 

from wave reflections, and lower PP amplification in African 

Americans.154–158 Interestingly, these detrimental modulations 

are directly associated with wasted LV pressure effort,159,160 

increased myocardial work, reduced coronary perfusion,160 

and cTOD,161,162 even in individuals with brachial BP within 

accepted normal reference ranges. Racial differences in 

arterial stiffness manifest at an early age,163 and subsequent 

changes in central pressures are associated with LV mass in 

young African American adolescents.164

Concluding remarks
Throughout this review, we have discussed the research 

supporting the utility of aortic PWV and pressure from 

wave reflections as biomarkers of subclinical cTOD in 

both sexes, across a wide age range, in different races/eth-

nicities, and across numerous pathologies.57–59,65 Measuring 

aortic PWV may also be a useful means of improving CV 

risk stratification due to its ability to detect early cTOD, 

which is an important indicator of future CV events.165 The 

American Heart Association (AHA) recently reviewed the 

requirements that must be met to warrant inclusion of novel 

biomarkers into CV risk assessment.166 These requirements 

include: 1) proof of concept; 2) prospective validation; 

3) incremental value (adding predictive information to tradi-

tional risk markers); 4) clinical utility; 5) clinical outcomes; 

and 6) cost-effectiveness.

Summary
1–2.  Proof of concept and prospective validation: aortic 

PWV is a biomarker of subclinical cTOD57–59 and 

is predictive of future CV outcomes in prospective 

studies.27,43,44

3. Incremental value: aortic PWV provides CV risk pre-

diction value above and beyond established risk factors, 

which has been demonstrated to improve incremental 

CV risk stratification.43,44

4. Clinical utility: improvement of CV risk stratification 

using aortic PWV allows for reclassification of indi-

viduals into higher or lower CV risk categories.39,43,44

5–6.  Clinical outcomes and cost-effectiveness: more 

research is needed on cost-effectiveness and whether 

reductions in arterial stiffness lead to a regression in 

cTOD and decreased risk of morbidity/mortality.42

Although aortic PWV currently falls short of meeting all 

requirements as a novel biomarker in CV risk assessment set 

out by the AHA, current literature evidence supports its use 

in identifying subclinical cTOD.57–59 Use of this biomarker 

has the potential to improve CV risk stratification through 

detection of early cTOD and to provide opportunities for the 

development of interventions that may prevent and possibly 

reverse cTOD. Future prospective randomized clinical stud-

ies will determine whether improvement in aortic PWV, or 

another measure of arterial stiffness, will improve clinical 

outcome and support utility of PWV as an effective biomarker 

for early detection of cTOD risk.
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