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Abstract: The most common implanted material in the human body consists of silicone. Breast 

augmentation and breast reconstruction using silicone-based implants are procedures frequently 

performed by reconstructive and aesthetic surgeons. A main complication of this procedure 

continues to be the development of capsular contracture (CC), displaying the result of a fibrotic 

foreign body reaction after the implantation of silicone. For many years, experimental and clinical 

trials have attempted to analyze the problem of its etiology, treatment, and prophylaxis. Different 

theories of CC formation are known; however, the reason why different individuals develop 

CC in days or a month, or only after years, is unknown. Therefore, we hypothesize that CC 

formation, might primarily be induced by immunological mechanisms along with other reasons. 

This article attempts to review CC formation, with special attention paid to immunological 

and inflammatory reasons, as well as actual prophylactic strategies. In this context, the word 

“biocompatibility” has been frequently used to describe the overall biological innocuousness of 

silicone in the respective studies, although without clear-cut definitions of this important feature. 

We have therefore developed a new five-point scale with distinct key points of biocompatibility. 

Hence, this article might provide the basis for ongoing discussion in this field to reduce single-

publication definitions as well as increase the understanding of biocompatibility.
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Introduction
The use of silicone for breast implants is a story of ups and downs that has been 

described in detail in many articles.1–7 The implantation of silicone-based implants for 

breast reconstruction or augmentation is still one of the procedures most commonly 

performed by reconstructive and aesthetic surgeons. Approximately 1.5 million units 

are sold per year by the world’s leaders in the market for the production of silicone 

breast implants. The main potential complications after silicone breast implantation 

have shown to be breast implant failure by rupture, distortion, or leakage; capsular 

fibrosis and contracture; silicone gel bleeding and spreading throughout the organ-

ism; chronic inflammation around the silicone implant; and potential carcinogenicity 

of foreign implants.2,4,5,8–10 The development of capsular contracture (CC; Table 1, 

Figure 1) occurs at a rate of up to 80%, as previously shown in a review article by 

Berry et al,11 and is therefore a severe problem for patients. Hence, CC formation is the 

basis of many scientific studies hoping to understand, prevent, or treat its development. 

However, the cause for CC formation is still not entirely clear and seems to have a 

multifactorial genesis. In a literature review, we found that the word “biocompatibility” 

is a frequently used term.3,12–23 A Medline search using “biocompatibility” retrieved 

M
ed

ic
al

 D
ev

ic
es

: E
vi

de
nc

e 
an

d 
R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/MDER.S49522
mailto:steiert.andreas@mh-hannover.de


Medical Devices: Evidence and Research 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

212

Steiert et al

13,536 hits in July 2013, including results from nearly every 

medical field. Notably, the use of this word seemed to be a 

popular way of describing the biological innocuousness of 

implanted foreign material, especially silicone, in the human 

body. In the published results, the respective groups used their 

own definitions of biocompatibility, as can be seen in Table 2. 

From this point of view, biocompatibility is a very important 

issue, especially as technical innovations are available and 

could be implanted into the organism. However, technical 

progress develops much faster than tissue engineering, and 

therefore there is a need for a clear-cut description of bio-

compatibility for research, as well as clinical purposes, to 

unify the scientific language (Table 2).

This article reviews CC formation with special attention 

paid to immunological and inflammatory mechanisms. It 

further provides a proposal for a new start up-point for the 

ongoing discussion by presenting a new distinct five-point 

scale, which will better address and, in particular, simplify 

general issues of biocompatibility in clinical application.

Capsular contracture
In the last decades, millions of people have been exposed to 

various forms of silicone. Silicone’s chemical structure and the many changes since its launch have also raised many problems 

and questions about its local, as well as systemic, interac-

tions.6 CC formation displays the result of a fibrotic foreign 

body reaction after implantation of silicone breast prostheses 

in the human body.6,7,10,24–26 This physiological reaction of 

the body to the silicone implant, forming a fibrous capsule, 

reflects two sides of a coin: on the one hand, it maintains the 

correct positioning of the implant, but on the other hand, it 

is associated with pain, hardening, tightness, deformity, and 

distortion of the breast. Furthermore, capsular fibrosis is 

the number one reason for revision operations, especially in 

implant exchange procedures, as capsular fibrosis does not 

occur that frequently in primary augmentations compared 

with in reconstruction/revision procedures.27,28 The forma-

tion of a fibrous capsule is part of a process of protection of 

the organism from foreign material, which can be formed 

within 1–2 weeks postoperatively.9 The myofibroblast displays 

one of the predominant cell types of the capsule, however, 

Table 1 Stages of capsular fibrosis after breast augmentation

Stage Palpation

Baker I Breast is soft; implant is not palpable
Baker II Breast is solid; implant is palpable but not visible
Baker III Breast is hardened; implant is palpable and visible
Baker IV Breast is hard, deformed, and painful; implant is palpable 

and clearly visible

Note: Classification on capsular fibrosis after breast augmentation introduced by 
Baker.73

Table 2 Exemplary citations for the description or definition of 
the word biocompatibility

Authors Biocompatibility

Ziats et al18 After implantation of a biomaterial, the responses that 
occur at the interface of the implanted material and in 
the surrounding environment are important events in 
determining the biocompatibility of the implant.

Anderson  
et al12

The biocompatibility of implanted biomaterials is 
determined by the degrees to which host homeostatic 
mechanisms are perturbed during surgical placement 
of the implant and the extents to which pathological 
consequences are created from the ensuing 
inflammatory, wound healing, and foreign body 
responses to surgical injury.

Plenk Jr17 Therefore, “biocompatibility” is now only vaguely 
defined as “the ability of a material to perform 
with an appropriate host response in a specific 
application.”

Laschke  
et al71

However, a riskless and successful use of such 
devices in clinical practice is only possible if they 
exhibit an adequate biocompatibility. This means that 
they should not induce a severe local or systemic 
inflammatory reaction.

Helmus  
et al69

In fact, next-generation medical devices will 
require enhanced biocompatibility by using, for 
example, pharmacological agents, bioactive coatings, 
nanotextures, or hybrid systems containing cells that 
control biologic interactions to have desirable biologic 
outcomes.

Williams72 It is shown that, in the vast majority of circumstances, 
the sole requirement for biocompatibility in a medical 
device intended for long-term contact with the tissues 
of the human body is that the material shall do no 
harm to those tissues, achieved through chemical and 
biological inertness.

Figure  1 Representative images of two patients suffering from severe capsular 
contracture after silicone breast implantation. 
Notes: (A) A 54-year-old lady with a history of disseminated mamma cysts 
followed by mastectomy on both sides. The reconstructive breast augmentation 
was performed 10 years before she presented with painful capsular contracture 
at both breasts according to Baker stage IV. (B) A 70-year-old lady with a history 
of fibrous breast adenomas and familial breast cancer. In 1981, she received a 
subcutaneous mastectomy with a 1-year-later reconstruction by silicone breast 
implants, and an implant change 10 years later. Now, she has again presented with 
capsular contracture according to Baker Stage III–IV.
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and is accompanied by macrophages, polymorphonuclear 

leukocytes, lymphocytes, plasma cells, and mast cells.29–31 

The capsule thickness consists of approximately 27% myo-

fibroblasts, with increasing tensile strength according to the 

degree of contracture.32 Interestingly, this is not correlated 

with the number of fibroblasts.32 The cellular source of the 

myofibroblast seems to be the bone marrow, as shown by Isom 

et al, who found 25% of bone marrow-derived stem cells in 

textured silicone shells in mice.33 Prantl et al further demon-

strated that capsular thickness was associated with the number 

of silicone particles and silicone-loaded macrophages in the 

peri-implant capsule and with an increased local inflammatory 

reaction.30,34 These histological findings, which were classified 

by the Wilflingseder score,35 correlated well with the clinical 

Baker classification (Table 1, Figure 1). In addition, it could 

be demonstrated that serum hyaluronan levels,29 as well as 

circulating immune complexes, procollagen III, antipolymer 

antibodies, and soluble intercellular adhesion molecule  1 

(sICAM-1),36 were significantly elevated in patients with 

CC, also correlating in part with the clinical Baker stage of 

contracture.29 After multiple experimental and clinical trials, 

there seems to be a strong consensus that the use of textured 

outer shell surfaces, in comparison with smooth surfaces, is 

able to decrease the incidence of CC by disrupting contractile 

forces around the implant,28,37–42 emphasizing the need for 

better physical properties than cellular or pharmacological 

strategies of contracture formation.

In the following text, we highlight recent experimental 

studies dealing with different issues thought to induce, pre-

vent, reduce, or treat capsular fibrosis and contracture around 

silicone breast implants.

Immunological mechanisms
The criteria, which finally lead to integration or rejection of 

foreign material in the human organism, are multifaceted; 

however, we think immunological mechanisms play a major 

role in the development of CC. Therefore, research on dif-

ferent immunological reactions and mechanisms displays 

a starting point for potential preventive strategies. It was 

Ojo-Amaize et al43 in a blinded cross-sectional study, who 

determined that women with symptomatic implanted as well 

as explanted silicone breast implants had twice as much 

abnormal silicone-specific T-cell responses as women with no 

symptoms. Further analysis demonstrated that these cells are 

CD4+, whereas the CD8+ T-cell population did not contribute 

to this activity.43 Ciapetti et al also showed that peripheral 

blood lymphocytes of patients with silicone implants had 

a significantly increased rate of proliferation and viability 

when these cells have been re-exposed to silicone in vitro. 

Interestingly, there was an even more significant difference 

between lymphocytes of aesthetic, in comparison with 

reconstructive, patients.19 Two working groups, however, 

mainly contributed in detail on this issue. First, Smalley 

et al confirmed that patients with silicone implants are prone 

to an exaggerated T-cell-mediated immune reactivity, as 

given by an 18-fold higher stimulation index of stimulated 

lymphocytes of implant patients than of nonimplant control 

patients.44 In an ongoing study, Smalley et al could further 

demonstrate that the T-cell activation by silicone depends on 

monocytes.45 The second group, led by Dolores Wolfram, 

studied the activity of immunological and inflammatory 

processes that might be involved in CC formation, focusing 

on immune cells, proteins of the extracellular matrix, stress 

proteins, and adhesion molecules.22 The highest activity 

could be seen in the interface of the silicone implant and 

the formed fibrous capsule or in its direct adjacency, where 

activated CD4+ T-cells, macrophages, and Langerhans-cell-

like dendritic cells could be detected. Furthermore, the tissue 

specimen showed intense positive staining of fibronectin 

on the interface, likely mediating interactions between the 

silicone and macrophages, fibroblasts, and T-cells.22 To deter-

mine the specificity and function of these T-lymphocytes, 

Wolfram et al investigated the interplay of T-cells and their 

cytokine profile in capsular fibrosis.22 First, they verified 

that intracapsular lymphocytes were predominantly CD4+ 

cells producing a specific profibrotic cytokine profile, which 

mediates the local immune response by means of activated 

TH1/TH17-cells. As the intracapsular T-cell ratio has been 

inversely proportional to the clinical stage of fibrosis, it has 

been hypothesized that profibrotic cytokines and growth 

factors stimulate capsular fibrosis in the retention of local 

regulatory T-cells.22,46

Biofilm in capsular contracture
Infections are the leading cause of morbidity after breast 

augmentation, as proposed by Pittet et al.10 Here, the degree 

of CC seems to be associated with a prolonged or accelerated 

inflammatory process.10,47–50 This inflammatory process might 

be exaggerated by local factors such as hematoma or infec-

tion, or even by an invasion from remote-to-implant, which 

further increases the degree of inflammation, finally leading 

to fibrosis.51–54 The development of a septic biofilm at the time 

of implantation or within the first minutes to hours, and the 

subclinical infection of the foreign material, especially with 

Stapyhlococcus epidermidis and Propionibacterium acnes, 

is described by many authors as having a strong effect on the 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Medical Devices: Evidence and Research 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

214

Steiert et al

formation of CC.10,51,52,55–57 However, the word “biofilm” is 

used in many different ways. Our understanding of a biofilm 

is that a certain liquid film results after the implantation of 

foreign material, which surrounds the respective device and 

can be described as a sterile or aseptic biofilm. This biofilm 

displays the interface between the foreign material and the 

organism, consisting of different chemoattractants and cytok-

ines, which decide either to activate a foreign body response 

with inflammation or to tolerate the material and integrate 

it into the body’s homeostasis. Therefore, it will be the sur-

face of the implanted material, in close association with the 

existing sterile biofilm, which will individually determine 

the next steps of reaction and which cells might be involved. 

An exceptional example for a septic biofilm displays the 

implantation of foreign material into the oral cavity, as it is 

intentionally implanted in a bacterially contaminated area. In 

this case, the evolving liquid film is septic and must therefore 

be differentiated as a septic biofilm.58–63 In all other cases, the 

respective sterile biomaterial is implanted in sterile pockets, 

resulting in an aseptic biofilm by definition.

In the context of silicone breast implantation, one should 

also consider that the human breast region is not a sterile 

anatomic structure, as it has physiologic or even pathologic 

bacterial skin flora derived from the nipple ducts.10 The high-

est incidence of capsular fibrosis seems to occur when the 

silicone implant has been placed in a subglandular position 

via a periareolar approach through the mammary gland, 

leading to S. epidermidis in the ductal tissue.64 In addition, 

it has been shown that subclinical bacterial colonization 

plays a pivotal role in the development of high-grade CC 

(Baker III/IV; Table 1), as colonization could be detected in 

66.7% of explanted contractures, whereas low-grade con-

tractures (Baker I/II; Table 1) did not show any colonization 

at all.55 There is also a positive linear correlation between 

the severity of the contracture and the local inflammatory 

reaction.55,65 To analyze this problem further, several authors 

and groups evaluated different experimental models and 

therapeutic strategies.66–68 Tamboto et al developed a new in 

vivo pig model in which female animals underwent augmen-

tation mammaplasty, using miniature gel-filled implants and 

pocket inoculation with S. epidermidis.66 The main outcome 

parameters have been clinical Baker grade (Table  1) and 

further laboratory testing of the resected capsules 13 weeks 

after implantation. This group could demonstrate that the 

presence of a septic biofilm results in subclinical infection 

and was associated with a fourfold increase of subsequent 

contracture formation. Interestingly, even noninoculated 

pockets also developed contracture caused by the native 

porcine S. epidermidis.66 To prevent bacterial colonization, 

several studies tried to administer local antiseptic washing or 

systemic antibiotics; however, it had only minor effects.52,67,68 

Coating or impregnation with antimicrobial substances 

might therefore be an alternative possibility to reduce, but 

not prevent, capsular fibrosis formation. Unlu et al tested the 

effect of rifampin in the implant pocket, as well as the topi-

cal administration on the implants in an in vivo rat model.68 

The authors observed that the thickness of the peri-implant 

fibrous capsule could be significantly reduced by rifampin 

after 12 weeks, with no difference between topical or local 

administration of the antibiotic.68

Infection is without question a disruptive factor for the 

biocompatibility of silicone. The use of antibiotic substances 

might reduce, but surely not prevent, the formation of CC 

as a unifactorial mechanism. Therefore, we think biocom-

patible products are not defined by the absence of a septic 

infection alone.

Prophylactic strategies  
of capsular contracture
To prevent the formation of capsular fibrosis formation, 

several different approaches might be possible. However, 

sophisticated methods tested in vitro or in animal models 

cannot be easily transferred to the human organism. In the 

management of prophylactic strategies, the modulation of 

the implant surface texture and its patterning with differ-

ent substances seems to be one actual idea to solve this 

problem.23 For this, the cell-to-surface interaction needs 

to be better understood to engineer suitable materials for 

implantation. Using different microscopic techniques, Barr 

et al investigated the cytoskeletal reaction of fibroblasts to 

silicone surfaces.15 The results of this study revealed dif-

ferent possible reasons for the development of CC. It was 

shown that the smooth surface of implants predisposes the 

planar arrangement of the fibroblast around the implant. 

Interestingly, the macroscopically smooth-surface implant 

also presents with a rippled microscopic texture on the 

surface, which might increase the formation of a synovial-

type epithelium, experienced in fibrotic breast capsules.16 

Textured implant surfaces are able to decrease the formation 

of contracture, as the fibroblast anchors into the deep and 

random pattern; hence, the fibroblast might not be able to 

align planarly.16 Therefore, the authors concluded that cells 

might directly react to the topography of the biomaterial. 

However, a shortcoming of this study is that the authors only 

presented microscopic images of the surfaces without the 

cultivation of fibroblasts. This information has been published 
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in an ongoing study by Barr et al, in which the cytoskeletal 

reaction of breast tissue-derived human fibroblasts to silicone 

was investigated.15 The authors show it is possible to create 

different topographies of silicone surfaces, which are able to 

induce a directional growth of fibroblasts as well as altera-

tions in cell shape and their phenotype. The used fibroblasts 

have been able to detect the respective surface topography 

made of different widths and depths of ridges, pits, and pil-

lars inducing contact guidance or orientation for the cells. 

The authors therefore concluded that the production of more 

biocompatible implants is possible via a change of the surface 

topography on which the fibroblasts attach.

In our opinion, however, biocompatibility is not described by 

the better or worse growth of fibroblasts on certain topography. 

Fibroblasts lead the way for the development of fibrosis, finally 

resulting in exactly the complication that should be prevented. 

Therefore, the fibroblast should neither be attracted to nor able 

to enter the vicinity of the implant from the very beginning after 

implantation, which would induce the known foreign body 

reaction, finally leading to CC formation.

Capsular contracture formation: 
outlook and vision
Medical, pharmaceutical, and material sciences analyze 

existing concepts and develop potential new ideas in silicone 

breast implantation. All interventions aim at the optimization 

of implant integration into the surrounding tissues, as well as 

at the prevention of contracture. These include surface texture 

changes, drug solutions, and careful surgical techniques; 

however, all have only limited success. In this context, there 

are many unsolved problems that seem to be directly associ-

ated with biocompatibility. A main goal in silicone breast 

implantation is the complete tolerance and integration of the 

foreign material into the human body without any remote-to-

implant effects. The interface between the implant surface and 

the implant pocket might therefore be of great interest. In this 

case, the implant material should be functionalized to inte-

grate it and to consecutively reduce the rate of complications. 

Furthermore, as Helmus already proposed, it seems to be the 

focus to integrate biocompatibility into the device and not 

vice versa.69 For example, Barr et al studied the behavior of 

fibroblasts on different silicone physical structures, conclud-

ing there is a need for surface modernization to develop more 

“biocompatible” constructs.15,16 However, Barr et al does not 

give an answer on how the fibroblast participates in biocom-

patibility. The question arises of whether the development 

of CC represents a nonbiocompatible reaction of the human 

organism to the silicone implant. In the prevention of CC, we 

think the fibroblast should not be involved at all, by preventing 

its adherence and interaction on the interface.

Taken together, in the line of the above-mentioned underly-

ing mechanisms and ideas, we felt it cannot be clearly stated 

what seems to be biocompatible and what is not. For this rea-

son, there is an urgent need for a precise definition as well as 

for the introduction of clear-cut categories of biocompatibility 

for implanted materials, as well as tissues and organs. Thus, 

we thought to provide a solid basis for the ongoing research by 

defining distinct key points of biocompatibility. We have there-

fore developed a new five-point scale with respective criteria, 

which better addresses this problem in general (Figure 2). This 

classification system might be used as a clear, unambiguous, 

and simple instrument for researchers and manufacturers in 

material science, as an identification mark for the quality of 

biocompatibility of their devices and products; for doctors, in 

their clinical routine, to address the actual level of biocompat-

ibility after the respective material/organ/tissue implantation; 

and, of course, for patients, who should know the biocompat-

ibility of the respective implanted device and the potential 

complications to best monitor the function of their implant. 

This classification, however, is flexible in its use, especially 

when it comes to clinical aspects, where the level might have 

to be adjusted with clinical progress.

Level A
The highest level of biocompatibility is displayed by a full 

integration of the implant (material/organ/tissue) into the human 

body, as might be seen in human leukocyte antigen (HLA)-iden-

tical organ transplantation without the need for any immunosup-

pressive therapy, resulting in an undisturbed biological function 

of the respective organ or tissue. The organism will not identify 

these materials as foreign. As a consequence, an immunologi-

cal reaction cannot be seen at all, and the implant will be fully 

integrated into the human body without any difficulty. The A 

level might further ensure the often-given lifetime warranty of 

implantable devices by the industry. Level A grading displays 

full biocompatibility with complete integration into the organism 

or 100% resorption without residues (Table 3).

Level B
The second level of biocompatibility is described by an incor-

poration or acceptance of the implant, but with a need for a 

specific drug therapy to reduce the complications that might 

arise. This combination results in an acceptable coexistence 

of the implant in the human body’s homeostasis. For example, 

this can be seen in every non-HLA-identical transplanted 

organ in which immunosuppressive therapy has to be carried 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Medical Devices: Evidence and Research 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

216

Steiert et al

out over a lifetime. In the case of stem cell transplantation, 

however, this switches to an A level, as immunosuppres-

sive therapy can be terminated after several months. As a 

further example, the implantation of vascular stents usually 

results in the recommendation for anticoagulation therapy 

with acetylsalicylic acid, which is synonymous with B-level 

biocompatibility (Table 3).

Level C
Level C biocompatible implants are every implanted device 

or tissue that will be recognized by the body as foreign and 

will induce an immune reaction. This reaction, however, 

does not adversely affect the respective tissue or organ func-

tion immediately, and thus represents a tolerated material. 

Baker stages I and II (Table 3) display an example of level 

C material; however, this might change to a D level in 

progressive fibrosis. A further example might be the absorp-

tion of implanted foreign materials such as polysiloxane or 

polyglactin sutures.

Level D
In this level, the implant is recognized as foreign by an 

immune reaction; however, this reaction is acutely or 

chronically associated with a loss of function. This category 

would actually fit for silicone breast implants, especially 

in Baker III–IV stages (Table  3). Another example is an 

implanted vascular graft or shunt, which might be occluded 

as a result of the foreign surface or exaggerated fibrotic 

reaction. Furthermore, in cochlear implant surgery, there 

occurs the problem of correct connection of the implanted 

electrodes by time, as developing fibrotic tissue hinders the 

correct function.

Level E
The classical signs of inflammation (calor, rubor, dolor, 

tumor) define an acute rejection of the implanted material 

shortly after implantation, leading to further treatment or 

even worsening of the respective organ or tissue function and 

explantation of the device. As a prime example, this is seen 

in graft versus host reactions after stem cell transplantation; 

however, it might also be reversible to an upgrading to D or 

C level by the introduction of the respective therapy. E levels 

further describe materials or tissues, which induce adverse 

remote-to-implant or teratogenic effects.

Conclusion
Without a doubt, the invention of implantable silicones for 

either reconstructive or aesthetic purposes represents a great 

opportunity to increase the quality of life of many patients. 

However, it is also accompanied by many problems the 

implant wearer might get confronted with. It is the task of 

medicine to perform excellent but particularly meaningful 

research to prevent physical as well as psychological harm 

to our patients.70 Therefore, we need up-to-date research 

based on a clear and international understandable definition. 

The launch of new material components; smaller and better 

working solutions; and more sophisticated computerized 

applications to restore body functions show that technical 

progress cannot be slowed down.

Table 3 Examples for the use of the newly introduced levels of 
biocompatibility

Materials Organs/tissues

A

•  Not yet available • � Human leukocyte antigen–identical organ/
tissue transplantation (kidney, split liver)

• � Cornea transplantation
B
• � Drug-eluting stent 

implantation
• � Mechanic heart valve

• � Non-human leukocyte  
antigen–identical organ/tissue 
transplantation (heart, lung, pancreas)

• �V ascular homografts (anticoagulation)
C
• � Silicone (Baker 1-11)
• � Granuloma induced  

by polydioxan or  
polyglactin sutures

• � Secondary malignancies resulting from 
immunosuppressive therapy

• � Adverse effects of anticoagulation
• � Adverse effects of immunosuppression

D
• � Silicone (Baker (111-1V))
• � Stent narrowing
• � Reduced function  

of cochlear implant

• � Acute graft versus host disease
• � Chronic graft versus host disease

E

• � Device loss
• � Stent thrombosis

• � Transplanted organ failure

Full integration of device without supplemental treatment

Full organ/tissue function without immunosuppression

Integration into organism with need of supplemental medication

Integration into organism with need of supplemental medication

Immune reaction without loss of device function

Immune reaction without loss of organ/tissue function

Immune reaction with loss of device function

Immune reaction with loss of organ/tissue function

Transplanted organ failure

Device loss

A M

A Tx

B M

B Tx

C M

C Tx

D M

D Tx

E M

E Tx

Figure 2 Grades of biocompatibility according to their potential of acceptance by 
the (human) organism. 
Note: The differentiation M and Tx further classifies the implantation of foreign 
material or device (M) or biological tissues (Tx).
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The authors of this manuscript are convinced that the 

launch of new technical innovations will continue to progress 

rapidly, and restoration of the respective tissue or organ func-

tion by means of the organism itself (ie, tissue engineering or 

stem cell differentiation) might be possible. However, syn-

thetic material, similar to HLA-identical organ transplantation 

does not exist (Table 3). Therefore, it is not comprehensible 

why foreign materials and devices are not implanted in to the 

human body with higher frequency, as long as the biological 

regeneration is not adequately able to restore the respective 

organ or tissue functions. The here-introduced new levels bet-

ter address the general issues of biocompatibility in the human 

organism in general, and therefore simplify understanding 

of the term in ongoing material and transplantation research, 

as well as its application as a clinical marker for all involved 

individuals. Thus, this article might represent the basis for 

the ongoing discussion and also for a consensus finding in 

this field to reduce single-publication definitions and increase 

attempts to unify the scientific language.
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