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Abstract: Breast cancer is the most common cancer in women worldwide, and resistance to the 

current therapeutics, often concurrently, is an increasing clinical challenge. By understanding 

the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be 

developed. Here we review the recent advances in this understanding, emphasizing the common 

mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastu-

zumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, 

the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, 

and epigenetic alterations affecting gene expression, and discuss how these mechanisms can 

interact in multidrug resistance. The development of therapeutics targeting these mechanisms 

is also addressed.
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Introduction
Breast cancer affects 1.38 million women worldwide per year, making it the most common 

cancer in women,1 and although the implementation of screening programs and the devel-

opment of new therapeutics in the last 20 years have significantly reduced mortality rates 

in the Western world, resistance to these therapeutics is a growing problem.2 Resistance 

can be de novo but may also be acquired. Indeed, 30% of women with early-stage breast 

cancer have recurrent disease, and resistance to therapeutic agents can occur in at least a 

quarter of all cases.3,4 The incidence of resistance to therapeutics increases with disease 

progression,4 and this refractivity contributes to breast cancer having the highest mortality 

rate, 12.9/100,000 population in the USA in 2008, after lung cancer.1,5

Breast cancer is a heterogeneous disease and is divided clinically into three basic 

subtypes determined by the expression of hormone receptors (estrogen and proges-

terone), human epidermal growth factor receptor 2 (HER2), and triple-negative breast 

cancer, which expresses none of these receptors.6 Further subdivisions are now recog-

nized, including luminal A, luminal B, basal-like, and HER2-enriched,7 and, recently, 

work has classified breast cancers into ten subtypes.8 However, to aid clarity, we will 

use the three basic clinical subtypes in this review. Each subtype has a different treat-

ment strategy. For hormone receptor-positive breast cancer, the frontline treatment is 

endocrine therapy, whereas for HER2-positive cancers, it is trastuzumab (Herceptin; 

Roche, Basel, Switzerland). These specific therapies are often used in conjunction with 

traditional cytotoxic chemotherapeutics, such as taxanes and anthracyclines, which 

are the frontline therapies for triple-negative breast cancer.4 The mechanisms underly-

ing resistance to these different therapeutics are multiple, complex, and not mutually 
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exclusive, and have recently been excellently reviewed for 

each of the three subtypes individually.3,9–12 Here we will 

provide an overview of selected mechanisms underlying the 

drug resistance in each of these different groups, highlight-

ing common mechanisms, specifically focusing on the role 

of the phosphatidylinositide 3-kinase (PI3K)/Akt pathway, 

miRNAs, and epigenetic alterations in drug resistance in 

breast cancer and how these interactions can contribute to a 

multidrug-resistant phenotype. The identification of potential 

targets for new therapies or as adjuvants to restore sensitivity 

to current treatments will be emphasized.

Hormone receptor-positive  
breast cancer
The predominant hormone receptor expressed in breast 

 cancer is the estrogen receptor (ER), which is activated by 

the binding estrogens, predominantly estradiol.13 Hormone 

receptor-positive breast cancer also expresses progesterone 

receptors; however, these receptors have been somewhat 

neglected as therapeutic targets, as the first generation of 

antagonists had severe side effect profiles.14 Progesterone 

receptors have traditionally been considered as downstream 

targets of ERs, and their mechanistic roles in resistance to 

endocrine therapy underexplored. Consequently, we will limit 

our discussions here to ER-positive breast cancer (for further 

information on progesterone receptors in breast cancer we 

would like to draw the reader’s attention to the recent review 

by Brisken14). Activation of the ER leads to a transcriptional 

response, both in genes with and without ER response ele-

ments, and also nontranscriptional cellular responses, all of 

which favor cell proliferation and survival (see Figure 1).15 

There are two ER forms, α and β. High expression levels of 

the latter have been correlated with good clinical prognosis,16 

but as the role of this receptor in breast cancer has not been as 

widely studied as the ERα, we will focus on the former (we 

refer the reader to the recent review by Haldosén et al17 for 

further  information). ERα-positive breast cancer accounts for 

approximately 70% of all breast cancer cases.13 The expres-

sion levels of ERα determine patient response to endocrine 

(antiestrogen) treatment and can be used as predictor of 

Increased drug
efflux

Cell proliferation

Apoptosis 

Also other RTKs
eg IGF-1R

Src

GPCR

Altered methylation
and transcription

Cell proliferation
and survival

Ligand independent
transcription

Ligand dependent
transcription

DMNTs

E2
E2

E2

E2
E2

ERER

ER

mTORC1

GSK3B

PI3K

AKT

BAD

PTEN

FoxO3a
ER

ER

E2E2

E2

4

GF

GF

3

ER

ERER

2

6

1

5

MAPKs

Ras

P-gp

7

H
E
R
2

H
E
R
3

Figure 1 estrogen, HeR2 signalling, and the Pi3K/Akt pathway in drug-resistant breast cancer. 
Notes: eR can activate gene transcription by nuclear translocatin following ligand binding (1) or as a result of receptor phosphorylation in the absence of ligand (2). eRs may also 
be found associated with the plasma membrane in the presence of SRC and other adaptor proteins. Here, ligand binding triggers nongenomic effects via activation of signaling 
pathways, including the Pi3K/Akt and the Ras/MAPK pathways (not shown) (3). These pathways are also activated by ligand binding to the GPR30 (4) and by growth factor binding 
to receptor tyrosine kinases, including HeR2, inducing autophosphorylation and downstream signalling (5). The Pi3K/Akt pathway (6) as indicated is a covergence point in the 
mechanisms implicated in drug resistance in the three types of breast cancer discussed here, as pathway hyperactivity frequently occurs with multiple downstream effects (7). 
Data from9–11,25,26,30,35,36,42,57,60

Abbreviations: BAD, Bcl-2-associated death promoter; DMNTs, DNA methyltransfereases; e2, estrogen; eR, estrogen receptor; GF, growth factor; GPR30, G-protein 
coupled receptor 30; GSK3B, glycogen synthase kinase 3 beta; HeR2, human epidermal growth factor receptor 2; iGF-1R, insulin-like growth factor receptor 1; MAPK, 
mitogen-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; P-gp, P-glycoprotein; Pi3K, phosphatidylinositide 3-kinase; PTeN, phosphatase and 
tensin homolog; RTK, receptor tyrosine kinase; SRC, steroid receptor coactivator.
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disease outcome.18 The frontline treatment for this type of 

breast cancer is endocrine therapy, predominantly tamoxifen 

or fulvestrant, which are antagonists of ER in breast tissue 

(tamoxifen has agonist actions in other tissues4). In post-

menopausal women, tamoxifen/fulverstrant is often used in 

conjunction with aromatase inhibitors (eg, anastrozole or 

letrozole) that reduce estrogen synthesis and lower the recur-

rence rate compared with tamoxifen alone.13 However, many 

patients with metastatic ER-positive disease develop resis-

tance to endocrine therapy,13 so understanding the molecular 

mechanisms that lead to refractory disease may identify ways 

to circumvent resistance and restore responses to endocrine 

therapies. The mechanism of estrogen-induced cell responses 

(Figure 1) means there are many levels at which resistance to 

endocrine therapy can occur (excellently reviewed by Bianco 

and Gevry9). Here we will explore those that mediate tamox-

ifen resistance, as this is the best studied, and many of these 

mechanisms apply to other endocrine therapies.

Molecular mechanisms  
of tamoxifen resistance
Tamoxifen metabolism
Tamoxifen itself is a prodrug that requires bioactivation to the 

major metabolite, endoxifen, to be active against ER.19 This 

process involves two members of the cytochrome P450 (CYP) 

family, CYP2D6 and CYP3A4. Both isoforms have several 

common polymorphisms.20,21 To date, none of the common 

CYP3A4 polymorphisms has been associated with altered 

tamoxifen metabolism.21 However, the CYP2D6 polymor-

phisms are well characterized and affect its catalytic activity. 

These polymorphisms are categorized into four groups, from 

the ultrarapid metabolizers with increased activity down to 

poor metabolizers with no CYP2D6 activity.20 Recent work 

has correlated CYP2D6 metabolizer status with response to 

tamoxifen treatment, with poor metabolizers having greater 

tumor progression than extensive metabolizers.22 Thus, 

determining CYP2D6 metabolizer status before tamoxifen 

treatment would be beneficial, allowing patients with poor 

metabolizer status to be treated with altered doses or other 

endocrine therapies, and consequently not categorized as 

resistant to endocrine therapy.

eRα activity
Phosphorylation is a common mechanism of post-translational 

modification to regulate enzyme activity, and has been linked 

with drug resistance in some cancers, including gemcitabine-

resistant pancreatic cancer.23 Phosphorylation regulates ERα 

activity and plays a role in tamoxifen resistance, specifically 

phosphorylation of the serine 305 residue by protein kinase 

A or p21-activated kinase-1. Both of these kinases show 

enhanced activity in tamoxifen-resistant breast cancer.24,25 

This phosphorylation changes the action of tamoxifen from 

antagonist to agonist; thus, the presence of tamoxifen now 

leads to the formation of an active transcription complex. The 

mechanisms underlying this change of response are not fully 

understood, but phosphorylation of S305 induces an altered 

orientation of binding between ERα and the steroid receptor 

coactivator-1, allowing the recruitment of RNA polymerase II 

and ERα-mediated gene transcription.26 This occurs without 

changes in the overall levels of binding; thus, in the presence 

of tamoxifen, estrogen-dependent gene transcription can be 

induced, and in patients with overactive protein kinase A 

or p21-activated kinase-1, treatment with tamoxifen could 

enhance tumor progression. To date, though, no studies have 

explored this mechanism in patient tissues.

Recently, a third isoform of ER has been identified, a 

36kDa protein transcribed from an alternative start site and 

lacking the transactivation domains of the full-length (66kDa) 

ER, ER-α36.27 This isoform has a dominant negative effect 

on ERα activity, inhibiting both estrogen-dependent and 

independent effects, and levels are increased in tamoxifen-

resistant MCF-7 cells28 and have been associated with poorer 

disease-free survival in ER-positive and ER-negative breast 

cancer.28,29 The binding of both estrogen and tamoxifen to 

ER-α36 stimulates activation of mitogen-activated protein 

kinase (MAPK)/extracellular signal regulated kinase (ERK) 

pathway, leading to cell proliferation and thus contributing 

to tamoxifen resistance.27,28

In addition to the MAPK/ERK pathway, ERα can acti-

vate, by nontranscriptional mechanisms, the PI3K/Akt path-

way (see Figure 1 for details), and alterations that increase 

the activity of this signaling pathway can lead to tamoxifen 

resistance.30 However, ERα is not the only receptor that can 

activate this pathway. It is also activated by a number of 

growth factor receptors, including fibroblast growth factor 

receptors (FGFR) 1 and 3 and insulin-like growth factor 

receptor 1 (IGF-1R).31 Both of these receptors have been 

shown to contribute to tamoxifen resistance via PI3K/Akt 

signaling and MAPK signaling.32,33 Recent work suggests 

that microRNAs (miRNAs) also have important roles in 

modulating the PI3K/Akt pathway in response to tamoxifen 

treatment. Sachdeva et al34 identified miR-101 as being able 

to confer tamoxifen-resistant and estrogen-independent 

growth on MCF-7 cells by suppressing membrane-associated 

guanylate kinase inverted 2 expression and reducing the activ-

ity of phosphatase and tensin homolog (PTEN), a negative 
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regulator of the PI3K/Akt pathway. Aberrations to the PI3K/

Akt pathway and the roles of miRNAs in drug resistance in 

breast cancer are discussed in more detail in the sections 

PI3K/Akt pathway and miRNA-mediated resistance.

Aberrant expression of ERα target genes can lead to 

tamoxifen resistance. For example, overexpression of cyclin 

D1 drives cancer cell proliferation, circumventing the nor-

mal cell-cycle control and deregulating ERα-dependent 

gene responses.3 Such alterations to the expression of ERα-

dependent genes often arise from epigenetic changes, which 

occur in multiple formats (see section Epigenetic regulation 

for more details), the net effects of which are increased or 

decreased gene transcription. For example, transcription of the 

antiapoptotic gene BCL-2, an ERα target gene, is increased 

in tamoxifen-resistant cells, due to histone demethylation,35 

thus favoring cell survival and disease progression.

HER2-positive breast cancer
HER2 is a receptor tyrosine kinase and a member of the ErBb 

family. Dimerization of HER2 as homo- or heterodimers with 

other ErBb family members, in both the presence and absence 

of ligand, leads to receptor activation and downstream signaling 

(see Figure 1). In mammary tissues, HER2 activation promotes 

cell survival and proliferation.36 Amplification of the HER2 

(ErbB2) gene occurs in approximately 20% of breast cancers, 

and 8% of ERα-positive breast cancers are also positive for 

HER2.13 ERα/HER2-positive breast cancer is associated with a 

poorer clinical outcome13 due to a tendency to display intrinsic 

resistance to endocrine therapy, which may result from interplay 

between the downstream signaling pathways.37

The development of trastuzumab (Herceptin), a mono-

clonal antibody that binds HER2, has improved clinical 

outcomes for patients with HER2 amplification. Trastuzumab 

induces a cytostatic signal, G1 arrest, and induction of an 

immune response to destroy the cancer cell.38 However, 

de novo resistance to trastuzumab occurs in approximately 

65% of cases, and resistance develops in approximately 70% 

of patients who initially respond.11 A number of causative 

mechanisms have been proposed (for an in-depth review, 

please see Pohlmann et al10 and Vu and Claret11), including 

altered binding, upregulation of downstream pathways, and 

alterations to the immune response induced.

Molecular mechanisms  
of trastuzumab resistance
epitope masking
Resistance to trastuzumab can occur due to epitope mask-

ing altering the binding to HER2. Two possible epitope 

masking candidates have been identified to date. Mucin 4, 

a large O-glycosylated membrane-associated protein, is one 

possible candidate, as it is upregulated in JIMT-1 cells that 

are trastuzumab resistant. The ratio of trastuzumab bind-

ing to HER2 binding sites was a fifth of normal on these 

cells, and trastuzumab–HER2 binding was increased by 

RNAi knockdown of Mucin 4.39 The second candidate is 

the CD44/hyaluronan polymer complex, and, again, RNAi 

knockdown of CD44 or chemical inhibition of hyaluronan 

synthesis resulted in increased trastuzumab–HER2 binding 

in JIMT-1 cells. This effect is postulated to be due to the 

bulky nature of the complex sterically hindering trastuzumab 

binding and alterations to trastuzumab internalization,40 thus 

conferring resistance, as trastuzumab cannot suppress HER2 

signaling.

HeR2 signaling
Blockade of HER2 signaling with trastuzumab can be 

bypassed, to some degree, by the upregulation of other ErBb 

family members and increased heterodimer formation. In 

addition, in up to 30% of HER2-enriched breast cancers, 

an amino-terminal truncated form of HER2 is expressed, 

p95-HER2. This form of HER2 possesses constitutive 

kinase activity, triggering downstream signaling, but lacks 

the trastuzumab binding site, thus generating trastuzumab 

resistance.33,41 In these cases, treatment with another mono-

clonal antibody, pertuzumab, which blocks dimer formation, 

or with lapatnib, which inhibits the tyrosine kinase activity 

of HER2 dimers, may restore clinical responsiveness to 

anti-HER2 therapy.42 However, even if HER2 signaling is 

effectively blocked, cancer proliferation may continue, as 

downstream pathways are activated by alternative routes, 

as described for tamoxifen resistance, again via IGF-1R, 

which is often overexpressed in trastuzumab-resistant cells, 

and its inhibition can restore sensitivity to trastuzumab in 

SKBR3 cells.43 Signals from IGF-1R are transduced, in 

part, by the PI3K/Akt pathway, which is also activated by 

HER2 and ERα. Trastuzumab treatment can induce altera-

tions to this pathway, giving rise to resistance via sustained 

Akt activation. One mechanism that may mediate this is the 

upregulation of c-Met, which physically interacts with HER2, 

enhancing growth in HER2-overexpressing cells. This effect 

is abrogated upon treatment with a c-Met inhibitor such as 

SU11274.44 Trastuzumab treatment also induces upregulation 

of a number of miRNAs, notably miR-21, that can influence 

the PI3K/Akt pathway by inhibiting PTEN.45 In trastuzumab-

resistant cells, overactivity of the PI3K/Akt pathway leads 

to epigenetic changes, including repression of FoxO, and 
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subsequently the increased transcription of the antiapoptotic 

gene survivin.46 It can also downregulate p27Kip1, which 

has been proposed as a critical downstream effector of 

trastuzumab, leading to increased cyclin-dependent kinase 

2 expression and cell proliferation.42 The aberrations in this 

pathway contributing to multidrug-resistant breast cancer are 

discussed further in the section PI3K/Akt pathway.

Altered immune response
As a monoclonal antibody, trastuzumab-induced cell death 

is partially mediated by antibody-dependent cell-mediated 

cytotoxicity, a process by which natural killer cells/monocytes 

bind to the Fc region of trastuzumab with Fcγ receptors 

and initiate tumor cell death.47 FcγRIIIa has a well-known 

polymorphism at position 158, where either a valine or a 

phenylalanine is expressed, which has been linked to clini-

cal prognosis. Indeed, the latter is less effective at inducing 

antibody-dependent cell-mediated cytotoxicity upon trastu-

zumab binding to HER2 and shows poorer clinical outcome 

than the valine/valine genotype in patients.48 This mechanism 

of resistance is specific to monoclonal antibody therapies 

and not related to the common mechanisms discussed in 

the section Common mechanisms leading to drug-resistant 

breast cancer.

Triple-negative breast cancer
Triple-negative breast cancer does not express ERα or pro-

gesterone receptors (PR) or show HER2 amplification, and 

accounts for 10%–20% of breast cancers.49 To date, there 

are no targeted therapies for this breast cancer subtype. 

Consequently, frontline treatments are limited to surgical 

approaches and chemotherapeutics, with the taxanes and 

anthracyclines being the chemotherapeutics of choice.50 

Taxanes (eg, paclitaxel) act as mitotic poisons by stabilizing 

microtubules, leading to abnormal spindles and induction of 

apoptosis,51 whereas anthracyclines (eg, doxorubicin) act as 

DNA intercalators and topoisomerase II inhibitors and they 

can also generate reactive oxygen species via semiquinone 

formation.52 These chemotherapeutics are often given in 

conjunction with the targeted therapies for the other sub-

types of breast cancer discussed previously, and thus cellular 

alterations induced by targeted therapies can contribute to 

chemotherapeutic resistance and vice versa.

Molecular mechanisms  
of resistance to chemotherapeutics
Resistance to both the taxanes and the anthracyclines 

predominantly arises from decreased drug intracellular 

concentrations due to increased efflux.12 This increased 

efflux is mediated by a small number of adenosine triphos-

phate (ATP)-binding cassette proteins that utilize ATP hydro-

lysis to translocate a variety of substrates, and increased 

expression of these correlates with poor clinical prognosis 

in breast cancer irrespective of subtype.53 The taxanes and 

anthracyclines are substrates for P-glycoprotein (P-gp), the 

best studied of the ABC transporters responsible for drug 

efflux and encoded by the MDR1 gene (ABCB1), as well as 

other transporters, notably multidrug resistance-associated 

protein 2 (MRP2) and breast cancer resistance protein, that 

contribute to resistance to chemotherapeutics.54 We will 

focus on P-gp here as an example, as many of the mecha-

nisms discussed may be applicable to MRP2 and breast 

cancer resistance protein. Resistance to one chemotherapeu-

tic commonly means resistance to many, often structurally 

distinct compounds, as P-gp can transport a diverse range 

of molecular structures. Indeed, the tamoxifen metabolite 

endoxifen is a P-gp substrate.55

Alterations to drug efflux levels
The primary mechanism underlying increased efflux is 

upregulation of the drug transporter proteins. This phe-

nomenon occurs in a wide variety of cancers and has con-

sequently been excellently reviewed by Chen and Sikic.12 

Subsequently, we will cover this topic briefly here to high-

light the commonalities with tamoxifen and trastuzumab 

resistance, specifically focusing on miRNAs, the PI3K/

Akt pathway, and epigenetic alterations (discussed in more 

detail in the section Common mechanisms leading to drug-

resistant breast cancer).

Recent work has identif ied miRNAs as having an 

important role in multidrug resistance, with over 50 dif-

ferent miRNAs linked to this phenotype (see Kutanzi 

et al56 for a review). A number of these miRNAs, including 

miR-19, miR-21, and miR-205, target PTEN, suggesting 

that the PI3K/Akt pathway is important in resistance to 

chemotherapeutics as well as for the more targeted thera-

pies discussed previously. Indeed, use of the Akt inhibitor 

perifosine in multidrug-resistant MCF-7 cells improved 

response to doxorubicin treatment.57 It remains to be seen 

whether this is via a direct effect of the PI3K/Akt pathway 

on MDR1 expression or an indirect effect possibly via a 

reduction in cell survival signaling. In addition to altered 

miRNA levels, chemotherapeutic-resistant cancers, both in 

vitro and in patients, show diminished epigenetic repression 

of MDR1 with promoter hypomethylation and histone H3 

lysine 9 acetylation.58–60
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Common mechanisms leading  
to drug-resistant breast cancer
As can be seen from these discussions, the three clinical sub-

types of breast cancer have distinct therapeutic approaches, 

but the molecular mechanisms that give rise to refractory 

disease have common facets, notably alterations to the 

PIK3/Akt pathway, miRNA levels, and epigenetic modula-

tion of gene transcription. These common facets will now 

be discussed in more detail, together with their potential as 

targets for adjuvant therapies to circumvent drug resistance 

and restore clinical responsiveness.

Pi3K/Akt pathway
The PI3K/Akt pathway is an important signaling mechanism 

regulating many cellular responses, including cell prolifera-

tion and survival (Figure 1) in normal as well as neoplastic 

breast tissue. It forms a convergence point between all three 

clinical subtypes of breast cancer, and aberrations in this path-

way occur in 70% of breast cancers irrespective of subtype.61 

As highlighted previously, aberrations in this pathway are 

important in resistance to both tamoxifen and trastuzumab, 

especially as this pathway forms a crosslink between HER2 

signaling and ERα-regulated gene transcription,37 and have 

also been linked to MDR1 upregulation and resistance to 

chemotherapeutics. Thus, understanding this pathway is 

paving the way for new adjuvant treatments in resistant 

breast cancer. A number of changes can occur, but all result 

in sustained pathway activity. Common aberrations include 

activating mutations or amplification of any of the PI3K 

subunits p110α, p110β, or p85α or loss of PTEN activity 

and its inhibition of PI3K, via inactivating mutations, over-

expression of miRNAs, or promoter hypermethylation.31 Both 

of these scenarios result in increased Akt phosphorylation 

and sustained Akt activation, the net effects of which are 

inhibition of apoptosis, transcription of ERα-dependent 

genes, and cell proliferation.61 A major downstream effector 

of Akt activation that mediates a number of these responses 

is mammalian target of rapamycin complex 1 (mTORC1). 

mTORC1 also acts as a signaling integration node receiving 

inputs from the MAPK pathways that may be disrupted in 

drug-resistant breast cancer. Sustained PI3K/Akt/mTORC1 

activity may also be due to alterations in miRNA expres-

sion and can induce a number of epigenetic changes that 

perpetuate drug resistance, which are discussed here.

miRNA-mediated resistance
In the last decade it has become clear that alterations to 

miRNA expression levels can contribute to cancer prognosis 

and outcome.62 miRNAs are small, noncoding RNAs or 

approximately 22 nucleotides, which bind to mRNA, pre-

venting translation and accelerating mRNA deadenylation 

and subsequent degradation, thus having a gene silencing 

effect.63 Several miRNAs have been associated with drug 

resistance in breast cancer (see Table 1), and these target 

a variety of genes, including PTEN, ESR1 (ERα), FoxO3, 

and DNA (cytosine-5)-methyltransferases (DNMTs).56 

The mechanisms that lead to miRNA upregulation in 

drug-resistant breast cancer are currently unclear, but they 

have powerful effects. One miRNA that is overexpressed 

Table 1 miRNA associated with drug resistance in breast cancer

miRNA Expression change 
associated with 
resistance

Target genes References

Lin 28 Upregulated CDKN1A (p21),  
RB1, Let-7

91

miR-10a Upregulated Not stated 92
miR-21 Upregulated PTEN, PDCD4 92,93
miR-22 Upregulated Not stated 92
miR-29a Upregulated PTEN 92,94
miR-30c Downregulated TWF1  

(Twinfilin 1)
95

miR-31 Downregulated PKC epsilon 
(PRKCE)

96 

miR-34a Downregulated NOTCH1 97
miR-93 Downregulated Not stated 92
miR-125b Upregulated E2F3 92,98
miR-128 Downregulated BMI1, ABCC5 99
miR-137 Downregulated YB-1 (P-gp  

indirectly)
100

miR-181 Upregulated Not stated 92
miR-181a Downregulated ABCG2 (BCRP) 101
miR-200a and 
miR-200b

Downregulated ZEB1/2 92,102

miR-200c Downregulated ZEB1, CDH1  
(e-cadherin),  
PTEN, NTRK2  
(TrkB), BMI1

62,63,92, 
102,103

miR-203 Upregulated SOC3 104
miR-205 Downregulated Not stated 92
miR-210 Upregulated Not stated 105
miR-222 Upregulated PTEN 92,94
miR-298 Downregulated MDR1 (P-gp) 106
miR-375 Downregulated MTDH  

(metadherin)
107

miR-487a Downregulated ABCG2 (BCRP) 108
miR-505 Downregulated AKT3 109
miR-633 Upregulated 

(hypomethylated)
HSPG2 110

Notes: A number of miRNAs have shown altered expression levels in drug-resistant 
forms of breast cancer in both cells and patients. The table contains those reported 
since 2011 (for prior studies we refer the reader to Kutanzi et al56) together with 
their delineated target genes. 
Abbreviations: BCRP, breast cancer resistance protein; miRNA, micro-RNAs; 
PDCD4, programmed cell death 4; P-gp, P-glycoprotein; PTeN, phosphatase and 
tensin homolog.
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in both trastuzumab-resistant cells and cells resistant to 

chemotherapeutics is miR-21, which targets PTEN and 

results in sustained PI3K/Akt pathway activity as dis-

cussed previously.44,64 It also downregulates the apoptotic 

gene programmed cell death 4 (PDCD4), allowing cancer 

cells to evade apoptosis. This protein is also inactivated 

by phosphorylation by S6K1, a downstream effector of 

the PI3K/Akt pathway.65 Another prominent miRNA that 

appears to be important in drug resistance in both ERα-

positive and triple-negative breast cancer is miR-221, which 

targets the cell-cycle inhibitory protein p27Kip1, among 

others.56,66 Thus, it can be seen that miRNAs have important 

roles in mediating drug resistance in breast cancer. However, 

the mechanisms leading to miRNA overexpression are not 

yet fully understood.

epigenetic regulation
There are three main interlinked mechanisms by which 

epigenetic modulation leads to transcriptional regula-

tion, chromatin remodeling, modification of nucleosome 

composition, and modification of epigenetic marks, all of 

which have been implicated in resistance to breast cancer 

therapies. ATP-dependent chromatin remodeling allows 

transcriptional complexes to access the highly coiled 

genomic DNA to initiate gene transcription. This can 

be achieved by selected transcription factors, known as 

pioneer factors. One such family, the Forkheads (Fox), is 

highly involved in breast cancer.67 Indeed, FoxA1 controls 

approximately 50% of ERα target genes,68 and its expres-

sion, along with that of FoxP1, has been correlated to a 

favorable response to tamoxifen treatment.69 In contrast, 

FoxM1 has a role to play in trastuzumab and paclitaxel 

resistance, as knockdown increases drug sensitivity in 

multidrug-resistant cell lines.70 FoxO1 expression is 

also associated with chemotherapeutic and tamoxifen 

resistance, as it regulates the transcription of both the 

MDR1 (P-gp) and ABCC2 (MRP2) drug efflux pumps.71 

The nuclear translocation of another FoxO isoform, 

FoxO3a, is inhibited by phosphorylation by Akt, which 

acts to drive cell proliferation and tamoxifen resistance, 

as FoxO3a has cytostatic actions via p27 upregulation and 

cell-cycle inhibition72 and by decreasing the expression 

of ERα-regulated genes.73 The biology of this complex 

family of transcription factors is not fully understood, 

but it has become clear that the balance of expression of 

the different isoforms is important, and further studies 

are needed to fully delineate their roles in drug-resistant 

breast cancer.

Nucleosomes are duplicates of the canonical histones 

H2A, H2B, H3, and H4 contained in a DNA loop, and 

modification by substitution with noncanonical histones 

regulates chromatin compaction and thus the transcription 

factor access to the genomic DNA.74 One such noncanonical 

histone implicated in ERα-positive breast cancer is H2A.Z, 

which stabilizes the nucleosome at the promoter of ERα-

dependent genes. Overexpression of H2A.Z increased cell 

growth in MCF-7 breast cancer cells in the presence of 

tamoxifen and the absence of estrogen, suggesting that 

this histone can drive cell growth in an ERα-independent 

manner, and high expression levels of H2A.Z in patients 

have been associated with poor clinical prognosis.75 Post-

translational modification of histone residues, predomi-

nantly by methylation and acetylation, also contributes 

to alterations in gene transcription. Methylation of lysine 

27 of histone H3 governs the ligand dependency of ERα-

mediated transcription of the BCL-2 gene, an important 

driver of the antiapoptotic response of breast cancer cells. 

Both tamoxifen-resistant and triple-negative breast cancer 

have been shown to have demethylation of H3K27 and 

consequently constitutive activation of BCL-2 and cancer 

cell survival.35,76 Changes to histone acetylation also occur 

in breast cancer, and hyperacetylation of histones H3 and 

H4 of the HER2 promoter may contribute to trastuzumab 

resistance by driving increased HER2 expression.77 Histone 

hyperacetylation is also involved in the overexpression of 

MDR1 (P-gp) in chemotherapeutic-resistant breast cancer, 

and the levels of acetylation of the lysine 9 residue of histone 

H3 are elevated by two orders of magnitude in drug-resistant 

MCF-7 cells.60

In addition to histone residues, DNA bases can also 

be methylated, specifically at CpG sites, which are often 

found to be associated with gene promoter elements. The 

formation of methylated CpGs is catalyzed by the DNMT 

enzymes, and methylation levels are inversely correlated 

with gene transcription.78 Both hypermethylation and 

hypomethylation occur in drug-resistant breast cancer, as 

seen in Table 2. PTEN is frequently hypermethylated in 

drug-resistant breast cancer, and this silencing is main-

tained by a positive feedback as reduced PTEN levels lead 

to increased Akt activity and increased activity of DNMT1, 

the DNMT that methylates the PTEN promoter expres-

sion,79 thus bypassing HER2 or ERα induction of PI3K/Akt 

pathway activation. Hypermethylation of the ESR1 (ERα) 

promoter by DMNT3B contributes to tamoxifen resis-

tance by reducing expression of tamoxifen’s target, ERα.80 

In contrast, hypomethylation and increased expression 
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of MDR1 (P-gp) play an important role in resistance to 

chemotherapeutics.58 Thus, it is clear that DNA methylation 

status has important roles in mediating drug resistance in 

breast cancer and, to this end, Rhee et al81 have recently 

published an integrated analysis correlating DNA methy-

lation status with gene expression data for the different 

subtypes of breast cancer. This study, together with the 

comprehensive molecular analysis of the subtypes complied 

by the Cancer Genome Atlas Research Network,82 will allow 

other genes with altered methylation states to be identified 

and their roles in drug resistance explored, especially for 

drug-resistant HER2-positive breast cancer, as this area has 

not been explored in this subtype.

Future perspectives for the 
treatment of drug-resistant  
breast cancer
The studies discussed here delineating the molecular mecha-

nisms underlying drug resistance in breast cancer, in terms 

of both single and multidrug resistance, have identified a 

Table 2 Genes with altered methylation status in drug-resistant breast cancer

Gene Protein Hypermethylated/hypomethylated References

ABCB1 (MDR1) Upstream promoter P-glycoprotein Hypomethylated 57,58,111–114
ABCB1 (MDR1) Alternative  
Downstream promoter

P-glycoprotein Hypermethylated 111

ACVR1 Activin A receptor Hypomethylated 115
APC Adenomatous polyposis coli Hypomethylated 113
TUBA1A α-Tubulin Hypermethylated 115
AVEN Cell death regulator Aven (PDCD12) Hypermethylated 115
BAD BCL2-associated agonist of cell death Hypermethylated 115
BRCA1 BRAC1 Hypermethylated 113
CDH1 e-cadherin Hypermethylated 113
CDK10 Cyclin-dependent kinase 10 Hypermethylated 116
CXCR4 Stromal cell-derived factor 1 receptor Hypomethylated 115
ESR1 eRα Hypermethylated 113,115
ESR2 eRβ Hypermethylated 117,118
FTH1 Ferritin heavy chain Hypomethylated 115
FOXK1 Forkhead box protein k1 Hypomethylated 115
GSTP1 Glutathione S-transferase pi 1 Hypomethylated 57,113
HIC1 Hypermethylated in cancer 1 Hypomethylated 113
IL2 interleukin 2 Hypermethylated 115
LEP Leptin Hypomethylated 115
MGMT 6-O-methylguanine-DNA methyltransferase Hypomethylated 57,119
NAT1 N-acetyltransferase 1 Hypermethylated 120
CDKN1A p21 Hypermethylated 121
TP73 p73 Hypermethylated 115
PLAU Plasminogen activator urokinase Hypomethylated 57,113
PGR Progesterone receptor Hypermethylated 122
TFF1 pS2 (trefoil factor 1) Hypermethylated 123 
ATP2B4 Sarcolemmal calcium pump Hypermethylated 123 
DUSP7 Dual-specific phosphatase 7 Hypermethylated 123
GDF15 Growth differentiation factor 15 Hypermethylated 123
PSAT1 Phosphoserine aminotransferase 1 Hypomethylated 124
PTEN PTeN Hypermethylated 78
RAB6C wTH3 Hypermethylated 113,125,126 
RASAL1 Ras protein activator-like 2 (GAP1) Hypermethylated 113 
ARHGEF2 Rho/rac GeF2 Hypermethylated 115
RASSF1 Ras association domain containing protein 1 Hypomethylated 113
RFC1 Replication factor C1 Hypermethylated 127
SDK2 Sidekick 2 Hypomethylated 115
SULF2 Sulfatase 2 Hypermethylated 113
TGM2 Tissue transglutaminase Hypomethylated 113,115
UTRN Utrophin Hypomethylated 115

Note: Hypomethylation results in gene overexpression as DNA methylation reduces gene transcription; consequently, hypermethylation effectively leads to gene silencing.
Abbreviations: eR, estrogen receptor; PTeN, phosphatase and tensin homolog.
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number of pathways that offer potential routes to circumvent 

resistance to the current therapies.

The PI3K/Akt/mTORC1 signaling axis offers targets 

for therapeutic interventions, and a number of clinical trials 

are ongoing using PI3K, AKT, mTOR, or dual inhibitors in 

combination with endocrine or chemotherapies (Table 3). 

However, caution is required, as the clinical response may 

depend on the specific aberration and the subtype of breast 

cancer, as inhibition of Akt may induce apoptosis by release 

of Bcl-2-associated death promoter (BAD) inhibition, but 

Akt inhibition can also permit FoxO3a nuclear translocation, 

potentially leading to the transcription of ERα-dependent 

genes encouraging cell proliferation. Also, upregulation of 

growth factor receptors (eg, FGFRs and IGF-1R) may favor 

activation of other signaling cascades, such as the MAPK 

pathways, which could be exacerbated by inhibition of 

Table 3 inhibitors of the Pi3K/Akt pathway currently undergoing clinical trials

Drug Target Breast cancer 
selection criteria

Combination therapies Phase Trial identifiers

AZD5363 Akt eR+ Paclitaxel/none i NCT01625286, NCT01226316
GSK2110183 Akt Drug resistant None i NCT01476137
GSK2141795 Akt Not stated None i NCT00920257
MK2206 Akt eR+  

 
 
HeR2+  
Not stated

Lapatnib ditosylate/paclitaxel/
anastrozole/letrozole/exemestane/
fulvestrant/none  
Lapatnib ditosylate/trastuzumab  
Paclitaxel

ii  
 
 
i  
ib

NCT01245205, NCT01277757, 
NCT01776008, NCT01344031  
 
NCT01705340, NCT01281163  
NCT01263145

Triciribine Phosphate 
Monohydrate

Akt Not stated Paclitaxel/doxorubicin/
cyclophosphamide

i/ii NCT01697293

BAY 80-6946 Pi3K Not stated Paclitaxel i NCT01411410
BKM120 Pi3K eR+ Fulvestrant/letrozole i, iii NCT01339442, NCT01248494, 

NCT01633060, NCT01610284
HeR2  
Trastuzumab- 
resistant HeR2+

Lapatnib/trastuzumab/capecitabine  
Trastuzumab + paclitaxel

i/ii  
i, ii

NCT01589861, NCT01132664  
NCT01285466, NCT01816594

HeR2- Paclitaxel ii NCT01572727
Triple-negative Postchemotherapeutics i, ii NCT01629615

BYL719 Pi3K eR+/HeR2- Letrozole/fulvestrant i NCT01791478, NCT01219699
GDC-0941 Pi3K Not stated Trastuzumab, paclitaxel, bevacizumab i NCT00960960

eR+ Fulvestrant ii NCT01437566
XL147 Pi3K eR+ HeR2+ Letrozole i NCT01082068
CC-223 mTOR eR+ Unresponsive tumors i/ii NCT01177397
everolimus mTOR eR+/HeR2+/–  

 
eR+, Ai–resistant

endocrine therapies (tamoxifen)/
bevacizumab, lapatnib 
Fulvestrant/ 
chemotherapeutics/exemestane

ii, iii  
 
ii, iii

NCT01298713, NCT01805271  
 
NCT01797120, NCT01088893,
NCT00863655 and NCT01626222 

HeR2+ Paclitaxel, trastuzumab iii NCT00876395
HeR2- vinorebine ii NCT01520103
Triple-negative Gemcitabine, cisplatin i NCT01939418

Rapamycin mTOR HeR2+ Trastuzumab ii NCT00411788
Temsirolimus mTOR eR+ Letrozole ii NCT00062751

HeR2+/triple negative Neratinib i/ii NCT01111825
Ridaforolimus mTOR eR+ Dalotuzumab, exemestane ii NCT01234857
BeZ235 Pi3K/mTOR 

dual inhibitor
eR Letrozole/everolimus i NCT01248494, NCT01482156
HeR2+ Paclitaxel, trastuzumab i NCT01285466
HeR2- Paclitaxel i/ii NCT01495247

GDC-0980 Pi3K/mTOR 
dual inhibitor

eR+ Fulvestrant ii NCT01437566

XL765 Pi3K/mTOR 
dual inhibitor

eR+ HeR2- Letrozole ii NCT01082068

Notes: The alterations to the Pi3K/Akt pathway are common factors in the different subtypes of breast cancer and also have important roles in mediating drug resistance 
(see text for details). Subsequently, this pathway is a promising therapeutic target to overcome drug resistance with a variety of compounds in clinical trials. Data obtained 
from the ClinalTrials.gov database. 
Abbreviations: Ai, aromatase inhibitor; eR, estrogen receptor; HeR2, human epidermal growth factor receptor 2; mTOR, mammalian target of rapamycin complex 1.
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PI3K/Akt/mTORC1. In addition, the effects of this pathway 

on transcription via epigenetic changes need to be considered 

to prevent the selection of tumor subpopulations that are 

resistant to therapy, especially the FoxO family, as target-

ing these transcription factors directly is not a viable option 

currently, due to their complexity. Thus, the combination of 

therapies needs to be carefully considered and appropriate for 

the cancer subtype.

Overcoming drug resistance that results from P-gp 

overexpression may require a different approach to that of 

the PI3K/Akt pathway, as several P-gp inhibitors have been 

trialed without satisfactory clinical outcomes.83 To this end, 

a number of compounds that are microtubule stabilizers, like 

the taxanes, but are not P-gp substrates have been trialed with 

promising clinical results (see Nobili et al83 for details). Other 

drugs that actually exploit P-gp overexpression are being 

considered, notably NSC73306, the cytotoxic capacity of 

which correlates with P-gp expression levels. The more P-gp 

expressed, the more toxic NSC73306 is. NSC73306 does not 

appear to be a P-gp substrate. Understanding the way this 

drug utilizes P-gp overexpression may help identify mecha-

nisms to circumvent multidrug resistance involving P-gp.

As yet, no therapeutics targeting specific miRNAs have 

made it into the clinic. However, one antagonist to miR-122 

is undergoing Phase II clinical trials for use in hepatitis C,84 

suggesting that miRNAs could be valid therapeutic targets 

in breast cancer. To this end, therapeutics targeting miR-21 

and miR-221, which are implicated in drug resistance in 

breast cancer, are being commercially developed for use in 

hepatocellular carcinoma and other cancers,85,86 and so it may 

not be too long before clinical trials of miRNA inhibitors for 

the treatment of multidrug-resistant breast cancer become a 

reality.

Reversing the deleterious alterations to epigenetic 

regulation that are associated with drug resistance in 

breast cancer is a challenging proposition. However, his-

tone deacetylation  inhibitors are showing promise in all 

subtypes of breast cancer,87–89 but caution is required, as 

these approaches may alter the expression of ERα, HER2, 

and MDR1, as discussed previously, which could actually 

enhance drug resistance. It will be interesting to see how 

the large volume of preclinical data available on this topic 

translates to clinical outcomes, as trials of a number of 

different histone deacetylation inhibitors are ongoing.87

Other approaches to circumvent multidrug resistance in 

breast cancer, especially the triple-negative subtype, are being 

pursued and include inhibitors of angiogenesis, epidermal 

growth factor receptor, poly(adenosine diphosphate-ribose) 

polymerase, and FGFRs, which are outside the scope of this 

review (we refer the reader to Bayraktar and Glück90).

Conclusion
Multidrug-resistant breast cancer is a complex clinical con-

dition arising from a diverse range of molecular perturba-

tions, yet several common mechanisms have been identified. 

The PI3K/Akt pathway discussed here is just one. By 

identifying these common mechanisms and developing 

therapeutics targeting them, an armory for overcoming drug 

resistance in different clinical situations can be created. It will 

be interesting to see how the PI3K/Akt/mTOR inhibitors per-

form in the ongoing clinical trials to ascertain whether such 

global approaches are useful for circumventing resistance 

to frontline therapies. Further studies are required before 

therapeutics targeting other common mechanisms highlighted 

here, miRNA upregulation and epigenetic alteration, may be 

targeted, as these are not yet as well understood.
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