Autoantibody profiling in systemic lupus erythematosus

Song-Chou Hsieh1
Chia-Li Yu1,2

1Department of Internal Medicine, 2Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan

Abstract: Systemic lupus erythematosus (SLE) is an archetype of systemic autoimmune disease characterized by the production of a broad spectrum of autoantibodies. More than 100 autoantibodies have been found in the sera of patients with SLE, including antibodies against nuclear, cytoplasmic, surface-membrane, and extracellular antigens. There has been considerable debate as to whether these antinuclear autoantibodies (ANAs) are merely biomarkers for disease or are responsible for organ/tissue damage in SLE. In recent years, sufficient evidence has supported the hypothesis that many ANAs, such as anti-double-stranded DNA (anti-dsDNA), antiribosomal P, anti-Sm, antiribonucleoprotein (anti-RNP), and even anti-Sjögren’s syndrome (SS)-B/La antibodies not only act against specific nuclear antigens but also cross-react with different surface-expressed cognate molecules. The binding of autoantibodies to the cell surface leads to their penetration into the cell’s interior to elicit cellular damage. There are at least four conceivable routes for ANAs to penetrate the cytoplasm: (1) nonspecific Fcγ receptor-mediated uptake, (2) cell-surface caveolae-mediated endocytosis, (3) electrostatic interactions between positively charged amino acids of the complementarity-determining regions of the antibody molecule and the negatively charged surface membrane, and (4) the binding of the autoantibody with its cross-reactive cell surface-expressed cognate molecule, and its subsequent endocytosis into the cytoplasm. In this review, we discuss in detail the immunopathogenic mechanisms of the commonly encountered ANAs, such as anti-dsDNA, antiribosomal P, and anti-SSB/La, that are associated with lupus pathogenesis. Additionally, the detrimental thromboembolism-inducing anticardiolipin antibodies in patients with SLE were found to not only damage vascular endothelial cells, red blood cells, and platelets but also suppress lymphocyte proliferation, neutrophil phagocytosis, glomerular mesangial cell growth, and brain damage through their nonspecific membranotropic effects. For future clinical applications, useful biomarkers in SLE sera should be identified to determine disease susceptibility, diagnosis, activity evaluation, and specific organ damage.

Keywords: systemic lupus erythematosus, pathogenic autoantibody, cross-reactivity, autoantibody penetration, lupus pathogenesis, neuropsychiatric SLE

Introduction

Systemic lupus erythematosus (SLE) is an archetype of chronic autoimmune disease with inflammation in various organs/tissues, especially the musculoskeletal, mucocutaneous, renal, and nervous systems (Table 1, our unpublished data). More than 100 different autoantibodies have been found in the serum of patients with SLE.1 It is conceivable that the wide spectrum of clinical manifestations in patients with SLE is partially caused by pathogenic autoantibodies. The autoantibodies may potentially target their corresponding autoantigens in the cell nuclei, cytoplasm, cell-surface membrane,
Table 1 Organs/tissues affected in patients with systemic lupus erythematosus (Hsieh and Yu, unpublished data, 2013)

<table>
<thead>
<tr>
<th>Organ/tissue</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal</td>
<td>90%</td>
</tr>
<tr>
<td>Oral mucous ulcer</td>
<td>30%</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
</tr>
<tr>
<td>Photosensitivity</td>
<td>25%</td>
</tr>
<tr>
<td>Malar skin erythema</td>
<td>50%</td>
</tr>
<tr>
<td>Discoid lesions</td>
<td>10%</td>
</tr>
<tr>
<td>Alopecia</td>
<td>20%</td>
</tr>
<tr>
<td>Raynaud’s phenomenon</td>
<td>25%</td>
</tr>
<tr>
<td>Pleuropericarditis</td>
<td>40%</td>
</tr>
<tr>
<td>Kidney</td>
<td>65%</td>
</tr>
<tr>
<td>Neuropsychiatric lesions</td>
<td>15%</td>
</tr>
<tr>
<td>Hematology</td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td>46%</td>
</tr>
<tr>
<td>Anemia</td>
<td>42%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>35%</td>
</tr>
</tbody>
</table>

serum components, extracellular matrix substances, and miscellaneous molecules. The mechanism of production of the diverse spectrum of autoantibodies against self-antigens remains to be elucidated. However, many studies have demonstrated that autoantibody production might be antigen-driven, a result of polyclonal B-cell activation, impaired apoptotic cell clearance, or idiotypic network dysregulation in patients. It is quite possible that polyclonal B-cell activation in SLE is derived from (1) defective B-cell tolerance in the bone marrow, (2) somatic hypermutation during the germinal center reaction, (3) B-cell epitope spreading after chronic stimulation, and (4) impaired apoptotic cell clearance by phagocytes. These mechanisms can lead to nuclear antigen-driven autoantibody production. On the other hand, increased cell destruction in patients with SLE by either cellular or antibody-mediated mechanisms concomitant with defective apoptotic cell clearance becomes a vicious cycle of the chronic immune dysfunction found in patients with SLE (Figure 1). The increased cell apoptosis or eventual secondary necrosis in addition to defective cell debris clearance does not merely break down self-tolerance but also stimulates both innate and adaptive immune responses to induce florid autoantibody production. There are at least three defects involved in decreased apoptotic cell clearance in SLE: (1) congenital deficiency of complement components C2, C4, or C1q, (2) production of autoantibodies against C-reactive protein and other acute-phase proteins, and (3) production of anti-hea...
However, it is quite difficult to confirm directly the presence of autoantigens in the circulating ICs in the serum. The in situ formation of ICs also depends on surface-expressed specific autoantigens, molecular mimic antigens, or electrostatic interactions between positively charged antibodies and negatively charged molecules in the tissues. It is believed that some of the ANAs are pathogenic, whereas some of them are nonpathogenic. The conflicting results in the literature may depend on the properties of the ANAs. Only the high titer of ANAs cannot reflect the degree of tissue damage in patients with SLE. Furthermore, the clearance capacities of ICs as well as tissue debris by macrophages, dendritic cells, neutrophils, and reticuloendothelial systems in patients with SLE are defective. Therefore, excessive ICs and cell debris such as nucleosomes, denatured deoxyribonucleoproteins, and denatured ribonucleoproteins may bind to endosomal Toll-like receptors (TLR3, -7, and -9) and nucleotide-binding oligomerization domain-like receptors in the macrophage/dendritic cells to stimulate ANA production. These potential pathogenic factors and their deleterious reactions are depicted in Figure 1.

It has been a long-standing debate as to whether the broad spectrum of autoantibodies are culprits or merely innocent bystanders as disease biomarkers in patients with SLE. Evidence supports that both possibilities coexist, because some of them are good biomarkers for disease susceptibility and diagnosis, whereas others play pathogenic roles in SLE via their cell-penetrating ability into the cytoplasm to induce cell damage (Table 2). In this review, we extensively discuss the immunopathogenic roles of the four

Figure 1 Schema depicting the etiopathogenesis of systemic lupus erythematosus.

Abbreviations: TLR, Toll-like receptor; NO, nitric oxide; NLRs, NOD-like receptor; BAFF, B cell activation factor from the tumor necrosis factor family; Mφ, monocytes/macrophages; MAFs, macrophage activating factors; ICs, immune complexes; PMNs, polymorphonuclear neutrophils.
commonly encountered autoantibodies in clinical practice, including anti-double-stranded DNA (anti-dsDNA), antcardiolipin antibody (ACA), antiribosomal P protein (anti-RP), and anti-Sjögren’s syndrome (SS)–B/La antibodies in lupus pathogenesis.

Different autoantibodies can be used as specific biomarkers of SLE in different clinical categories

In 1997, the American College of Rheumatology revised the classification criteria for SLE, suggesting that anti-dsDNA, ACA, and anti-Sm antibodies can be used as diagnostic biomarkers for SLE. In daily practice, the titer of anti-dsDNA, antinucleosome, and antinucleoside/antinucleotide antibodies, if applicable, can be used as disease-activity biomarkers in SLE. These autoantibody biomarkers are more convenient in daily practice than complex global evaluation scores, such as the SLE Disease Activity Index or the British Isles Lupus Activity Group assessment for evaluating SLE serological changes, but not for systemic tissue/organ-damage evaluation. Undoubtedly, many autoantibodies are regarded as surrogate biomarkers for specific organ/tissue damage in patients with SLE. Table 3 lists some of the potential autoantibody biomarkers used in different clinical categories of patients with SLE. Among these, anti-dsDNA antibodies can be used as specific biomarkers for disease diagnosis, disease activity, and lupus nephritis. Anti-C1q autoantibodies can be used for concurrent evaluation of both renal and extrarenal disease activity in SLE. However, anti-C1q antibodies can also be detected in sera from patients with hypocomplementemic urticarial vasculitis.

Notes

1. Anti-SSA/Ro
2. Anti-SSB/La
3. Anti-dsDNA
4. Anti-C1q
5. Anticardiolipin
6. Antinucleosome
7. Antinucleosides/nucleotides
8. Antineuronal NR2**
9. Antiplatelet, anticardiolipin
10. Antiribosomal P
11. Antimyosin
12. Antifibronectin
13. Anti-C1q
14. Anticardiolipin
15. Antinucleosome
16. Antinucleosides/nucleotides
17. Antineuronal NR2**
18. Antiplatelet, anticardiolipin
19. Antiribosomal P
20. Antilaminin
21. Antiglomerular matrix
22. Antithrombin
23. Antiplatelet, anticardiolipin
24. Antiribosomal P
25. Antithrombin
26. Antigenic urticarial vasculitis
27. Antistreptolysin O
28. Antiglomerular matrix
29. Antithrombin
30. Antigenic urticarial vasculitis
31. Antistreptolysin O
32. Antiglomerular matrix
33. Antithrombin
34. Antigenic urticarial vasculitis
35. Antistreptolysin O
36. Antiglomerular matrix
37. Antithrombin
38. Antigenic urticarial vasculitis
39. Antistreptolysin O
40. Antiglomerular matrix
41. Antithrombin
42. Antigenic urticarial vasculitis
43. Antistreptolysin O
44. Antiglomerular matrix
45. Antithrombin
46. Antigenic urticarial vasculitis
47. Antistreptolysin O
48. Antiglomerular matrix
49. Antithrombin
50. Antigenic urticarial vasculitis
51. Antistreptolysin O
52. Antiglomerular matrix
53. Antithrombin
54. Antigenic urticarial vasculitis
55. Antistreptolysin O
56. Antiglomerular matrix
57. Antithrombin
58. Antigenic urticarial vasculitis
59. Antistreptolysin O
60. Antiglomerular matrix
61. Antithrombin
62. Antigenic urticarial vasculitis
63. Antistreptolysin O
64. Antiglomerular matrix
65. Antithrombin
66. Antigenic urticarial vasculitis
67. Antistreptolysin O
68. Antiglomerular matrix
69. Antithrombin
70. Antigenic urticarial vasculitis
71. Antistreptolysin O
72. Antiglomerular matrix
73. Antithrombin
74. Antigenic urticarial vasculitis
75. Antistreptolysin O
76. Antiglomerular matrix
77. Antithrombin
78. Antigenic urticarial vasculitis
79. Antistreptolysin O
80. Antiglomerular matrix
81. Antithrombin
82. Antigenic urticarial vasculitis
83. Antistreptolysin O
84. Antiglomerular matrix
85. Antithrombin
86. Antigenic urticarial vasculitis
87. Antistreptolysin O
88. Antiglomerular matrix
89. Antithrombin
90. Antigenic urticarial vasculitis
91. Antistreptolysin O
92. Antiglomerular matrix
93. Antithrombin
94. Antigenic urticarial vasculitis
95. Antistreptolysin O
96. Antiglomerular matrix
97. Antithrombin
98. Antigenic urticarial vasculitis
99. Antistreptolysin O
100. Antiglomerular matrix
101. Antithrombin
102. Antigenic urticarial vasculitis
103. Antistreptolysin O
104. Antiglomerular matrix
105. Antithrombin
106. Antigenic urticarial vasculitis
107. Antistreptolysin O
108. Antiglomerular matrix
109. Antithrombin
110. Antigenic urticarial vasculitis
111. Antistreptolysin O
112. Antiglomerular matrix
113. Antithrombin
114. Antigenic urticarial vasculitis
115. Antistreptolysin O
116. Antiglomerular matrix
117. Antithrombin
118. Antigenic urticarial vasculitis
119. Antistreptolysin O
120. Antiglomerular matrix
121. Antithrombin
122. Antigenic urticarial vasculitis
123. Antistreptolysin O
124. Antiglomerular matrix
125. Antithrombin
126. Antigenic urticarial vasculitis
127. Antistreptolysin O
128. Antiglomerular matrix
129. Antithrombin
130. Antigenic urticarial vasculitis
131. Antistreptolysin O
132. Antiglomerular matrix
133. Antithrombin
134. Antigenic urticarial vasculitis
135. Antistreptolysin O
136. Antiglomerular matrix
137. Antithrombin
138. Antigenic urticarial vasculitis
139. Antistreptolysin O
140. Antiglomerular matrix
141. Antithrombin
142. Antigenic urticarial vasculitis
143. Antistreptolysin O
144. Antiglomerular matrix
145. Antithrombin
146. Antigenic urticarial vasculitis
147. Antistreptolysin O
148. Antiglomerular matrix
149. Antithrombin
150. Antigenic urticarial vasculitis
151. Antistreptolysin O
152. Antiglomerular matrix
can induce nephritis, hepatitis, neutropenia, lymphopenia, and even neuropsychiatric lupus (NPSLE) in patients with SLE.1,2,26,36 Conversely, an organ/tissue can be the target of different kinds of autoantibodies. NPSLE in patients with SLE is the typical case in which the organs are attacked by at least four types of autoantibodies, including antineuronal, antiribosomal P, anticardiolipin, and antiendothelial cell antibodies. Diamond and Volpe36 demonstrated that anti-dsDNA and antipeptides bind N-methyl-d-aspartate (NMDA) receptor 2 (NR2) on neurons can directly mediate NPSLE, but they do not depend on IC formation when the blood–brain barrier is impaired. Obviously, the cross-reactivity of an ANA can directly mediate cell/tissue damage through cell surface-expressed cognate antigens in systemic autoimmune diseases.37 Table 4 shows that polyclonal or monoclonal anti-dsDNA autoantibodies bind to different surface-expressed cognate molecules via cross-reactivity, electrostatic interactions with structural proteins, or other undefined mechanism(s) to exert different immunopathogenic effects in patients with SLE.

Autoantibody testing has been commonly used in the diagnosis and follow-up evaluation of patients with systemic rheumatic diseases. More detection methods have been developed in addition to the classical immunofluorescence anti-nuclear antibody test by using HEp-2 as the cell substrate and Western blotting. Enzyme-linked immunosorbent assay (ELISA) and an automatic bead-based ANA screening assay were successively applied for autoantibody quantification in clinical practice. Many authors found that the measurement of autoantibodies by using automatic multiplex methodology in patients with SLE was equally sensitive and highly specific compared to conventional ELISA.38–40 Recently, Eriksson et al41 found that autoantibodies against nuclear antigens, particularly SSA/Ro and dsDNA, could be detected before the onset of SLE. The first autoantibody detected was anti-SSA/Ro, and the highest predicted odds ratio was conferred by anti-dsDNA antibodies.

Immunopathogenic roles of anti-dsDNA antibodies in lupus pathogenesis

Polyclonal anti-dsDNA antibodies purified from active SLE sera by \(\lambda\)-phage DNA-affinity chromatography suppress mitogen-activated T-lymphocyte proliferation, but elicit biphasic immunoglobulin synthesis by activated B lymphocytes, as shown in our previous study.42 These functional changes by anti-dsDNA antibodies resemble immune disorders in patients with SLE. SLE-derived polyclonal anti-dsDNA antibodies were also shown to be nephrotropic and could directly damage the glomerular mesangial cells (GMCs) through binding to the surface-expressed acidic ribosomal phosphoproteins P0 (38 kDa), P1 (19 kDa), and P2 (17 kDa).43,44 These results are partially consistent with the findings by Du et al,45 indicating that nine affinity-purified anti-dsDNA autoantibodies cross-reacted with cell membrane-expressed 74 kDa, 63 kDa, and 42 kDa molecules. Yung et al46,47 demonstrated that anti-dsDNA antibodies bound to annexin II molecules on human GMC-activated p38 mitogen-activated protein kinase (MAPK), Jun, AKT, protein kinase C-\(\alpha\), and protein kinase C-\(\beta\) signaling pathways to induce IL-6, transforming growth factor-\(\beta\), fibronectin, and annexin II synthesis. In contrast, Fenton et al48 suggested that chromatin in circulating blood is important for glomerular mesangial matrix IC deposition for the occurrence of lupus nephritis. In addition to lupus nephritis, we found that anti-dsDNA autoantibodies also targeted P0 and P1 molecules expressed on different tissues of normal and autoimmune mice, such as in the liver, spleen, brain, and fibroblasts.49 The cross-reactivity between anti-dsDNA and surface-expressed P1 protein relies on the C-terminal hydrophobic cluster region containing a phenylalanine residue.50 Interestingly, a monoclonal anti-DNA antibody was shown to penetrate immature lymphoid cells more than their mature counterparts, and induced cell apoptosis, self-tolerance, or an autoimmune response depending upon the degree of immune dysregulation.51,52 These findings may become the molecular basis of the positive correlation between serum titers of anti-dsDNA and disease activity of SLE.49 Functional assessments

Table 4 Molecules that cross-react with anti-dsDNA autoantibodies expressed on the cell surface, extracellular matrix, or serum protein, and their mode of interaction

<table>
<thead>
<tr>
<th>Molecules</th>
<th>Target/mode of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparan sulfate</td>
<td>Glomerular matrix/electrostatic interactions38</td>
</tr>
<tr>
<td>Chondroitin sulfate</td>
<td>Glomerular matrix/electrostatic interactions38</td>
</tr>
<tr>
<td>Ribosomal P0, P1, and P2</td>
<td>Surface-expressed antigen on different cells/cross-reactivity43,44,48</td>
</tr>
<tr>
<td>(\alpha)-Actinin</td>
<td>Glomerular mesangial cells/cross-reactivity48</td>
</tr>
<tr>
<td>(\alpha)-Enolase</td>
<td>Glomerular mesangial cells, epithelial cells/cross-reactivity49</td>
</tr>
<tr>
<td>Annexin II</td>
<td>Glomerular mesangial cells, epithelial cells/cross-reactivity47</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>Glomerular matrix/cross-reactivity53,54</td>
</tr>
<tr>
<td>Laminin</td>
<td>Glomerular matrix/cross-reactivity53</td>
</tr>
<tr>
<td>Collagen</td>
<td>Glomerular matrix/cross-reactivity53</td>
</tr>
<tr>
<td>(\beta)_1-(\alpha)GPI</td>
<td>Serum protein/cross-reactivity44</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>Surface-expression on different cells/cross-reactivity45</td>
</tr>
</tbody>
</table>

Abbreviations: GPI, glycoprotein I; dsDNA, double-stranded DNA.
revealed that anti-dsDNA upregulates IL6 gene expression and fibronectin synthesis in GMCs, and can be used as an indicator for immune-mediated renal damage. Hsieh et al reported that monoclonal anti-dsDNA antibodies bound to human neutrophils upregulated IL8 gene expression and finally elicited activation-induced cell apoptosis. Luan et al and Song et al demonstrated that a monoclonal anti-dsDNA antibody inhibited IL2 gene expression in a Jurkat T-cell line by activating phosphorylated glycogen synthase kinase 3, which mimics T-cell hypersensitivity in patients with active SLE. Genetic manipulation by transgenic overexpression of anti-dsDNA autoantibodies and TLR4 activation in mice induced severe SLE syndrome.

Despite the cross-reactivity of anti-dsDNA antibodies with surface-expressed cognate molecules, it remains possible that the binding of anti-dsDNA to the cell surface is mediated by electrostatic interactions between the positively charged arginine residues in the CDRs of the IgG antibody F(ab')2 domain with the negatively charged surface membrane. Alternatively, the IgG isotype autoantibody nonspecifically binds to the Fcγ receptor on the cell surface, and subsequently the ligand-receptor conjugates are taken up by endocytosis. A schematic illustration of the immunopathogenic effects of anti-dsDNA on lupus pathogenesis is shown in Figure 2.

![Anti-dsDNA antibodies](image)

Figure 2 Schema depicting the immunopathogenic roles of anti-dsDNA autoantibodies on lupus pathogenesis.

Note: AICD: activation-induced cell death (apoptosis).

Immunopathogenic roles of anticardiolipin antibodies on brain damage and immune dysfunctions in patients with SLE

It is conceivable that antiphospholipid antibodies (aPLs) contain anti-cell surface phospholipids, such as phosphatidylcholine, phosphatidylserine, and phosphatidyl-ethanolamine (detected by ELISA); anticardiolipin antibodies (detected by ELISA); and lupus anticoagulants (detected by their ability to prolong certain in vitro phospholipid-restricted blood-clot tests). Pathogenic aPLs are catastrophic autoantibodies that induce antiphospholipid syndrome (APS), which is relevant to a broad spectrum of thromboembolic disorders, hematological cytopenia, and habitual abortion in patients with SLE. Pathogenic aPLs can bind to both PLs and plasma cofactors, among which β2-glycoprotein I (β2GPI) is the most crucial factor. In an animal model, anti-β2GPI antibodies from patients with antiphospholipid syndrome were sufficient to potentiate arterial thrombus. In contrast, influenza vaccination was shown to induce anticardiolipin but not β2GPI antibodies, and was not found to be pathogenic to the patients. Annexin A5 is an important member of the annexin family with antithrombotic properties. This molecule has been implicated in SLE, because aPL interferes with its functions and causes thromboembolism and miscarriages in patients with SLE.

Lin et al reported that some aPLs recognized conformational epitopes shared by β2GPI and the homologous catalytic domains of many serine proteases. In a series of investigations on thrombotic mechanisms elicited by aPLs, Meroni et al found that sophisticated processes were involved. These processes included disruption of fluid-phase coagulation, disruption of coagulation cell functions, and complement activation. Subsequently, Misra et al determined that the activation of lymphocytes was mandatory for the expression of binding epitopes for ACAs on the cell surface. We purified ACAs from ACA+ SLE sera following their methodology, and found that these particular autoantibodies possessed inhibitory activities on lymphocyte proliferation and polymorphonuclear cell (PMN) phagocytosis. Furthermore, these SLE-derived ACAs bound to a rat brain astrocyte cell line and inhibited their proliferation in an in vitro experiment. Surprisingly, intravenously injected ACAs entered brain tissue and bound to neurons, glial cells, and nerve fibers in an in vivo study. These observations suggest that ACAs possess a potential capacity to damage the blood–brain barrier, penetrate brain tissue, and exert deleterious effects in NPSLE.
Tsai et al. also demonstrated that ACAs induced apoptosis of GMCs in addition to vascular coagulopathy in lupus nephropathy. Taking these findings together, we can conclude that ACAs exert potent immunosuppressive effects and play a role in NPSLE through their nonspecific membranotropic properties. A proposed schema illustrating the immunopathogenic effects of ACAs on lupus tissue damage is shown in Figure 3.

Immunopathogenic effects of antiribosomal P autoantibodies on lupus psychosis and T-lymphocyte derangement

Autoantibodies against acidic ribosomal P have been demonstrated in 13%–20% of patients with SLE, and levels correlated with psychosis, nephritis, hepatitis, skin manifestations, and general disease activity. However, their effects on immune functions and the molecular basis for their activities have not been elucidated.

Sun et al. reported that a monoclonal anti-human ribosomal P protein was involved in the pathogenesis of lymphopenia and lymphocyte dysfunction in SLE by penetrating living cells. The same group further demonstrated that this monoclonal antibody inhibited the release of IL-12, TNF-α, and inducible nitric oxide synthase in an activated mouse RAW 264.7 macrophage cell line. In contrast, the monoclonal autoantibody also triggered immunosuppressive IL-10 overproduction via phosphatidylinositide 3-kinase (PI3 K)-dependent signaling pathways in lipopolysaccharide-activated macrophages. These diverse immunological effects likely implicate a role for antiribosomal P antibodies in lupus pathogenesis.

In addition to antiribosomal P and anti-dsDNA, other autoantibodies are potentially involved in NPSLE, including antibodies against endothelial cells, neuronal NMDA-receptor subtypes 2a and 2b (anti-NR2 antibodies), glial fibrillary acid protein, microtubule-associated protein 2, and matrix metalloproteinase 9. A schema demonstrating the immunopathogenic effects of antiribosomal P antibodies on T cells and macrophages is shown in Figure 4.

Immunopathological effects of anti-SSB/La autoantibodies on neutrophil functions

Neonatal lupus erythematosus has a clinical spectrum of cutaneous, cardiac, and some systemic manifestations in newborn infants whose mother produces antibodies against intracellular soluble ribonucleoproteins 48 kDa SSB/La, 52 kDa SSA/Ro, or 60 kDa SSA/Ro. However, only 1%–2% of mothers with these autoantibodies deliver neonates with lupus erythematosus, regardless of being healthy or symptomatic. Li et al. used affinity-purified anti-SSB/La autoantibodies to investigate the immunopathogenic effects of these antibodies on the immune system.

Figure 3 Schema depicting the immunopathogenic effects of anticardiolipin autoantibodies on immune responses. **Figure 4** Schema depicting the immunopathogenic effects of antiribosomal P protein autoantibodies on brain and kidney damage and immune responses.
from patients with SS to demonstrate a cross-reaction with cardiac sarcolemmal laminin. These data suggest that molecular mimicry between laminin and SSB/La exists. Anti-SSB/La antibodies may play a crucial role in the pathogenesis of newborn congenital heart block. Reed et al further found that Ro60 requires γ3 RNA for cell-surface exposure and inflammation in atrioventricular nodes, the cardiac conducting system, or the myocardium of neonatal lupus. In contrast, neutropenia and lymphopenia are hematological abnormalities in patients with SLE that are correlated with disease activity and are responsible for morbidity/mortality. Anti-SSB/La appeared in 87% of patients with primary SS in association with leukopenia and lymphopenia. Hsieh et al found that anti-SSB/La antibodies purified from active SLE sera were able to penetrate into cells responsible for neutropenia and functionally impair PMNs via activation-induced cell apoptosis. Subsequently, Biswas et al confirmed that the presence of anti-SSB/La antibodies was associated with defective neutrophil phagocytosis in patients with SLE. In addition, anti-SSB/La antibodies were shown to promote TNF-α secretion from macrophages. Increased apoptosis superimposed on defective clearance of apoptotic cells rendered the released chromatins from PMN apoptotic blebs to be more immunogenic. These denatured chromatins molecules were finally taken-up by myeloid dendritic cells, which bound to endosomal TLR3, TLR7, and TLR9. These three TLRs are endosomal receptors for binding with dsRNA, ssRNA and dsDNA for immune reactions. In addition to apoptotic blebs, neutrophil extracellular traps (NETs) released from dying neutrophils in a process called NETosis may be a major source of autoantigens. Overactive NETosis may become a source in lupus pathogenesis. Obviously, anti-SSB/La autoantibodies play a crucial role in overactive NETosis. The immunopathogenic effects of anti-SSB/La autoantibodies on lupus pathogenesis are illustrated in Figure 5.

In a recent study, Wu et al (unpublished data) found that exogenous SSB/La per se or SSB/La-anti-SSB/La ICs could potently activate IL-8 production and phagocytosis of PMNs as well as anti-SSB/La autoantibodies through PI3 K and MAPK signaling pathways. It was concluded that the SSB/La-anti-SSB/La system may play a complex role in autoimmune pathogenesis.

Conclusion

Breakdown of self-tolerance to nuclear antigens and polyclonal B-cell activation render the production of a number of autoantibodies in patients with SLE. Some of these autoantibodies, such as anti-dsDNA, antiribosomal P, anticardiolipin, and anti-SSB/La, are indeed pathogenic, as they bind to surface-expressed cross-reactive antigens through electrostatic interactions or establish nonspecific FcγR binding to allow penetration into the cell’s interior. These pathogenic autoantibodies not only directly damage the tissues to promote the release of more nuclear antigens, but derail innate and adaptive immune functions. The vicious cycle caused by these pathogenic autoantibodies sustains the chronic immunological and inflammatory abnormalities in patients with SLE.

Acknowledgments

This work was supported by a grant from the National Science Council (NSC99-2628-B-002-020-MY3). We are indebted to the Clinical Immunology and Transplantation Research Center, Department of Medical Research, National Taiwan University Hospital, for providing research space and facilities.

Disclosure

The authors report no conflicts of interest in this work.

References

2. Schroeder K, Herrmann M, Winkel TH. The role of somatic hypermuta

