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Abstract: Breast cancer includes a body of molecularly distinct subgroups, characterized by 

different presentation, prognosis, and sensitivity to treatments. Significant advances in our under-

standing of the complex architecture of this pathology have been achieved in the last few decades, 

thanks to new biotechnologies that have recently come into the research field and the clinical 

practice, giving oncologists new instruments that are based on biomarkers and allowing them to 

set up a personalized approach for each individual patient. Here we review the main treatments 

available or in preclinical development, the biomolecular diagnostic and prognostic approaches 

that changed our perspective about breast cancer, giving an overview of targeted therapies that 

represent the current standard of care for these patients. Finally, we report some examples of how 

new technologies in clinical practice can set in motion the development of new drugs.

Keywords: breast cancer, biomarkers, gene expression profile, next generation sequencing, 

targeted therapy

Introduction
In the last decade, impressive steps toward understanding the biology of breast cancer 

have been accomplished, thanks to the use of biotechnologies. At present a window 

of opportunity exists to identify and use these biomarkers, to develop new therapies 

in a mechanistic-based rational approach, and to assist in the identification of patients 

requiring a treatment from those who do not, in a very early phase of the disease. 

According to the literature, a biomarker is:

[…] a characteristic that is objectively measured and evaluated as an indicator of 

normal biologic or pathogenic processes, or pharmacologic responses to a therapeutic 

intervention.1

The first identification of breast cancer biomarkers dates back to the 1970s, with 

the discovery of the estrogen receptor (ER) and the progesterone receptor (PgR) by 

immunohistochemistry (IHC). Twenty years later, the second generation of breast 

cancer biomarkers was found with the use of gene amplification detection by in situ 

hybridization and their clinical impact has been dramatic in patients with the human 

epidermal growth factor 2 (HER2) overexpressing tumors.2,3 More recently, the turn-

ing point that led to the acceleration of breast cancer research has been represented by 

the use of microarrays for gene and microRNA expression profiling.4 Afterwards, the 

acquisition of next-generation sequencing techniques for genetic mapping, mutational 

analysis, and genome-wide monitoring of the gene expression permitted the inves-

tigation of thousands of transcripts simultaneously. This review aims to explore the 
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main clinical effects of new technologies in the diagnostic, 

prognostic, and treatment course of breast cancer patients. 

For this purpose, a search of the online PubMed database 

(all years) was undertaken to identify relevant previous and 

current clinical studies using the search terms “breast cancer 

gene expression profile,” “next generation sequencing,” and 

“personalized medicine.”

Current and future  
diagnostic technologies used  
in personalized medicine
Gene expression profile  
as a prognostic tool
The first pivotal study that paved the way for a new breast 

cancer classification and for the molecular taxonomy of sub-

sequent investigations came from the laboratories of Perou 

and Sørlie more than 10 years ago.5,6 Using DNA microarrays, 

these authors identified five distinct molecular subgroups of 

breast cancer with a different prognosis, namely luminal A, 

luminal B, HER2-enriched, basal-like and normal-like. That 

was the first demonstration that breast cancer is not a single 

disease with different morphologic patterns but rather a hetero-

geneous group of diseases defined by the differential intrinsic 

gene signature. The main differentially expressed genes, which 

distinguished the five molecular intrinsic subtypes, were the 

ER and ER-related genes, proliferation-related genes, HER2, 

and the genes mapping to the region of the HER2 amplicon on 

chromosome 17.7 After this forerunner study, additional simpli-

fied gene signatures with prognostic value were published with 

the aim of identifying a minimal gene set. Among these, the 

70-gene prognosis signature  (MammaPrint®; Agendia, Irvine, 

CA, USA),8 the 97-gene histologic grade predictor (MapQuant 

Dx™ Genomic Grade; Ipsogen, Marseilles, France, and New 

Haven, CT, USA),9 the 21-gene recurrence score (Oncotype 

Dx®; Genomic Health Inc., Redwood City, CA, USA),10 and 

the 14-gene distant metastasis signature (BreastOncPx™; Inte-

grated Oncology, Irvine, CA, USA),11 Theros H/ISM and Theros 

MGISM Breast Cancer Index (bioMérieux, Marcy-l’Etoile, 

France)12,13 have been extensively evaluated in tumor speci-

mens from patients with early breast cancer to establish dif-

ferent prognostic scores based on the gene expression profile 

and, therefore, to assign – or not – adjuvant treatment. Two 

large prospective trials – the EORTC (European Organization 

for Research and Treatment of Cancer) 10041/BIG (Breast 

International Group) 03-04 MINDACT (Microarray In Node-

negative and 1–3 node positive Disease may Avoid Chemo-

Therapy), and the TAILORx (Trial Assigning IndividuaLized 

Options for Treatment Trial) – are evaluating the MammaPrint 

(MammaPrint; Symphony Suite, Agendia, Irvine, CA, USA, 

and Amsterdam, the Netherlands) and the Oncotype DX® 

Recurrence Score (Genomic Health, Inc., Redwood City, CA, 

USA), respectively, with the aim to validate the clinical utility 

of these signatures as a prognostic tool for the decision-making 

process in early breast cancer.14,15 The results of these studies 

are awaited with great expectation, as they would optimize and 

overcome the conventional algorithms used for the decision 

on adjuvant systemic therapy, based on menopausal status, 

tumor size, nodal involvement, ER and HER2 status, and tumor 

grade.16 In the meanwhile, data from a recent meta-analysis 

of the published gene signatures provided the evidence that 

most breast cancer patients can be stratified in the same risk 

group, according to the expression of genes that compose the 

proliferation, ER, and HER2  signatures.17 It is important to 

note that these signatures displayed a decrease in the prediction 

accuracy from 5–10 years after the diagnosis.18,19 Furthermore, 

the application of gene expression in each different subgroup 

defined by the intrinsic subtype was a further implementa-

tion in molecular characterization of breast cancer. It became 

immediately evident that the same biological markers are not 

associated to all the molecular subtypes of breast cancer.20–23 

In particular, a crucial role in the ER-positive patients is played 

by genes related to cell cycle progression and proliferation, 

while in ER-negative patients, especially in the HER2-positive 

and triple negative ones, a nodal point is represented by the 

involvement of the immune system.24–27

Gene expression profile  
as a predictive tool
Gene expression profiling has been studied not only as a prog-

nostic tool, but also as a predictor of chemo- and hormone-

sensitivity. Indeed, a plethora of studies have been conducted 

to verify whether the sensitivity to anticancer agents can be 

ascribed to a specific intrinsic molecular subtype rather than 

to the clinical/pathological presentation of the disease.28–37 

In addition, these studies aimed to identify new targetable 

pathways in chemotherapy-refractory cases. Unfortunately, 

none of these trials reported data of general clinical interest. 

This is likely due to the simplification of the complexity of 

tumor heterogeneity that is an intrinsic limitation of gene 

profiling. Therefore, despite the initial enthusiasm regarding 

the molecular profiling of breast cancer, its role in clinical 

practice is still controversial. Another possible explanation 

is that the aforementioned studies were conducted in specific 

patient populations. For example, the analysis performed on 

women enrolled in the ATAC (Arimidex, Tamoxifen, Alone 
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or in Combination) trial38 and treated without chemotherapy, 

revealed that Oncotype DX® is substantially equal in terms 

of predicting metastatic recurrence to accurate quantitative 

IHC measures of ER, PgR, HER2, and Ki-67.39 This infor-

mation has been subsequently confirmed in a cohort of 786 

patients. It is important to note that this study was conducted 

in a very restricted population, ie, ER-positive and/or PgR-

positive postmenopausal women who were not treated with 

chemotherapy, which cannot be assumed as valid for the 

general breast cancer population.

Beyond gene expression profile: 
mutational analysis
In the very recent years, research has moved from gene 

expression profiling into a more detailed overview through 

biological mechanisms of carcinogenesis and tumor pro-

gression by mutational profiling. The first approach to 

sequencing of the genome has been Sanger sequencing, 

which was extremely sensitive but, in the meantime, hugely 

expensive in terms of time and resources – a burden with 

very low throughput.40 Indeed, the Sanger instrument could 

only support 96 parallel reactions, and the cost per each 

genome analysis was in the order of 1 million USD. That 

incited academies and companies in the research of new 

technologies, passing from the first-generation sequencing 

to the most cutting-edge one, represented to date by next 

generation sequencing (NGS). The main characteristic of 

this procedure – known as massive-parallel sequencing – is 

its high sensitivity, high throughput, and reduced cost; about 

1,000 USD per genome. The NGS can be applied to study 

the whole genome (exons, introns, and intergenic regions for 

about 22,000 genes), more specifically to the whole exome 

(about 1% of the genome) or to the 200–400 potentially 

targetable exons (about 0.003% of the genome). The very 

high sensitivity of this technique allows the evaluation of 

single nucleotide variants (SNVs), small insertions or dele-

tions, copy number alternations (CNAs, gain or losses) and 

structural variations (translocations, inversions). The clinical 

translation of these investigations results in the discovery 

of actionable mutations. Furthermore, the NGS can be 

applied to the RNA, with the whole transcriptome approach 

(RNA-sequencing) for expression level analysis and to 

alternative splicing, RNA editing, and fusion transcripts.41 

It is remarkable to highlight that the NGS can be applied to 

tumor tissues compared with its normal counterparts, with 

the acquisition of information about somatic mutations or 

to the peripheral blood samples – with the aim to investigate 

germline alterations. The study of germline aberrations could 

open new key insights into germline actionable mutations, 

toxicity susceptibility, drug metabolism, and familial disease 

susceptibility. A more extensive description of the molecular 

architecture of cancer cells must include the epigenome, that 

can be investigated by several new-generation technologies 

(bisulfite sequencing [Bisulfite-Seq] and chromatin immu-

noprecipitation sequencing [ChIP-seq]).41

The application of NGS to breast cancer research has 

led to the publication of several studies, from a comprehen-

sive examination of the genome/transcriptome42 to whole 

exome sequences of DNA,43 to studies in specific breast 

cancer subtypes,44,45 catalogs of somatic mutations,46 and 

exploration of rearrangement patterns.47 Furthermore, NGS 

has been applied to search for predictive biomarkers.48 The 

Cancer Genome Atlas Network performed one of the widest 

analyses of breast cancer biology, using and integrating all 

the cutting-edge technologies available and investigating 

more than 800 patients.42 Authors confirmed the well-known 

classification in four breast cancer subgroups characterized 

by substantial differences in their molecular complexity. 

Only three genes, TP53, PIK3CA, and GATA3, revealed 

somatic mutations in more than 10% through the different 

subgroups, and most of the genetic/epigenetic alterations 

were found to be subgroup-restricted, ie, specific mutations 

in GATA3, PIK3CA, and MAP3K1 were associated with 

luminal A breast cancer.

Interestingly, the authors compared basal-like breast 

cancer with high-grade serous ovarian cancer, observing 

many similarities and thus suggesting a possible common 

therapeutic approach. It is important to underline that 

NGS is able to create a massive amount of information; 

it is intuitive that not each mutation/alteration found can 

become a target for specific therapy. Therefore, a priority 

scale of prognostic and predictive value should be applied. 

An example is offered by the METABRIC (Molecular 

Taxonomy of Breast Cancer International Consortium) 

study, where NGS was used to create CNAs, copy number 

variations (CNVs), and a single-nucleotide polymorphism 

(SNP) map, singling out somatic and germline abnor-

malities.49 The authors identified 10 different subtypes 

with prognostic impact and found common, potentially 

targetable alterations, such as PPR2A, MAP2K4, and MTAP 

deletions. Alterations in the gene expression landscape 

can also be useful to guide treatment with conventional 

or experimental therapy. In the study by Bose et al, seven 

activating HER2 mutations were found in about 2% of 

HER2 nonamplified breast cancer patients.50 Interestingly, 

HER2 mutant cells were demonstrated to be sensitive to 
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neratinib but not to lapatinib, paving the way to Phase II 

clinical trials for the administration of neratinib in HER2 

nonamplified mutant patients. More recently, the prospec-

tive multicentric molecular screening trial SAFIR 01 ana-

lyzed 423 patients with metastatic breast cancer, with no 

progressive disease at study entry.51 Metastatic sites were 

biopsied and profiled using the copy number changes array 

and the Sanger sequencing on PIK3CA (exon 10/21) and 

AKT1 (exon 3). At the time of the progression, the patients 

were treated with a targeted therapy, matched with biopsy 

results. A total of 408 patients successfully underwent 

metastatic biopsy. The genome analysis was feasible in 

71% of cases and informative in 67% of cases. The most 

frequent genomic alterations were the PIK3CA mutations, 

CCND1, FGF4, and FGFR1 amplifications. One quarter of 

the patients with targetable genomic alterations, represent-

ing 12% of the patients who had undergone biopsy, were 

treated with matched therapies.

Overall, 12 of 408 patients (3%) obtained a clinical 

benefit from the procedure. The first important conclu-

sion from this study is that biopsies of metastatic sites are 

feasible and safe, with only nine cases of serious adverse 

events, and informative, with the highest rate of success 

reported for liver and nodal lesions. The innovative infor-

mation derived from this study is that molecular-based 

personalized medicine is feasible, even with many chal-

lenges and limitations, which are now being addressed in 

ongoing studies. In the SAFIR 02 trial, NGS of metastatic 

lesions will be performed. Patients with HER2-positive 

breast cancer will be randomly assigned to receive targeted 

therapies versus standard therapy. In the NCI-MATCH trial, 

molecular profiling of 3,000 patients presenting progressive 

disease after systemic therapy will be performed with the 

aim to select 1,000 patients with molecular abnormalities 

who can be treated with targeted therapies already available. 

The results of these studies will be of great value to address 

the limitations of NGS.

In fact, despite the enthusiastic welcome given to NGS by 

scientists, many difficulties in its clinical application are still 

unresolved. The first is purely theoretic. Is it correct to search 

for every single gene alteration, or is it much more important 

to define pathway abnormalities? Second, there are biological 

issues due to tumor heterogeneity, clonal evolution, and the 

difficulty of discriminating between driver and passenger 

mutations. Third, there are some technical problems in terms 

of tumor tissue availability, stromal interferences, laboratory 

reproducibility of results, and the limited access to new 

bioactive drugs.

MicroRNAs and breast cancer
MicroRNAs (miRNAs) are a class of small (19–25  nucleotides) 

noncoding RNAs that are able to downregulate the expression 

of specific genes through the direct binding of the 3′ untrans-

lated regions of their target messenger (m)RNAs, resulting in 

mRNA degradation or the inhibition of protein translation.52 

Several studies demonstrated that the microRNA-dependent 

regulation of gene expression modulates the various cel-

lular processes, such as proliferation, differentiation, and 

apoptosis.53 Moreover, the miRNA aberrant expression or 

mutation was described in a plethora of diseases, including 

cancer.53,54

In the last decade, different technologies, including 

miRNA microarrays, deep sequencing, and NanoString 

(NanoString® Technologies, Inc., Seattle, WA, USA), have 

been used to identify cancer-specific miRNA signatures. 

These studies allowed the identification of miRNAs spe-

cifically altered in their expression for any kind of human 

neoplasia, including breast cancer.54–56 Furthermore, the 

identification of target genes for these miRNAs led to the 

discovery of the new molecular players involved in tumor 

formation, progression, metastasis, and resistance to anti-

cancer therapies.57

In a first study, Iorio et al identified 29 miRNAs whose 

expression was significantly deregulated in breast cancer, 

with a smaller set of 15 miRNAs able to predict the nature 

of the sample analyzed (tumor or normal breast tissue) with 

100% accuracy.55 Differentially expressed miRNAs included, 

among others, miR-10b, miR-125b, miR-145, miR-21, and 

miR-155, suggesting their potential role as tumor suppressor 

genes or oncogenes. Other miRNAs were also found differ-

entially expressed in breast tumors with distinct biopatho-

logical features. Both ER- and PgR-negative breast tumors 

displayed reduced expression of the miR-30 family, while 

the let-7 miRNA was downregulated in those breast cancer 

patients with lymph node metastasis or a higher proliferation 

index. The miR-21 upregulation was observed in cancers 

with a high tumor stage, and a miR-9-3 downmodulation 

was associated with either a high vascular invasion or the 

presence of lymph node metastasis.

Further analysis also identified miRNAs differentially 

expressed in ductal carcinoma in situ (DCIS) or in invasive 

ductal carcinoma (IDC).58 Based on deep-sequencing data 

sets, Volinia et al described a signature of 66 miRNAs whose 

expression levels were altered in DCIS when compared to 

the normal breast.58 Moreover, comparing miRNA levels 

in DCIS versus IDC, an miRNA invasiveness-microsig-

nature (including miR-210, let-7d, miR-181a, miR-221 as 
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upregulated and miR-10b, miR-126, miR-218, miR-335-5p, 

and miR-143 as downregulated miRNAs) was also defined 

by this study.

The miRNAs identified were also correlated with clini-

cal parameters, such as the time to metastasis and overall 

survival. Time to metastasis was significantly associated 

with miR-127-3p, miR-210, miR-185, miR-143*, and let-7b 

expression levels, while miR-210, miR-21, miR-221, and 

miR-652 were correlated with overall survival.

A recent report from Cascione et al also analyzed the 

miRNA expression levels in triple negative breast cancer 

and their metastasis, identifying 13 miRNAs differentially 

expressed in the normal versus the tumor comparison, and 

six miRNAs deregulated in tumor versus metastasis and a 

normal versus metastasis comparison.59 Using univariate and 

multivariate Cox regression analysis, this group also gener-

ated two miRNA signatures prognostic for overall survival 

(OS) and distant disease-free survival (DDFS), consisting 

of four and seven miRNAs, respectively, with protective 

miR-16 and miR-374a and risk-associated miR-125b present 

in both signatures.

Along with their role as diagnostic and prognostic mark-

ers for breast cancer, the miRNAs can also confer antineo-

plastic drug resistance through the modulation of specific 

cellular networks, such as the apoptotic pathway, the HER 

family driven or the ER-mediated signaling.56

In fact, it has been demonstrated that the overexpression of 

the miRNA-221/222 cluster, whose expression is negatively 

regulated by ERα,60,61 confers tamoxifen resistance by target-

ing p27Kip1.62 The upregulation of miR-125b, through the 

suppression of the proapoptotic B-cell lymphoma-2 (Bcl-2) 

antagonist killer 1 (Bak1) expression, induces breast cancer 

resistance to paclitaxel.63 Epithelial cadherin (E- cadherin) 

downregulation by the miR-200 family alterations is related 

to the drug-resistant phenotype in breast cancer cells.64 Anti-

neoplastic effects of trastuzumab are negatively affected by 

the miR-21 overexpression.65

Interestingly, circulating miR-221 levels were found 

to be a predictive biomarker for sensitivity to neoadjuvant 

chemotherapy in breast cancer patients.66 These examples 

strongly indicate that the miRNA expression levels might 

also represent potential predictive markers of response to 

conventional and targeted antineoplastic treatments.

Taken together, these studies indicate that the miRNA 

signatures can represent a valid approach for the correct 

diagnosis and classification of the various subtypes of breast 

cancer, also providing the clinicians with new prognostic 

markers for overall survival and disease-free survival, along 

with predictive indicators of treatment responses and be 

potentially useful for the tailoring of patient-specific anti-

cancer therapies.

Selected examples of personalized 
medicine available today for breast 
cancer patients
Treatment options and matched diagnostic/exploitable 

predictive markers, according to different breast cancer sub-

types, are reported in Table 1. It is clearly evident that most 

of the markers of response to chemo- and/or targeted-therapy 

refer to ER and to HER2 breast cancer; triple negative is still 

a targetless population.67

Therapeutic agents targeting  
eR and PgR-positive breast cancer
The first targeted therapy that demonstrated a substantial 

benefit in terms of progression free survival (PFS) and OS 

in women with ER-positive breast cancer was represented 

by the selective ER modulator tamoxifen. Its development 

passed through the US Food and Drug Administration (FDA) 

approval: first, it passed for the treatment of postmenopausal 

patients with advanced breast cancer; second, it passed for 

the adjuvant therapy but only for cases with nodal involve-

ment, independent from the ER status and subsequently for 

premenopausal patients with advanced breast cancer; and, 

third, for all women with hormone-receptor positive breast 

cancer, independent from the menopausal status and nodal 

involvement, as adjuvant therapy. Among the milestones that 

built the history of this drug, the NSABP (National Surgical 

Adjuvant Breast and Bowel Project) trial demonstrated a 

significant increase in terms of PFS with the administration 

of tamoxifen 10 mg twice a day for 5 years as adjuvant treat-

ment for pre- or postmenopausal women with node-negative, 

ER-positive breast cancer, compared to the placebo (PFS 

83% versus 77%, P,0.00001).68

Another class of endocrine treatment is represented by 

the aromatase inhibitors (AIs), which prevent the conversion 

of androgens to estrogens in peripheral tissues, ie, the main 

estrogen production mechanism in postmenopausal women. 

After two generations of AIs characterized by low specificity 

and poor handling, the third generation deposed the use of 

tamoxifen as an adjuvant treatment and first-line therapy for 

hormone receptor (HR)-positive breast cancer in postmeno-

pausal patients. Anastrozole and letrozole were the first 

registered nonsteroidal agents noncovalently and reversibly 

binding the aromatase enzyme. Following the registration 

for patients progressing to tamoxifen,69–71 the demonstration 
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of the superiority of anastrozole or letrozole versus tamox-

ifen in terms of time to progression and overall response rate 

led to their registration as first-line therapies.72–74 The third 

AI that has been developed is exemestane, a steroidal agent 

that covalently and irreversibly binds the target enzyme. 

Like the other AIs, it was first approved in the metastatic 

setting, then in the adjuvant one.75,76 Two large Phase III tri-

als, the ATAC trial and the BIG 1–98 trial, showed a greater 

benefit in terms of disease-free survival with anastrozole 

and letrozole, respectively, compared to tamoxifen as an 

adjuvant treatment for HR-positive early breast cancer 

in postmenopausal patients (hazard ratio 0.83 in the first 

analysis; 0.87 at the 5-year follow-up; 0.91 at the 10-year 

follow-up in favor of anastrozole; hazard ratio 0.81 in favor 

of letrozole).77–80

A subsequent issue has been the role of AIs as the 

continuation of adjuvant therapy after the initial treatment 

with tamoxifen. A big meta-analysis of three Phase III trials 

showed an improvement in disease-free survival, event-free 

survival, and overall survival in patients switching to anastro-

zole after 2–3 years of tamoxifen for the subsequent 2–3 years 

(hazard ratio 0.59, 0.55, and 0.71, respectively).81

A still controversial topic is whether to continue the 

adjuvant treatment beyond 5 years. While the extended 

adjuvant therapy with AIs after 5 years of tamoxifen 

showed an improvement in disease-free survival and overall 

survival,82–84 the continuation of tamoxifen after 5 years of 

treatment had discordant results.85 Interestingly, tamoxifen 

metabolites have recently been demonstrated to inhibit 

aromatase enzyme in vitro.86,87 These data could open new 

perspectives in the identification of novel AIs with a better 

tolerability profile.

The last endocrine treatment registered has been ful-

vestrant, a pure ER antagonist. It was first approved for 

the treatment of postmenopausal women with metastatic 

breast cancer after progression on tamoxifen, at a dose of 

250 mg, based on two Phase III trials that demonstrated no 

difference in time to progression between fulvestrant and 

anastrozole.88,89 Later, a Phase III trial showed a benefit in 

time to progression when a 500 mg dose of fulvestrant was 

administered; thus the scheduled dose was amended to 500 

mg.90 The only Phase II study evaluating the higher dose 

regimen of fulvestrant compared to AI anastrozole as a first-

line therapy in postmenopausal patients proved a benefit in 

terms of time to progression in favor of the antiestrogen drug 

(median time to progression 23.4 months for fulvestrant 

versus 13.1 months for anastrozole), with a 34% reduction 

in risk of progression (P=0.01).91

Biomarkers and endocrine therapy
Two isoforms of ER exist – ERα and ERβ – which are encoded 

by two different genes (ESR1 and ESR2, respectively). 

Different studies have evaluated the correlation between ERα, 

ERβ, response to endocrine therapies, and prognosis, but with 

discordant results. Even if the ERα expression is – most of the 

time – associated with hormonal therapy sensitivity, and its 

expression level is considered as the main predictive factor to 

tamoxifen sensitivity,92 many pre- or posttranslational altera-

tions of the receptor could negatively influence the response 

to targeted treatments. In particular, the ERα-36 variant cor-

relates with a lower tamoxifen response and worse outcome.93 

The ERα phosphorylation also seems to be associated with 

a resistance to antiestrogen therapies.94–96 These data suggest 

that a better understanding of ERα presentations could open 

new perspectives on both the selection of which patients would 

probably have a greater benefit from its inhibition and new 

combination treatments.

While the role of ERα is well-established in breast can-

cer tumorigenesis and progression, the same cannot be said 

for ERβ. There are many isoforms of this nuclear receptor 

and ERβ1, ERβ2, and ERβ5, which are the most involved 

in breast cancer.97 ERβ is mainly expressed in ERα-positive 

tumors, even if fewer of the ERβ-positive cases are ERα-

negative.98,99 Different isoforms of ERβ probably play dif-

ferent roles in breast cancer, and this behavior correlates 

with their intracellular localization. In fact, there is evidence 

that the nuclear expression of ERβ1 correlates with a better 

outcome, while the cytoplasmic expression of ERβ2 seems 

to be a poor prognosis marker.100–102 Several studies have 

evaluated the correlation between ERα, ERβ, a response to 

endocrine therapies, and a prognosis, but with discordant 

results, and – to the best of our knowledge – there is not a 

consensus about the clinical utility of testing ERβ.

ER and PgR assays are currently performed by IHC and 

the hormone receptor-positive status has been historically 

defined as 10% or more positive cancer cells to nuclear stain-

ing.103 However, in very recent years, this threshold has been 

reduced to more than 1%, as recommended by the American 

Society of Clinical Oncology and the American College of 

Pathologists.104 There is still not a collegial agreement about 

this new subgroup of weakly ER-positive breast cancer, that 

should therefore be treated with endocrine therapy. In a study 

published last year, only 24% of the borderline ER-positive 

cancer evaluated showed the ESR1 mRNA expression. 

Furthermore, the average ER gene signature scores of these 

tumors were more similar to ER-negative than ER-positive 

cases with more than 10% staining.105
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eR-positive breast cancer heterogeneity
In a meta-analysis that included 10,645 ER positive patients, 

treatment with 5 years of adjuvant tamoxifen reduced the risk 

of breast cancer death by one-third after 15 years of follow-

up.106 For postmenopausal patients with early breast cancer, 

a superior benefit was reported with the use of aromatase 

inhibitors.76–80 In the metastatic setting, another therapeutic 

option is offered by the pure ER antagonist fulvestrant, which 

is now approved for postmenopausal patients in progression 

after antiestrogen therapy.90 Since the publication of the 

intrinsic gene signature, the existence of at least two sub-

types of ER-positive breast cancers have been unanimously 

acknowledged. Luminal A and luminal B breast cancer cases 

are characterized not only by distinctive expression levels 

of ER, PgR, tumor grade, proliferation-related genes, and 

pathways activation, but also by a very different prognostic 

and predictive impact.5,6 In particular, the low expression 

of ER, found in luminal B tumors, correlates with poorer 

sensitivity to antiestrogen therapies as compared to luminal 

A cancer; whereas, the high tumor grade proliferation index 

that is characteristic of the luminal B subtype may justify 

at least in part the greater benefit from cytotoxic treatments 

compared with luminal A, as reported in the Spanish Breast 

Cancer Research Group (GEICAM)/2006-03 neoadjuvant 

trial.107 On the other hand, luminal B tumors demonstrated 

fewer benefits from chemotherapy when compared to HER2-

enriched and basal-like breast cancer cases.108 As many 

endocrine therapies are now available for the oncologist and 

therapeutic decisions are still based on menopausal status, 

it is intuitive that new predictive and targetable markers are 

urgently needed for ER-positive and, particularly, in luminal 

B breast cancer patients.

Overcoming hormonal resistance  
by new targeted treatment
Presuming that breast cancer can acquire resistance to 

endocrine therapies through pathways that are alternative to 

ER activation, and since the phosphatidylinositol 3-kinase 

(PI3K)-serine/threonine-specific protein kinase (AKT)-

 mammalian target of rapamycin (mTOR) cascade is one of the 

main downstream nongenomic signals of the ER (Figure 1), 

it is intuitive to hypothesize that the mTOR blockade can 

restore hormone sensitivity.109

The most currently developed mTOR inhibitor in the 

clinical phase is everolimus, and the Phase III study that 

led its registration in the metastatic setting is the Breast 
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cancer trials of OraL EveROlimus-2 (BOLERO) trial.110 

In this study, 724 women with advanced breast cancer 

were randomized to receive exemestane (25 mg daily) 

plus everolimus (10 mg daily) versus exemestane plus 

placebo. This study proved that the addition of everoli-

mus to hormonotherapy prolongs PFS from 2.8 months 

to 6.9 months, according to the local investigators, 

and from 4.1 to 10.6 months, according to the central 

reviewer, at the preplanned interim analysis (P,0.001). 

At two later follow-ups, PFS was confirmed as statisti-

cally longer in the exemestane plus everolimus arm (7.4 

versus 3.2 months and 7.8 versus 3.2 months, respectively, 

at the local assessment and 11.0 versus 4.1 months in 

both cases as per central assessment).111,112 On the basis 

of this study, both the FDA and European Medicines 

Agency (EMA) approved everolimus in combination with 

exemestane for the treatment of postmenopausal patients 

with advanced hormone-receptor positive, HER2 negative 

breast cancer, after recurrence or progression to letrozole 

or anastrozole.113,114 A recent exploratory study on 227 

patients treated in the BOLERO 2 trial – 157 in the everoli-

mus plus the exemestane arm and 70 in the placebo plus 

the exemestane-alone arm – investigated the possibility of 

discovering the gene alterations predictive of the response 

to everolimus.115 The analysis by NGS of 3,230 exons of 

182 oncogenes and tumor suppressor genes revealed – 

among the most common alterations – the PIK3CA (43%, 

most frequently missense) and TP53 (23%) mutations 

and FGFR1 (18%) and CCND1 amplifications (31%). 

Considering these genes one by one, wild-type (WT) and 

altered patients benefited equally from the combination 

therapy with everolimus, except for the cases of fibroblast 

growth factor receptors (FGFR) amplifications. Indeed, it 

seems that there is a reduced effect of mTOR inhibition in 

FGFR1/FGFR2 amplified cases. This data is only appar-

ently in discord with the PIK3CA mutational substudy 

of the Phase II clinical trial that compared neoadjuvant 

letrozole plus everolimus versus letrozole plus placebo, 

where the mutations in the PIK3CA exon 9 helical domain 

were associated with a better response in terms of the 

proliferation index Ki67 reduction with the combination 

therapy compared to letrozole alone.116 In fact, the PI3KCA 

mutations in that study were not associated with a specific 

benefit from everolimus, but rather to a reduced benefit 

from hormonotherapy. Interestingly, considering the com-

bination of the different gene statuses, patients with no 

or only one genetic alteration in PI3K/phosphatase and 

tensin homolog (PTEN)/cyclin D1 (CCND1) or FGFR1/

FGFR2 had the greatest benefit adding everolimus to 

hormonal treatment (hazard ratio 0.27 versus 0.40 of the 

full population). Even though preliminary, and with the 

limitations of an analysis performed mostly on the primary 

tumor rather than the metastatic sites, the BOLERO 2 

results suggest that it is extremely improbable that a single 

biomarker could be responsible for everolimus efficacy, 

while a simultaneous analysis of the genes involved in the 

mTOR cascade is exploitable for future studies.

HeR2-positive breast cancer
HER2 is a tyrosine-kinase transmembrane receptor of 

the HER family that is amplified in about 20% of breast 

cancer and that confers an aggressive phenotype and poor 

prognosis profile.117 The humanized monoclonal antibody 

trastuzumab was the first therapy against the extracellular 

domain of the HER2 and revolutionized the clinical out-

come of the HER2-positive breast cancer patient, both in 

the early and metastatic setting.2,3,118,119 The mechanism 

of the action of trastuzumab includes the inhibition of 

ligand-independent HER2 activation, the activation of 

antibody-dependent cellular toxicity, and the HER2 extra-

cellular domain cleavage.120 However, trastuzumab does 

not inhibit the heterodimerization of HER2 with other 

members of the HER family, especially HER3.121 This 

is probably one of the main mechanisms of resistance to 

this drug. Consequently, many efforts have been made to 

develop alternative anti-HER2 treatments acting at dif-

ferent levels, such as the small-molecule tyrosine kinase 

inhibitor (TKI) directed both to HER2 and HER1, lapa-

tinib, which has been already registered for the treatment 

of metastatic breast cancer in association with capecitabine 

or hormonotherapy.122,123 Another new anti-HER2 agent is 

pertuzumab, a humanized monoclonal antibody that binds 

the HER2 dimerization domain, impairing its dimerization 

with other HER2 proteins or HER2-family members. This 

mechanism of action induced researchers to suppose its 

possible synergic effect in association with trastuzumab. 

This hypothesis has been largely demonstrated in both the 

metastatic and in the early setting, in the CLEOPATRA 

(CLinical Evaluation Of Pertuzumab And TRAstuzumab) 

study and in the NeoSPHERE (Neoadjuvant Study of Per-

tuzumab and Herceptin in an Early Regimen Evaluation) 

trial, respectively.124,125 A subsequent pharmacological 

development of trastuzumab is the antibody conjugated 

to a derivative of maytansine trastuzumab emtansine 

(T-DM1), which demonstrated a high antitumoral effect 

and a very low toxicity profile.126
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HeR2 breast cancer heterogeneity
HER2 status can be determined at protein, DNA, and RNA 

level. Current assays to evaluate the HER2 status in breast 

cancer include IHC and in situ hybridization. In clinical 

practice, a tumor is defined as HER2-positive if 3+ at IHC on 

a scale of 0–3, uniform intense membrane staining of .30% 

of invasive tumor cells, or fluorescence in situ hybridization 

(FISH) amplified, ie, ratio of HER2 to centromeric region 

of chromosome 17 (CEP17) of .2.2 or average HER2 gene 

copy number .6 signals/nucleus for those test systems with-

out an internal control probe.127 The degree of HER2  staining 

intensity is very variable among HER2-positive cases, 

but it did not show a prognostic or predictive value.128–130 

Another intriguing way to investigate the HER2 status is the 

recently released HERmark™ (Monogram Biosciences, San 

Francisco, CA, USA) breast cancer assay.131 This technique 

allows measurement of both the total HER2 protein and the 

functional HER2 homodimer level on the breast cancer cells’ 

surface. If validated in prospective trials, HERmark™ could 

be a useful, predictive marker of trastuzumab sensitivity.

Increasing evidence demonstrates that aberrations of 

the HER2 protein can affect tumor sensitivity to targeted 

therapies. The mainly studied HER2 alteration is the p95-

HER2 truncated form. This isoform is the result of a 95-kDa 

or 100-kDa break of the carboxy terminal fragment of the 

HER2 that is lacking the binding epitope of trastuzumab and 

that is able to constitutively form homodimers, which activate 

not only the HER2 classical downstream pathway, but also 

other molecular effectors involved in the metastasization pro-

cess.132,133 As a consequence, the p95-HER2 positive tumors 

have proved to be a highly aggressive subgroup of HER2-

positive breast cancer characterized by a poor prognosis.134 

Due to its conformation, it is intuitive that p95-HER2 is 

not inhibited by trastuzumab, which binds the extracellular 

domain of HER2. Preliminary data in the metastatic setting, 

using immunofluorescence assays, proved that the p95-HER2 

positive patients are resistant to treatment with trastuzumab 

and sensitive to lapatinib as p95-negative patients.135–137 The 

p95-HER2 is, therefore, not only a poor prognosis marker, 

but it is also a possible predictive biomarker of response to 

biological treatments. However, recent neoadjuvant studies, 

which analyzed p95 by IHC, did not replicate the findings 

obtained in patients with metastatic disease. This controver-

sial data can be ascribed to the poor specificity of the anti-p95 

antibody used and – secondarily – to the coexpression of p95 

with the full-length HER2.

Therefore, no definite conclusion on the value of p95 in 

clinical practice can be drawn until the use of a more specific 

antibody and a simultaneous analysis of the levels of HER2 in 

the samples with truncated forms. In this sense, the upcom-

ing results of the analysis of the Neo ALTTO (Neoadjuvant 

Lapatinib and/or Trastuzumab Treatment Optimisation) study, 

which treated patients with neoadjuvant trastuzumab, lapa-

tinib, or their combination, are awaited with great expectation. 

Ongoing studies are also evaluating another alteration of the 

HER2 protein represented by a splice variant lacking exon 16, 

which is found in breast cancer patients, and is able to confer 

trastuzumab resistance in preclinical models.138

Among HER2-positive breast cancer patients, those with 

ER-positive tumors are emerging as a different subgroup with 

a distinct prognosis and therapeutic outcome. ER is present in 

about 50% of the HER2-positive tumors, albeit with a lower 

rate in comparison with HER2-negative cases.139 The formal 

molecular definition of HER2 and ER positive breast cancer as 

a distinct subtype came from molecular profiling. Indeed, both 

the PAM50 gene signature and the aforementioned ATLAS 

(ATLAS.ti Scientific Software Development GmbH, Berlin, 

Germany) analysis identified this good prognosis subgroup 

as luminal-mRNA subtype/HER2-positive, whose main 

characteristic is the overexpression of luminal genes.42,140 

Preclinical models have explored in depth the crosstalk 

between ER and HER2, revealing a bidirectional scenario, in 

which ER mediates anti-HER2 resistance and vice versa.141–144 

The ER expression in HER2-positive breast cancer has been 

shown to be not only a prognostic marker, but it also predicts 

benefit from chemotherapy and trastuzumab.145 In addition, 

the difference in response rates to the HER2-targeted therapy 

between HER2-positive breast cancer patients with positive 

or negative expression of ER emerged dramatically in the 

neoadjuvant setting. Of note, the low rate of response to the 

HER2-targeted agents of the HER2 and ER positive breast 

cancer triples with the combination of hormonotherapy. There-

fore, there is a growing need for additional markers of tumor 

response to hormone- and HER2-targeted therapy to further 

advance the field for women diagnosed with HER-positive 

and ER-positive tumors and to spare cytotoxic treatment 

when unnecessary.

As far as predictive biomarkers for trastuzumab sensitiv-

ity are concerned, it is important to mention the role of the 

immune system. In fact, the inhibition of ligand-independent 

HER2 activation is not the only mechanism of action for 

trastuzumab, which is also able to activate both the innate 

and adaptive immune response through antibody-dependent 

cellular toxicity. There is emerging evidence about how the 

immune system plays a major role in the clinical effective-

ness of anti-HER2-directed therapies analyzed in depth by 
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Andre et al.146 However, no immune marker is currently 

available in clinical practice.

Overcoming anti-HeR2 resistance  
by new targeted treatments
One of the main trastuzumab-resistance mechanisms is the 

activation of the downstream pathways, potentially due to a 

number of factors, including loss of PTEN, PI3K mutations, 

PI3K and Src activation by other receptors, such as insulin-

like growth factor 1 (IGF-1R), MET, erythropoietin receptor 

(Epo-R), and ephrin type-A receptor 2 (EPHA2).147 Because 

mTOR is the ultimate player of this pathway, its inhibition 

may overcome all these anti-HER2 escapes. In particular, the 

BOLERO 3 trial evaluated the clinical benefit of everolimus 

when combined to trastuzumab and vinorelbine in the meta-

static HER2-positive and trastuzumab-resistant breast cancer 

patients pretreated with taxanes.

The preliminary results of this randomized Phase III 

trial were presented at the 2013 American Society of Clini-

cal Oncology annual meeting.148 Patients were randomized 

to receive weekly vinorelbine 25 mg/m2 intravenously, plus 

weekly trastuzumab 2 mg/kg, plus either daily everolimus 

5 mg by mouth or placebo. The primary endpoint was PFS. 

The addition of everolimus significantly improved PFS from 

5.78 to 7.00 months (P=0.0067), while the OS data are not 

available yet. What is really interesting is the subgroup analy-

sis. Indeed, the greatest benefit from the mTOR inhibition was 

obtained in a very clear subpopulation of patients younger 

than 65 years old without liver involvement, and – even more 

relevant – the patients who received trastuzumab in the early 

stage of disease (adjuvant or neoadjuvant setting) and who 

did not express hormone receptors. This last observation 

entails many questions about the use of mTOR inhibitors in 

the HER2-positive patients: should this therapy be restricted 

to ER-negative disease or should the additional combination 

of everolimus plus anti-HER2 therapy plus antiestrogen-

targeted treatment be hypothesized? Further studies are 

essential to address these questions. Another fundamental 

study whose results are still awaited is the BOLERO 1 trial, 

a randomized, Phase III study of everolimus in combination 

with trastuzumab and paclitaxel as first-line treatment in the 

HER2-positive metastatic breast cancer patients.149

Another druggable target to overcome the anti-HER2 

resistance is represented by the heat shock protein 90 

(Hsp90). Hsp90 is the ubiquitous well-conserved adenosine 

5′-triphosphatase that fulfills a crucial role in the protein 

synthesis processes, found overexpressed in many types of 

tumors, and involved in a variety of oncogenic pathways. It 

allows cancer cells to survive despite exogenous and endog-

enous injuries.150 As HER2 is an Hsp90 client, a synergistic 

activity of their inhibitors has been hypothesized and demon-

strated in preclinical models.151,152 At least 13 Hsp90 inhibi-

tors have entered clinical development in a variety of tumors, 

including breast cancer, and have already shown their poten-

tial, even in the very early clinical study phase and despite the 

difficulties due to the low pharmacokinetic and the high toxic 

profile of their predecessors.153 First, tanespimycin (17-AAG) 

showed promising activity in combination with trastuzumab 

in pretrastuzumab-treated metastatic HER2-positive breast 

cancer patients.154,155 Indeed, in a Phase II trial, the overall 

response rate was 22%, with a clinical benefit rate of 59%. 

These encouraging results stress the biological rationale and 

the clinical utility of combining the Hsp90 inhibition to the 

anti-HER2 treatment. It is not our objective to discuss every 

Hsp90 inhibitor that is under clinical development in breast 

cancer. A very detailed review about this topic is in press.156 

It is very interesting to note that the p95-HER2 showed to 

be Hsp90-dependent, both in vitro and in vivo. Preclinical 

models demonstrated that the Hsp90 inhibition can suppress 

the p95-HER2 pathway and the tumor cells’ proliferation, 

and that the trastuzumab-resistant p95-HER2-positive cancer 

cells are Hsp90-inhibitor sensitive.157 As we have discussed 

above, the p95-HER2 is a poor prognosis marker and is a 

predictive factor for trastuzumab resistance. These very early 

results opened a window for this poor prognosis subgroup.

Selected examples of novel 
clinical molecular diagnostics 
and cancer therapeutics
Pi3K pathway dysregulation and 
resistance to breast cancer treatment
The PI3K-AKT-mTOR pathway plays a pivotal role in breast 

cancer oncogenesis, progression, and resistance to both the 

ER and the HER2-targeted therapies.158 The complexity of 

this axis allows the possibility of accumulating alterations 

in many of its steps, making it a very ambitious target. 

Indeed, there are several inhibitors in clinical development 

that act at different levels of this cascade: pan-PI3K inhibi-

tors, isoform-specific PI3K inhibitors, dual PI3K/mamma-

lian target of rapamycin complex (mTORC)1/2 inhibitors, 

mTORC1/2 inhibitors, and pan-AKT inhibitors. Further-

more, emerging evidence indicates that different subtypes 

of breast cancer present distinct alterations in the PI3K-sig-

naling cascade, making a focused diagnostic and therapeutic 

approach essential, case by case.159 Among the number of 
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alterations that occur to the PI3K gene, mutations within 

exon 9 of the helical domain and exon 20 of the catalytic 

domain are the most common.160 Other mechanisms by which 

the PI3K-AKT-mTOR pathway is abnormally activated are: 

the PI3K and AKT2 gene amplification, AKT1 mutations, 

and the loss of PTEN, its physiological inhibitor by loss of 

heterozygosity or hypermethylation of its promoter.161–163 

The PI3K-AKT-mTOR pathway abnormal activation has 

been related to trastuzumab and lapatinib resistance and 

poor outcome.164–166

One of the main mechanisms by which PI3K-AKT-

mTOR pathway is constitutively active in cancer is the loss 

of PTEN. Thus, it is not surprising that the loss of PTEN 

has been associated with a worse prognosis and trastuzumab 

resistance.167

We have already mentioned the solid connection between 

the PI3K-AKT-mTOR pathway and the ER signaling that 

lead to the registration of the mTOR inhibitor everolimus in 

ER-positive patients. From a predictive point of view, in the 

preclinical models PI3K-AKT-mTOR activation has been 

related with resistance to all the hormonal therapies avail-

able, making it a very promising target for the combination 

strategies.168–170

Currently available therapies  
for Pi3K-activated breast cancer
The first generation of PI3K inhibitors did not go beyond 

the preclinical phase because of their poor pharmacoki-

netic profile and their high toxic effects. Many of the 

second-generation PI3K inhibitors are in clinical develop-

ment. One of the most advanced is BKM120, a pan-PI3K 

inhibitor that is now in a Phase III clinical stage in two 

different ongoing protocols.171 The Buparlisib brEast 

cancer cLinicaL Evaluation (BELLE) 2 trial evaluates 

the association of BKM120 to fulvestrant in postmeno-

pausal patients with HR-positive/HER2-negative locally 

advanced or metastatic breast cancer refractory to AIs 

(NCT01610284).172 The BELLE 3 trial is studying the 

same regimen in the same subgroup of patients but who 

progressed on or after mTOR inhibitors (NCT01633060).173 

BKM120 is also under investigation in the HER2-positive 

patients, following the Phase I trial of combination with 

trastuzumab in the trastuzumab-resistant patients.174 This 

early study demonstrated that the PI3K inhibition could 

restore the sensitivity to the anti-HER2 targeted therapies. 

Other promising PI3K inhibitors include GDC 0941, XL 

147, BYL 719, an isoform-specific inhibitor, and BEZ235, 

a dual PI3K-mTOR inhibitor.175–177

Currently, no exhaustive clinical data are available about 

the effect of PI3K mutations on the sensitivity to PI3K 

inhibitors. In the context of the Phase I program at the MD 

Anderson Institute at The University of Texas (Austin, TX, 

USA), the mutational status of PIK3CA, along with K-RAS, 

N-RAS, and BRAF, has been evaluated in patients with several 

types of tumors, including breast cancer, treated with mTOR 

inhibitors.178 In this study, authors reported a higher response 

rate in patients harboring PIK3CA mutations compared to 

the WT ones (30% versus 10%). However, this data contain 

many issues , as there is no preclinical definitive evidence of 

the correlation between the PIK3CA mutational status and the 

benefit from the PI3K inhibitors, even taking into account the 

many differences in isoform-specific drugs.179 Furthermore, 

due to the complexity of the PI3K-AKT-mTOR pathway, sev-

eral other steps, including crosstalk with the other signaling 

cascade, may affect tumor susceptibility. As an example, in 

preclinical models, the inhibition of the PI3K-AKT-mTOR 

signal resulted in a negative feedback loop with the drawback 

activation of the RAS-RAF-MEK-ERK pathway.180

FGFR amplification
The FGFR family includes four tyrosine-kinase receptors 

(FGFR1, FGFR2, FGFR3, and FGFR4) that have been 

deeply involved in tumorigenesis.181 Only sporadic examples 

of FGFRs’ mutations have been identified in breast cancer 

patients, while amplifications appear to be prevalent. The 

different receptors are not crosswise represented, but they 

are associated to particular biological subtypes, making 

FGFRs excellent candidates for the single-patient thera-

peutic choice. Even if the FGFR1 amplification range in 

the general breast cancer population varies from 7%–17%, 

in luminal B, it reaches 27%.182,183 The FGFR2 amplifica-

tion has been reported in 4% of triple negative breast 

cancer.184

Relationship between FGFR activation 
and response therapy
The possible prognostic and predictive impact of the FGFRs 

has been hypothesized, especially for FGFR1, which has been 

related to chemotherapy sensitivity, resistance to hormone 

treatments, and to poor prognosis.183,185,186

Whether this behavior depends on FGFR1 amplification 

itself or on its association with the luminal B subtype is still 

unknown. Single observations suggested there was a correla-

tion between the FGFR2 protein levels and a poor prognosis 

as well as between FGFR3 and tamoxifen resistance, and 

between FGFR4, tamoxifen sensitivity, and prognosis.187–189

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine 2014:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

emerging diagnostic and targeted treatment for breast cancer patients

Currently available therapies  
for FGFR-activated breast cancer
Despite the relatively young age of FGFR as a potential target 

in cancer treatment, several therapeutic approaches have been 

already attempted. The most advanced in clinical development 

are the tyrosine kinase inhibitors. Two subsequent generations 

of FGFR-directed TKIs are already in Phase II studies. The first 

generation is represented by multitargeting adenosine triphos-

phate competitive inhibitors, whereas the second generation 

targets selectively FGFR and is characterized by a higher 

potency. The most advanced first-generation small molecules 

that inhibit FGFR are TKI258 (dovitinib), BIBF 1120 (inte-

danib), and BMS540215 (brivanib). Dovitinib targets FGFR, 

platelet-derived growth factor receptor (PDGFR), and vascular 

endothelial growth factor receptor (VEGFR). In a Phase II trial, 

treatment with dovitinib induced an unconfirmed response or 

stable disease for more than 6 months in 25% of patients with 

FGFR1-amplified ER-positive and HER2-negative metastatic 

breast cancer, but only in the 3% of the FGFR1 not-amplified 

cases.190 Another possible way to target the FGFR pathway is 

with monoclonal antibodies binding the FGFR, ligand traps, 

or downstream blockage, but they are still in a very premature 

development phase. Taken together, these results suggest that 

the FGFRs’ amplification status could be not only a predictive 

and prognostic marker, but it could also be a potential antitumor 

target and that the FGFR inhibition could be a valid approach 

for a selected subpopulation of breast cancer patients, probably 

in association to conventional therapies.

Future directions of diagnostics  
and therapeutics in breast cancer:  
the HER2-positive lesson
Recent neoadjuvant studies in the early HER2-positive 

disease represent the ideal model of how new targeted 

therapies can be tested in parallel with correlative studies 

on biomarkers. In the Neo ALTTO study, the combination 

of trastuzumab plus lapatinib to standard chemotherapy 

resulted in a pathological complete response (pCR) rate of 

51% versus 24%–29% of patients treated with chemotherapy, 

plus a single HER2 blockade.191

Similarly, in the NeoSPHERE trial, the therapeutic 

scheme including both trastuzumab and pertuzumab plus che-

motherapy resulted in a 46% pCR rate.125 It is very interesting 

to note that in this trial a treatment arm was planned to receive 

only the targeted combined therapies before the surgery, 

postponing chemotherapy to the adjuvant setting. In this 

subgroup, a 17% pCR rate was obtained, pointing out the 

existence of a minority of patients who could be theoretically 

cured without the use of cytotoxic regimens. Unfortunately, 

no markers are available for the prediction of which popula-

tion would not need chemotherapy, that therefore remains 

not excludable from a therapeutic plan so far. An interesting 

substudy of the NeoSPHERE trial identified the high pro-

grammed cell death-1 ligand-1 expression as a poor predic-

tive marker for the pCR in all the chemotherapy-containing 

arms. (The subgroup treated with only targeted therapies 

in the neoadjuvant setting showed a similar trend). A good 

predictive value was associated to high interferon gamma 

and/or the signal transducers and activators of transcription 

1 expression. These preliminary results highlight the role of 

the immune system in response to the anti-HER2 treatments 

and paves the way to new therapeutic combinations (anti-

programmed cell death-1 ligand-1).192

In the metastatic setting, there are many anti-HER2 thera-

pies, but disappointingly, no marker is still available to define 

the best anti-HER2 agent or combined therapy and the best 

order of treatment for breast cancer patients. A critical com-

parison between pertuzumab, T-DM1 and lapatinib derived 

from three randomized clinical trials (CLEOPATRA, EMILIA 

and EGF 104900) allows us to assume that a possible sequence 

for the anti-HER2 treatments still strictly depends on the 

level of sensitivity displayed by the disease to trastuzumab. In 

patients not treated with trastuzumab or showing a recurrence 

after more than 1 year from the adjuvant therapy, the first-line 

treatment of choice seems to be a combination of chemo-

therapy, trastuzumab, and pertuzumab, followed by T-DM1, 

capecitabine, and lapatinib and – finally – trastuzumab and 

lapatinib combinations.124,126,193 On the other hand, for patients 

with unknown or limited responsiveness to trastuzumab (less 

than 1 year before the recurrence of the disease), there is no 

preferred first-line therapy, and if an experimental treatment 

is not available, the T-DM1 is a reasonable option. In fact, 

clinical trials for patients recurring early after the adjuvant 

trastuzumab, are missing, whereas this patient population is 

increasing and urgently deserves dedicated therapies. As far 

as biomarkers for the outcome prediction and the prognosis 

are concerned, the substudy from EMILIA indicates that the 

HER2 mRNA levels are associated with a better outcome, 

and patients displaying high HER2 mRNA levels showed an 

enhanced survival benefit from T-DM1 treatment. Both the 

EMILIA and the CLEOPATRA studies analyzed the muta-

tional status of PIK3CA, demonstrating that the mutational 

status of this gene is associated to poor prognosis. These 

studies reported a higher beneficial effect of combined HER2 

double blockade in WT patients, while patients carrying a 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

14

Tessari et al

mutant allele of PIK3CA displayed a higher sensitivity to the 

T-DM1 treatment.

Conclusion
In conclusion, new technologies are significantly improving 

our knowledge about the prognostic and predictive  biomarkers. 

Many new targeted therapies will soon be available for experi-

mentation, but the large studies are required to identify specific 

subsets of patients who will take advantage of these treatments. 

Moreover, these investigations will also provide us with data 

sets that could allow the clinician to predict the possibility 

to safely avoid standard chemotherapy for specific patients, 

preventing them from undergoing all the toxic side effects 

associated with conventional anticancer treatments.
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