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Abstract: Heat shock proteins are essential cellular proteins that are highly conserved across 

organisms and contribute to adaptive responses of organisms during changing environmental 

conditions. Protein members of the families of heat shock genes can be differentially regu-

lated in response to stressors and play critical roles in protein stability, folding, and molecular 

 trafficking. We used a crustacean species with strong adaptability to diverse environments, the 

crayfish Procambarus clarkii, to study expression profiles of two well known heat shock genes, 

Hsp90 and Hsp70. This crayfish can withstand a broad range of temperatures, and its adapt-

ability contributes to its value for human use as an agricultural food source and as a biological 

control agent against snails that transmit schistosomiasis. However, it has become a harmful 

invasive species in some areas. To begin to understand the thermal resilience of P. clarkii, 

we  identified and cloned Hsp90 from crayfish by degenerate polymerase chain reaction in 

conjunction with rapid amplification of 3′ and 5′ cDNA ends, and subsequently sequenced 

and characterized the molecular chaperone. Sequence analysis by phylogenetic alignment and 

polypeptide three-dimensional structure prediction of the newly identified Hsp90 gene shows 

that it has conserved motifs with Hsp90 s in other species. Using quantitative polymerase chain 

reaction, we characterized the expression profiles of Hsp90 and Hsp70 in muscle and in central 

nervous system tissues. We found that Hsp70 and Hsp90 transcripts are upregulated under heat 

stress in both muscle and the central nervous system, but that their expression levels are more 

robustly increased in muscle.

Keywords: crayfish, stress response, Procambarus clarkii, heat shock protein, Hsp90, 

schistosomiasis

Introduction
Procambarus clarkii is a freshwater crayfish species native to southern North America, 

with a high tolerance to environmental extremes.1 When compared with another closely 

related crayfish species, P. clarkii has a much greater survival rate after exposure to 

photoperiod stresses2 and to high temperatures.3 P. clarkii has a temperature prefer-

ence of around 22°C, but can acclimate successfully to temperatures from 5°C to 

35°C.1 The ability of the American crayfish to adapt to diverse conditions has led to 

its success as an invasive species in many areas of the world, particularly in Europe 

and Africa, and to its use as one of the most important freshwater decapods farmed 

for human consumption.4 Since its introduction in Africa in the mid 1900s, it has also 

had a significant impact on reduction of the snail populations that serve as interme-

diate vectors5–7 for transmission of the parasitic schistosome worms responsible for 

more than 200 million human infections annually.8 The resilience of P. clarkii makes 
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it an interesting model for the study of cellular tolerance to 

environmental changes, such as temperature extremes.

Heat shock proteins are a family of evolutionary con-

served proteins that mediate the homeostatic cellular response 

to stress,9 and were first characterized in Drosophila after 

exposure to temperature extremes.10–14 Transcription of genes 

encoding heat shock proteins can be induced by a variety 

of stressors, including osmotic changes, hypoxia, exposure 

to toxins, infections, a range of pathologic conditions, and 

protein damage.9–11 Heat shock proteins primarily function 

as molecular chaperones, facilitating protein synthesis and 

 folding, and maintaining structural integrity while partici-

pating in the regulation of transcription factors and protein 

kinases in order to assist in the modulation of signal transduc-

tion cascades and sustain cellular homeostasis.15,16

Heat shock proteins are grouped into six major families 

defined according to their molecular weight, and of these, 

Hsp70 and Hsp90 are the most abundant.9 The Hsp70 

family of heat shock proteins represents one of the largest 

stress families distributed across organisms. Hsp70 prevents 

proteins from aggregating by binding tightly to partially syn-

thesized polypeptides, assists in the transmembrane transport 

of proteins, and participates in the disposal of damaged or 

defective proteins.17–19

Hsp90 is the most abundant of the heat shock proteins, 

representing almost 1% of the total cellular protein in 

unstressed cells.10,20 It functions as a molecular chaperone 

in maturation and activation of the proteins that are impor-

tant for growth and development, such as members of the 

steroid receptor family,21–23 several protein kinases (Src 

family, Raf family, MAP kinases),22–25 the tumor suppressor 

p53,26 and telomerase.25,27 Under stress conditions, Hsp90 

also works as a protective agent in protein renaturation 

and refolding.28

Both Hsp70 and Hsp90 play a role in neuronal develop-

ment and cellular maintenance, but can also promote disease 

pathology.29,30–36 For example, Hsp70 can act to protect the 

nervous system from toxic effects due to progression of 

neurodegenerative disease in mammals,37 whereas Hsp90 

is thought to maintain disease conditions in tauopathies. 

Hsp90 can also act to repress Hsp70 and other heat shock 

proteins.38,39 Thus, both positive and negative transcriptional 

regulation of heat shock proteins is likely to be important for 

protection of the central nervous system (CNS) and other 

tissues. The relative expression of Hsp70 and Hsp90 genes 

is dependent on tissue specificity and stress type.

In studies examining the stress response in crustaceans, 

Hsp70 and Hsp90 are the most widely studied. As expected, 

expression of these genes is altered in response to thermal or 

other environmental stresses,1,2,40–42 and for  spermatogenesis.43 

In the CNS, these proteins may be required for axonal regen-

eration after molting44 and as part of the unusual and extensive 

ability of crustaceans to recover from wounds and to repair 

damaged nervous tissue.41,45,46 P. clarkii axons in particular 

are unusually resilient to insult and remain functional for 

months after injury.41 Hsp70 and Hsp90 levels are elevated at 

sites adjacent to injured tissue.47 In lobsters, Hsp70 protein is 

elevated after heat shock at 26°C for 2 hours, ie, 13°C above 

normal equilibrium temperature.40 To date, only expression of 

Hsp70 has been reported in the P. clarkii CNS,41,48 but nothing 

is known about Hsp90 expression in P. clarkii.

P. clarkii is one of the most successful invasive species of 

crayfish worldwide. Native to northeastern Mexico and the 

southern US, P. clarkii has adapted to a wide environmental 

global range on every continent except Australia and Antarc-

tica.49 Since Hsp70 and Hsp90 play important roles as stress 

proteins, we characterized the effects of thermal stress on 

P. clarkii by measuring transcript levels of Hsp90 and Hsp70 in 

claw muscle and the CNS in crayfish. In this study, we identi-

fied, isolated, cloned, and characterized full-length cDNA of 

the Hsp90 gene from P. clarkii. Our simple hypothesis was 

that the transcript levels of Hsp70 and Hsp90 in crayfish would 

be elevated. Using quantitative real-time polymerase chain 

reaction (PCR), we show that Hsp70 and Hsp90 transcripts 

are both upregulated after thermal stress in P. clarkii, but also 

that these transcripts show significant differential transcript 

level patterns in the CNS and in muscle.

Materials and methods
animals
Adult P. clarkii were obtained from Niles Biological Inc 

(Sacramento, CA, USA) and maintained on a 12-hour light-

dark cycle in aquaria with water. Only intermolt animals were 

selected for the study.50 The animals were acclimated to 20°C 

in individual tanks for at least one week prior to experiments 

to minimize nonspecific stress. The animals were fed pieces 

of carrot every 2 days.

Thermal stress
All experimental animals were exposed to acute thermal 

stress (35°C) for 2 hours in individual tanks as previously 

described.51 Before treatment, a heater (CA200, Teco, 

Ravenna, Italy) was placed into the tank to increase the tem-

perature from 20°C to 35°C, a 15°C thermal stress change. 

Five animals were sacrificed immediately on  completion 

of the 2-hour thermal stress treatment. Portions of the claw 
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muscles, ventral nerve cord, and brain of each animal were 

removed and desheathed in a chilled crayfish saline solution 

(5.4 mM KCl, 205.3 mM NaCl, 13.5 mM CaCl
2
, 2.6 mM 

MgCl
2
, 2.3 mM NaHCO

3
, and 2.0 mM dextrose, pH 7.2–7.4). 

For all nervous tissue described, samples are a combination 

of brain and ventral nerve cord. Five unstressed control 

animals were sacrificed and tissue samples were collected 

as described above.

cloning of Hsp90 gene
We cloned and sequenced the complete Hsp90 from the 

P. clarkii crayfish. First, 3′ rapid amplification of cDNA ends 

(RACE) using degenerate primers was based on conserved 

amino acid and nucleotide alignments from Portunus tritu-

berculatus, Eriocheir sinensis, Chiromantes haematocheir, 

Penaeus monodon, Drosophila melanogaster, and Homo 

sapiens. The primer for 5′ RACE was designed based on 

DNA sequences identified by 3′ RACE.

Total RNA was extracted from muscle and CNS tissues 

of the experimental and control animals using the PureLink 

RNA mini kit with TriZol reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s instructions. DNAseI 

was performed to eliminate DNA contamination. Both 3′ and 

5′ RACE were performed with the SMART RACE cDNA 

amplification kit (Clontech, Palo Alto, CA, USA). Briefly, 

for 3′ RACE, first-strand cDNA was reverse-transcribed from 

1 µg total RNA using the 3′ RACE cDNA synthesis primer 

(3′-CDS) from the kit. Next, a partial sequence of the P. clarkii 

Hsp90 transcript was selectively amplified using a degenerate 

Hsp90 primer oLS090 (5′-CARTTYATTGGCTAYCCMAT-

CAAG-3′) and the universal primer mix. PCR was performed 

by incubation of cDNA with Phusion polymerase in a Mul-

tigene gradient (Labnet, Edson, NJ, USA) programmed for 

32 cycles of the following temperature schedule: 98°C for 

8 seconds, 61°C for 20 seconds, and 72°C for 20 seconds. 

For 5′ RACE, first-strand cDNA was reverse-transcribed 

from 1 µg of total RNA using 5′-CDS and SMART-IIA 

oligonucleotide provided in the kit. In the following PCR 

step, selective amplification of 5′ Hsp90 sequences used the 

primer oLS091 (5′-CCACGTTCGGCATGTCGTCTTTTT-

TAGCAGCCTCGT-3′) based on 3′ RACE sequencing and 

a universal primer mix. PCR was performed as described 

earlier. After characterization on agarose gel and purifica-

tion with the  Wizard® SV gel and a PCR clean-up system 

(Promega, Madison, WI, USA), 3′ and 5′ RACE PCR 

products were cloned into a PCR 2.1 vector (Invitrogen) for 

transformation of TOP10 chemically competent Escherichia 

coli cells (Invitrogen) and sequenced by Elim Biopharma-

ceuticals Inc (Hayward, CA, USA) to identify the complete 

cDNA sequence and predict the protein sequence (Figure 1). 

The P. clarkii Hsp90 transcript sequence was submitted to 

Genbank and given the accession number JQ995601.

Quantitative PcR
Primers specific for quantitative PCR detection of Hsp70 

(Genbank, DQ301506.1), Hsp90, and β-actin (Genbank, 

FJ389458.1) were designed using Primer3 software (http://

frodo.wi.mit.edu/). The primers are listed in Table 1. The 

cDNA was prepared using a high-capacity RNA-to-cDNA 

kit (Applied Biosystems, Foster City, CA, USA) according to 

the manufacturer’s guidelines. First, 150 ng cDNA was used 

as a template in a 60 µL PCR reaction using Power SYBR 

Green Master Mix (Applied Biosystems) with 900 nM of the 

forward and reverse primers. Each reaction was split in 20 µL 

triplicates and PCR was performed on a  StepOnePlus™ 

real-time PCR system (Applied Biosystems). The samples 

were run for 40 cycles using the following program: 94°C for 

15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds. 

Detection of SYBR Green fluorescent intensity occurred at 

72°C of each cycle and was analyzed by StepOne system 

software. β-actin was used as the reference gene in all com-

parative threshold cycle (∆∆C
T
) experiments.52–54 The melt 

curve for each pair of primers revealed only one PCR product 

for any given reaction.

sequence analysis
The translated open reading frame of P. clarkii Hsp90 cDNA 

was determined using a publicly available translation tool 

(http://web.expasy.org/translate/). The molecular mass and 

theoretical isoelectric point was calculated using the pI/Mw 

Table 1 gene names and Dna primer sequences used for quantitative real-time polymerase chain reaction analysis

Gene name Forward primer Reverse primer Amplicon size

Primers for qRT-PcR
 Hsp70 cgagagagccaaacgaacTc caacaccagTTcaTggaTg 243 base pairs

 Hsp90 aaaaagacgacaTgccgaac agTggTccTcccagTcaTTg 219 base pairs
 β-actin cTgagcgTggcTaTTccTTc aaggaaggcTggaagagagc 175 base pairs

Abbreviations: Hsp, heat shock protein; qRT-PcR, quantitative real-time polymerase chain reaction analysis.
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tool (http://web.expasy.org/compute_pi/). The Simple Modu-

lar Architecture Research Tool (SMART) program (http://

smart.embl-heidelberg.de/) was used for motif predictions. 

DNA and amino acid similarity searches were conducted 

using Basic Local Alignment Tool for nucleotides (BLASTn) 

or proteins (BLASTp) with nucleotide or protein collection 

databases (http://blast.ncbi.nlm.nih.gov/). Deduced amino 

acid sequences were aligned with other Hsp90 proteins from 

arthropod species and a phylogenetic tree was generated 

using the neighbor-joining method (http://www.ebi.ac.uk/

Tools/msa/clustalw2/). Two chelicerates, Opistophthalmus 

carinatus and Tetranychus cinnabarinus, were used as out-

group controls and the gap penalty of the phylogenetic tree 

was set as the default value (Figure 2). The three-dimensional 

protein structure was predicted using the I-TASSER server 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/).55,56

Results
Identification and cloning  
of P. clarkii hsp90
The P. clarkii Hsp90 gene was identified and cloned based on 

sequence homology with previously reported Hsp90 proteins 

from other decapod crustacean species, ie, P. trituberculatus, 

E. sinensis, C. haematocheir, and P. monodon, an insect 

D. melanogaster, and Homo sapiens. A 2.63 kb cDNA clone 

encoding the full-length crayfish P. clarkii Hsp90 transcript 

was cloned by 5′ and 3′ RACE. It included an 82 base pair 

5′-terminal untranslated region, a 383 base-pair 3′-terminal 

untranslated region with a canonical polyadenylation signal 

sequence AATAA, and a 2,167 base pair open reading frame 

encoding a 718-amino acid protein. P. clarkii Hsp90 protein 

has a predicted molecular mass of 82.8 kDa and a theoreti-

cal isoelectric point of 4.88. The protein sequence contains 

five conserved amino acid motifs (Figure 1I–V) regarded as 

Hsp90 protein family signatures that are used to identify this 

family of proteins.57 In eukaryotes, Hsp90 has been found 

in the endoplasmic reticulum and in the cytosol. Cytosolic 

Hsp90 proteins have the conserved MEEVD sequence in 

their C-terminal ends, and a similar sequence (V/I) EEVD 

is seen in Hsp70 proteins. We observed the presence of a 

C-terminal sequence MEEVD motif which indicates that 

crayfish P. clarkii Hsp90 is a member of the cytosolic Hsp90 

family (Figure 1, open box).57

Phylogenetic analysis of P. clarkii hsp90
To further characterize P. clarkii Hsp90 protein relative 

to other arthropod Hsp90 proteins, we constructed an 

Hsp90 phylogenetic tree using ClustalWII (Figure 2). 

Phylogenetic analysis of the Hsp90 proteins sorted the 

tested samples into two groups made up of Crustacea and 
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241 P N V E DV G A ED  D A KD G L E AK K K MK VT K E K Y ME D E E L N K T K P L WT R N P D D SI Q E E

IV

I

II

III

Y G E F Y R S

301 L T N D W E D H AL  I K FH S V E QG

V
L E F R LA L F V P R R A P F D L F E N R K Q K N K I K L Y V R R V F I M D N C E

361 E L I P E Y L N IF  T G VV D S E LD P L N I RS E M L Q Q N K I L K V I R K N L V K K A M E L F E E L M E D K D S F K

421 K L Y E N F S K IN  K L IG H E D TS N R K K AL E F L R F Y T S A S G D E M S S L K D Y V S R M K D N Q K Q I Y Y I T

481 G E S R D A V A SN  A F EV R V K RK G F E I YI M  I D P I D E Y C I Q Q L K E Y D G K Q L L S V T K E G L E L PD D E
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601 A Q A L R D T S MT  G Y AM A K K H L E I N DP H S I I E T L R Q K A D A D K N D K S V K D L V M L L F E T S L L A S G
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Figure 1 amino acid sequence deduced for Procambarus clarkii heat shock protein 90. The numbers at the left refer to the amino acid residue positions. heat shock protein 
90 (hsp90) signature sequences are indicated by the overline and roman numerals i–V. an open box indicates the cytosolic hsp90 signature MeeVD. The putative leucine 
zipper is indicated by a dashed underline. The iRexlQ motif is highlighted in gray. Three putative adenosine triphosphate binding sequences are indicated by underline. arrows 
indicate the amino acids involved in nucleotide and geldanamycin binding.
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Hexapoda. Within Hexapoda, Diptera is basal to all other 

taxa, and Orthopera is a sister group to Lepidoptera and 

Hymenoptera. Within Crustacea, P. clarkii Hsp90 protein 

is closely related to the Hsp90 proteins from the Japanese 

blue crab (Portunus trituberculatus), Chinese mitten crab 

(Engleromyces sinensis), and a prawn (Metapenaeus ensis). 

However, the heat shock proteins from these decapod marine 

crustaceans are phylogenetically closer to each other than to 

the freshwater crayfish (Figure 2).

structural analysis of P. clarkii hsp90
The three-dimensional structure analysis prediction of 

P. clarkii Hsp90 revealed two distinguishable domains con-

nected by a highly charged loop (Figure 3A). The N-terminal 

domain (C-score 1.89) consists of eight-stranded parallel 

β-sheets and nine α-helices (Figure 3B), which is highly 

similar to Hsp90 proteins in other species.58,59 The C-score 

estimates the accuracy of the structure predictions and typi-

cally ranges from -5 to 2, with a higher score correlating 

with higher model confidence.55 The three-dimensional 

structure is consistent with its functional amino acid 

sequence (arrowed amino acids in Figure 1), indicating 

its conserved function for nucleotides, geldanamycin. and 

other substrate target protein binding. The middle domain 

(C-score 1.48) contains eleven-stranded β-sheets separated 

by α-helices (Figure 3C), revealing the conservative adenos-

ine triphosphate (ATP) binding dock. The three-dimensional 

structure prediction C-score is significantly higher than its 

cutoff value, ie, -1.5, suggesting that the simulated images 

are reliable.
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Figure 2 a phylogenetic tree of heat shock protein 90 family members constructed 
based on the amino acid sequence of 21 heat shock protein 90 genes. The number at 
each branch indicates the percentage of times that a node was supported in 1,000 
bootstrap replications by the neighbor-joining method. The scale bar represents 
0.1 substitutions per site. The chelicerates are highlighted in yellow.
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Figure 3 Predicted structure of Procambarus clarkii heat shock protein 90. (A) graphic description of P. clarkii heat shock protein 90 domains. amino acid numbers for 
domain boundaries are labeled. n-terminal, middle, and c-terminal domains are shown in blue, green, and red, respectively. aTPase (32–186) is shown in the n-terminal 
domain. (B and C) Three-dimensional structure of the n-terminal (B) and middle (C) domain, respectively; α-helices are shown in pink; β-sheets are shown in yellow; loops 
are shown in white with anion binding structures located in the chain (blue).
Abbreviation: aTPase, adenosine triphosphatase.
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P. clarkii Hsp90 and Hsp70 expression 
induced by thermal stress
Quantitative PCR was used to determine whether the expres-

sion level of heat shock proteins varies in muscle and nerve 

tissue under thermal stress conditions. While the β-actin 

internal control was constitutively and comparably expressed 

in tissues from control animals and animals exposed to ther-

mal stress, both muscle and nerve tissue showed variability 

of Hsp90 and Hsp70 transcript levels under stress conditions 

(Figure 4). After thermal stress, Hsp70 and Hsp90 transcript 

levels were significantly upregulated (Figure 4). Hsp90 tran-

script levels increased 18.1-fold in muscle tissue and 3.4-fold 

in nerve tissue. For Hsp70, transcript levels increased 9.4-fold 

in muscle and 3.6-fold in nerve. For both Hsp90 and Hsp70, 

the transcript level was elevated in both nerve and muscle, 

but mainly in muscle. Within muscle, the Hsp90 transcript 

level was more elevated (18.1-fold) than the Hsp70 transcript 

in muscle (9.4-fold).

Discussion
We have identified, cloned, and characterized Hsp90 from 

the American crayfish P. clarkii. Our data demonstrate 

that Hsp70 and Hsp90 transcripts are both upregulated in 

response to heat stress in crayfish as expected, but that the 

transcriptional response of the heat shock proteins to thermal 

stress in muscle and in the CNS is distinctly different. Using 

quantitative real-time PCR, we observed that P. clarkii Hsp70 

and Hsp90 transcripts are both upregulated by 9.4-fold and 

18.1-fold, respectively, in muscle, whereas this elevation was 

only around 3.5-fold in neurons for both transcripts. In the 

American lobster, Homarus americanus, abdominal muscle 

is more stable in the 2 hours following heat stress when 

compared with the hepatopancreas,44 suggesting that in some 

cases muscle tissue may be more resilient to stress than other 

tissues, which correlates with our observations of elevated 

heat shock proteins after stress. Thus, a greater increase in 

relative gene expression in muscle seems consistent with 

greater protection, and therefore better adaptation to environ-

mental stress.60,61 Consistent with results from other systems, 

our data show induction of RNA transcript levels in response 

to temperature stress, in accordance with the roles of Hsp90 

and Hsp70 in cellular homeostasis in P. clarkii.

Several structural factors led us to conclude that we 

have identified and cloned P. clarkii Hsp90. Eukaryotic 

Hsp90 proteins have functionally conserved N-termini and 

C-termini connected by a middle region containing highly 

charged and hydrophobic regions with variable length.24,62 

The N-terminal domain is an α/β sandwich composed of an 

eight-stranded antiparallel β-sheets and nine α-helices,24,63 

containing an ATP binding and a peptide binding site.24,58,63 

The middle domain of Hsp90 has a “client” protein-binding 

site and part of a “split ATPase”.18,64 The C-terminus has an 

alternative ATP binding site and “client” protein-binding 

site.24,62 Our analysis of Hsp90 suggests that the N-terminal 
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Abbreviations: cns, central nervous system; hsp, heat shock protein; M-hsp70, hsp70 expression in muscle; M-hsp90, hsp90 expression in muscle; n-hsp70, hsp70 
expression in the cns; n-hsp90, hsp90 expression in cns mRna, messenger Rna.
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region contains amino acid residues related to the binding 

of ATP/ADP, or cochaperone p23, a phosphoprotein that 

stabilizes the interaction between Hsp90 and interacting 

client proteins (Figure 1, arrows).42,65–67 These residues can 

constitute a pocket-like structure unique to Hsp90, called 

the “Bergerat fold”, which is an α/β sandwich with high 

affinity for ATP.68 This nucleotide-binding site can also be 

bound by the antibiotic geldanamycin or similar ansamycin 

antibodies that, in turn, prevent p23 binding and block Hsp90 

 function.69,70 We used the SMART program version 7 that ver-

ified a histidine kinase-like ATPase domain spanning amino 

acids 32–186 (Figure 3A), and an Hsp90 protein family  

domain spanning amino acids 188–718, common in Hsp90 

family members.71,72 The middle region of P. clarkii Hsp90 

contains part of the split ATPase of Hsp90 proteins (motif 

ISRExLQ, Figure 1, gray),18 and putative leucine repeats with 

motif LX
6
 LX

5
 LX

6
 LX

6
 (Figure 1, dashed underline), which 

is consistent with a client protein binding site in this middle 

region, as reported previously.18 This region also contains 

three putative ATP binding sequences (Figure 1, underline).20 

At the C-terminal end of the amino acid sequence is a tet-

ratricopeptide repeat motif recognition site, ie, the conserved 

MEEVD pentapeptide, which is responsible for interaction 

with cochaperones such as immunophilins FKBP51, stress-

induced phosphoprotein 1, and others.59 Detection of these 

characteristic Hsp90 structural and functional domains in the 

crayfish P. clarkii Hsp90 amino acid sequence identifies it as 

a functional member of the Hsp90 family.

As in other crustacean species, including the lobster,40 

blue crab,42 and mitten crab,73 Hsp70 and Hsp90 are sig-

nificantly induced by thermal stress in the muscle tissue 

of crayfish (Figure 4). However, relative to Hsp70, Hsp90 

transcript levels are higher. Greater accumulation of Hsp90 

transcripts under thermal stress might suggest a significant 

role in protection against cellular damage. Alternatively, our 

analysis using comparative quantitative real-time PCR could 

be due to a greater reserve of heat shock proteins in nervous 

tissue relative to muscle tissue, which could explain why the 

dramatic increase in relative transcript level is significantly 

lower in nervous tissue.

The CNS is also sensitive to thermal stress,74 and the heat 

shock response in many types of neurons may contribute to 

this process.75–78 Our quantitative real-time PCR results show 

that both Hsp70 and Hsp90 exhibit significantly more upregu-

lation after thermal stress in muscle than in the nervous system 

(Figure 4). There are several explanations for this observation. 

First, the pathway of regulation for heat shock proteins in the 

nervous system varies from that in muscle. Previous studies 

show that motor neurons have a high threshold for inducing 

a heat shock response,79,80 which is attributed to an impaired 

ability to activate heat shock transcription factor 1.75 In addi-

tion, Taylor et al81 showed that the heat shock response of 

Hsp70 in motor neurons of the embryonic mouse spinal cord 

was not due to phosphorylation of heat shock transcription 

factor 1, a requirement for transactivation of heat shock genes 

in non-neuronal cells.82–84 It is due to a calcium/calmodulin-

dependent kinase, suggesting different mechanisms of activa-

tion of Hsp70 in motor neurons and non-neuronal cells. The 

same group also showed that the protection of motor neurons 

partly depended on circulating extracellular heat shock pro-

teins, suggesting that stores of Hsp70 and Hsp90 could con-

tribute to the thermal stress response in the nervous system. 

They hypothesized that motor neurons synthesize only the 

amounts of Hsp70 necessary for maintenance of cell function 

and survival, but do not increase production in response to the 

greater demands of environmental stress. Although neurons 

can be protected by heat shock proteins from surrounding 

cells, upregulation of endogenous heat shock proteins in neu-

rons (Figure 4, Hsp70 increases 3.6-fold and Hsp90 increases 

3.4-fold in the CNS) may provide efficient protection from 

stress.  Therefore, to further determine the role of heat shock 

proteins in neuronal protection, measuring the expression level 

of heat shock proteins in single neurons of known type and 

function could be useful in future studies. Third, Hsp70 and 

Hsp90 are not the only protective chaperones playing a role 

in the heat shock response. The same study also showed that 

overexpression of constitutively active heat shock transcrip-

tion factor 1 was better able to confer neuroprotection than 

Hsp70 alone.85 Heat shock transcription factor 1 functions to 

activate heat shock genes, and the inability of Hsp70 to induce 

protection suggests that there may be other factors involved in 

the heat shock response.85 Upregulation of other chaperones, 

in particular Hsp40, are more efficient than Hsp70 and Hsp90 

alone for neuroprotection in mouse primary cells of dissoci-

ated spinal cord in reducing toxicity and preventing aggrega-

tion of misfolded proteins induced by thermal stress.85

Conclusion
In this study, we cloned, sequenced, and identified Hsp90 

from crayfish. Our results show that the transcript levels of 

Hsp70 and Hsp90 are elevated in response to thermal stress 

in the nervous system and muscle of crayfish, but that this 

elevated transcriptional response occurs at differential levels, 

being significantly greater in muscle cells. These data cor-

roborate a function for Hsp70 and Hsp90 as stress-sensing 

heat shock chaperones in crayfish. The increase in Hsp70 
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and Hsp90 levels may also provide clues as to why P. clarkii 

is so adaptable in extreme environments. It may be useful to 

examine selective Hsp70 and Hsp90 inhibitors to investigate 

the mechanism governing gene expression of heat shock 

proteins in more crayfish tissues. In addition, it will be of 

interest to identify and clone other heat shock proteins in 

P. clarkii, and to determine if expression of heat shock pro-

teins is distinct from that in less resilient crayfish species.
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