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Abstract: Several challenges are associated with current vaccine strategies, including 

repeated immunizations, poor patient compliance, and limited approved routes for delivery, 

which may hinder induction of protective immunity. Thus, there is a need for new vaccine 

adjuvants capable of multi-route administration and prolonged antigen release at the site of 

administration by providing a depot within tissue. In this work, we designed a combinato-

rial platform to investigate the in vivo distribution, depot effect, and localized persistence of 

polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. 

Our observations indicated that the route of administration differentially affected tissue resi-

dence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a 

depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were 

administered intranasally, they persisted within lung tissue. These results provide insights into 

the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride 

nanoparticle-based vaccine adjuvants.

Keywords: combinatorial, polyanhydride, nanoparticle, live animal imaging, distribution

Introduction
While vaccination is one of the most successful methods of disease prevention, many 

current strategies require frequent administrations to achieve protective immunity. 

 Vaccines are primarily administered parenterally, often causing pain and leading 

to poor patient compliance.1–4 Furthermore, the best way to achieve efficacy is by 

immunizing via mucosal surfaces, the same route that most pathogens use to infect the 

host.5 In this regard, intranasal (IN) delivery has several advantages over parenteral 

routes for immunization against respiratory pathogens. This needle-free approach 

does not require highly trained medical personnel, results in better patient compli-

ance, and is capable of enhancing both mucosal and systemic immune responses.6 

A drawback of IN administration is the relatively poor immune responses induced 

by soluble protein antigens that are used in nonadjuvanted vaccines.2,6 Often, there 

is rapid epithelial adsorption and mucociliary clearance of these antigens,6 which 

can result in short respiratory tract residence times and induction of weak immune 

responses.7,8 Collectively, a need exists for versatile, biocompatible vaccine delivery 

platforms that can be administered via a variety of routes, thereby allowing them to 

reach different lymphoid tissues and provide sustained antigen release to enable more 

effective disease prevention.

Biodegradable polymers can provide sustained delivery of biological molecules, 

limiting the need for repeated administrations and improving patient compliance.9–13 
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This has beneficial implications for vaccine delivery, 

because it would promote  continual antigen presentation 

and subsequently enhance the development of immunologi-

cal memory.14 Polyanhydrides are biodegradable, nontoxic, 

nonmutagenic materials capable of encapsulating and 

delivering biological molecules in vivo. These polymers 

can be formulated into nanoparticles for parenteral or IN 

administration.12,13 Nanoparticles based upon copolymers 

of sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy) hexane 

(CPH), and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane 

(CPTEG) have been shown to exhibit tunable properties, 

including sustained antigen release kinetics, antigen sta-

bilization, and immunomodulatory adjuvant behavior.15–30 

Recently in our laboratories, polyanhydride nanoparticles 

have been shown to induce less inflammation at administra-

tion sites than traditional adjuvants.31 Additionally, histo-

logical evaluation revealed minimal toxicological effects 

and minimal adverse injection site reactions. Amphiphilic 

copolymers based on CPTEG and CPH have demonstrated 

the ability to enhance cell surface marker expression on 

dendritic cells similar to that induced by lipopolysaccharide 

(LPS) but without the toxic side effects caused by excessive 

cytokine production.16,24,27,29 These properties of polyan-

hydride nanoparticles stimulate the immune system and 

enable the induction of immunological memory. Recently, 

long-term protection against a lethal challenge of Yersinia 

pestis was achieved with a single-dose IN vaccine regimen 

employing polyanhydride nanoparticles encapsulating the 

F1-V antigen.13

The goal of this work was to investigate the in vivo 

distribution of various polyanhydride nanoparticle formula-

tions when administered to mice via different routes. These 

studies will provide insights that will enable the rational 

design of polyanhydride-based vaccine formulations that 

can optimally stimulate the immune system and induce 

long-term protective immunity. The studies described 

herein were performed using a combinatorial approach 

to simultaneously investigate the effect of nanoparticle 

chemistry and administration route on particle distribution 

in individual mice. Our observations indicate that route of 

administration differentially affects tissue residence times of 

the nanoparticles. All nanoparticles rapidly dispersed when 

delivered intranasally, but provided a depot when admin-

istered  parenterally. In addition, intranasally administered 

amphiphilic and hydrophobic nanoparticles demonstrated 

persistence within lung tissue. These studies demonstrate 

that polyanhydride nanoparticles offer a versatile platform 

in which polymer chemistry and route of administration can 

be employed to rationally design vaccine regimens to combat 

current and emerging diseases.

Material and methods
Material
The chemicals utilized in the monomer synthesis include: 

4-p-fluorobenzonitrile, purchased from Apollo Scientific 

(Cheshire, UK); 1-methyl-2-pyrrolidinone, 1,6-dibromo-

hexane, tri-ethylene glycol, 4-hydroxybenzoic acid, 4-p- 

and 1,6-dibromohexane; these were purchased from Sigma 

Aldrich (St, Louis, MO, USA); and dimethyl formamide 

(DMF), toluene, sulfuric acid, acetonitrile, and potassium 

carbonate were obtained from Fisher Scientific (Fairlawn, 

NJ, USA). Chemicals for the polymer synthesis and nano-

particle fabrication, pentane, methylene chloride, acetic 

anhydride and chloroform, were all purchased from Fisher 

Scientific. Deuterated chemicals for nuclear magnetic reso-

nance (NMR) analysis included chloroform and dimethyl 

sulfoxide (Cambridge Isotope Laboratories, Andover, MA, 

USA). Fluorescent dyes for in vivo imaging included: Texas 

Red®-X succinimidyl ester (TR) was purchased from Invit-

rogen (Carlsbad, CA, USA) and VivoTag 680 (VT680) and 

VivoTag 800 (VT800) were purchased from Perkin Elmer 

(Waltham, MA, USA). SKH1-E mice were obtained from 

Charles River (Wilmington, MA, USA) and housed under 

specific pathogen-free conditions. Animal procedures were 

conducted with the approval of the Iowa State University 

Institutional Animal Care and Use Committee.

Combinatorial polymer synthesis, nanoparticle 
fabrication, and characterization
SA monomer was purchased from Sigma Aldrich. CPH 

 monomer and CPTEG were synthesized as described 

 previously.32 CPTEG:CPH and CPH:SA copolymers were 

combinatorially synthesized as described elsewhere.27,28,33 

Briefly, the monomers were dissolved in acetic anhydride 

(for CPTEG:CPH polymers) or chloroform (for CPH:SA 

polymers), robotically deposited into a multi-well sub-

strate, and exposed to the necessary temperature (140°C 

for CPTEG:CPH or 180°C for CPH:SA) and vacuum 

(,0.3 torr) for 90 minutes. Following polymer library 

synthesis, nanoparticles were fabricated using a nonsol-

vent precipitation method. Briefly, the polymers were 

dissolved in methylene chloride, fluorescent dye was 

added to the dissolved polymer, the dye-polymer solution 

was dispersed by sonication at 40 Hz for 30 seconds, the 

solution poured into a nonsolvent (pentane), and the dye-

loaded nanoparticle chemistries (∼100% loading efficiency) 
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recovered by vacuum filtration. They were stored under dry 

conditions at −20°C until use in vivo. The polymers were 

characterized by 1H NMR spectroscopy and gel permeation 

chromatography and the nanoparticles were imaged using 

scanning electron microscopy. The chemical structures of 

the monomers and representative images of the nanopar-

ticles are shown in Figure S1.

Nanoparticle administration in vivo and image 
capture of mice and organs
Nanoparticles were suspended in sterile saline and soni-

cated at 15 Hz for 30 seconds to disperse the particles. 

 Immunocompetent, hairless SKH-1 mice were chosen for 

these studies to reduce the autofluorescence of mouse fur 

and, thus, increase the resolution of the dye incorporated 

into the nanoparticles. The mice were anesthetized with 

isoflurane and administered 50 µL of the desired treatment 

(dye-loaded nanoparticles, dye only, or saline). In this study, 

three routes of administration were evaluated. The nanopar-

ticles were injected subcutaneously (SC; at the nape of the 

neck) or intramuscularly (IM; thigh muscle) using a hypoder-

mic needle and syringe; the intranasal (IN; via the nostrils) 

administrations were accomplished using a pipettor fitted with 

a pipet tip. The nanoparticle chemistries studied were 50:50 

CPTEG:CPH, 50:50 CPH:SA, 20:80 CPTEG:CPH, and 20:80 

CPH:SA. In the route-dependent study, 50:50 CPTEG:CPH 

or 50:50 CPH:SA nanoparticles were used. The particles 

administered SC were loaded with TR, those administered 

IN were loaded with VT800, and those administered IM 

were loaded with VT680. For the chemistry-dependent IN 

study, 50:50 CPTEG:CPH and 50:50 CPH:SA were loaded 

with VT680 and 20:80 CPTEG:CPH and 20:80 CPH:SA 

with VT800. Approximately 170 µg of dye-loaded nano-

particles were administered per route in the route dependent 

studies or per chemistry in the chemistry dependent studies. 

Control groups were included for each combinatorial study, 

which consisted of mice that only received one treatment. 

Additionally, dye only and saline were administered for each 

route to serve as controls for the live animal imaging. X-ray 

and fluorescent images of both the ventral and dorsal sides 

of each mouse were obtained at 3 hours, 6 hours, 12 hours, 

24 hours, 3 days, 7 days, and 14 days using the In vivo Multi-

spectral FX Pro imaging system (Carestream, Rochester, NY, 

USA). TR, VT680, and VT800 have excitation wavelengths 

of 540 nm, 670 nm, and 760 nm and emission wavelengths 

of 600 nm, 750 nm, and 830 nm, respectively. Images of the 

animals were obtained for anatomical localization of a fluo-

rescent target. The 30 second X-ray exposures were captured 

using the X-ray device contained within the Multispectral 

FX Pro imaging System (kVp – 10 to 35 and 0.15 mA). On 

day 14, the mice were imaged and euthanized. Ex vivo tissue 

analysis of the liver, spleen, kidneys, lungs, and administration 

sites was performed to determine nanoparticle presence. The 

tissues were excised, washed with PBS, and imaged.

Image analysis
Sixteen bit mouse and organ tiff images were analyzed with 

Image J (NIH, Bethesda, MD, USA). Images were inverted 

and background was subtracted based upon a rolling ball 

radius of 50, 150, and 150 pixels from each image obtained 

using the excitation and emission combinations of 540 nm 

and 600 nm, 670 nm and 750 nm, and 760 nm and 830 nm, 

respectively. Images were stacked and regions of interest 

(ROIs) were created around each site of administration and 

around each organ (Figure 2F). Mean fluorescence intensity 

(MFI) was determined for each ROI of all the images. Image 

overlays were created by stacking the images, creating a color 

composite, and adjusting each channel to the desired color, 

brightness, and contrast. Macros were created and utilized 

to consistently analyze all images in determining ROI MFIs 

and in creating image overlays.

Data and statistical analysis
The MFI data were normalized to the saline group. JMP 

software (SAS Institute, Cary, NC, USA) was used to 

make comparisons between treatments and the negative 

(saline) control using the Student’s t-test and comparisons 

between different treatments (route or chemistry) were 

performed using a model analysis of variance (ANOVA) 

with Tukey’s HSD.

Results
Polymer and nanoparticle characterization
Proton NMR and gel permeation chromatography were 

used to determine the molecular weight and NMR was 

used to determine chemical structure of the combinatorially 

 synthesized polyanhydrides. The polymers were found to 

have a molecular weight range (10,000 to 18,000 Da) that 

was in agreement with previously published work.19–21,32 

 Previous work has demonstrated that molecular weights 

in this range have no effect on nanoparticle synthesis and 

result in similar particle sizes.19–21,32 The thermal properties, 

hydrophobicities, and degradation rates of these polymers 

are shown in Table 1. Scanning electron microscopy images 

of the dye-loaded nanoparticles revealed average particle 

sizes of ∼200 nm and uniform surface morphology across 
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chemistries, consistent with previous work, and representa-

tive images are shown in Figure S1D.13,24,34 The chemical and 

structural characterization of the dye-loaded nanoparticles 

was also consistent across chemistries and batches and in 

agreement with previous work.34

Nanoparticle biodistribution  
and persistence is influenced  
by administration route
In these studies, amphiphilic 50:50 CPTEG:CPH or hydro-

phobic 50:50 CPH:SA nanoparticles were administered 

via three different routes: SC, IM, and IN. Nanoparticles 

administered by the different routes were each labeled with 

a different fluorescent dye: either TR (SC), VT680 (IM), or 

VT800 (IN). Due to the low molecular weight of the fluores-

cent dyes encapsulated into the nanoparticles, rapid dye clear-

ance is expected upon release from the nanoparticles; this 

indicates that any fluorescence detected within a given ROI 

corresponds to encapsulated dye and not to that of released 

dye. Figure 1 depicts representative time course images 

of mice administered 50:50 CPTEG:CPH (M1) or 50:50 

CPH:SA nanoparticles (M2) via the different routes. The IN 

nanoparticles rapidly dispersed into the respiratory tract and 

remained detectable in the nasal passages for approximately 

24 hours, whereas the SC or IM nanoparticles persisted at 

the site of administration for at least 14 days (Figure 1). 

The time course images for each nanoparticle formulation 

administered individually are shown in Figure S2A.

A chronological comparison of the distribution and 

persistence patterns obtained after administration of 50:50 

CPTEG:CPH or 50:50 CPH:SA nanoparticles is shown in 

Figure 2A and B, respectively. To assess the distribution of the 

intranasally administered nanoparticles throughout the mouse, 

ROI analyses of the head, neck, chest, and abdomen were 

performed after IN administration of 50:50 CPTEG:CPH or 

50:50 CPH:SA nanoparticles (Figure 2C and D,  respectively). 

In contrast to the dissemination of IN nanoparticles, the IM 

and SC administered nanoparticles resided at the site of 

administration. The hydrophobic 50:50 CPH:SA nanopar-

ticles administered intramuscularly persisted the longest at 

the administration site as compared to their persistence when 

administered at the SC or IN sites  (Figure 2). In contrast, the 

subcutaneously delivered amphiphilic 50:50 CPTEG:CPH 

nanoparticles persisted longer at the site of administration 

when compared to similarly administered hydrophobic 50:50 

CPH:SA particles, as indicated by higher MFI values at all 

time points. Both nanoparticle chemistries were found to 

behave similarly when administered intranasally, rapidly dis-

seminating throughout the body and becoming  undetectable 

Table 1 Polyanhydride thermal properties and contact 
angles22,32,36,37,47

Chemistry Tg (°C) Approximate %  
degradation  
after 30 days

Contact  
angle (°)

50:50 CPTEg:CPH 8 80% 45
20:80 CPTEg:CPH 18 40% 45
50:50 CPH:SA 6.1–11.5 70% 50
20:80 CPH:SA 50.0 80% 50

Abbreviations: CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis- 
(p-carboxy phenoxy)-3,6-dioxaocatane; SA, sebacic acid.
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Figure 1 Representative dorsal and ventral images of mice showing differential persistence of nanoparticles that were administered via three different routes.
Notes: IM particles were detected at .14 days, SC particles were detectable for ∼14 days and IN particles were not detectable beyond one day. M1 = mouse administered 
50:50 CPTEg:CPH nanoparticles and M2 = mouse administered 50:50 CPH:SA nanoparticles. Blue indicates TR-loaded particles administered SC, red indicates VT680-loaded 
particles administered IM, and yellow indicates VT800-loaded particles administered IN. Five mice were imaged per group and images from one representative mouse are 
shown.
Abbreviations: IM, intramuscular; IN, intranasal; SC, subcutaneous.
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after 24 hours (Figure 2C and D). Importantly, there was no 

evidence that the delivery of nanoparticles by more than one 

route interfered with particle distribution emanating from the 

other sites (Figure S2). Specifically, the pattern and timing 

of nanoparticle distribution in mice administered nanopar-

ticles at a single site were similar to those observed in mice 

administered nanoparticles at all three sites  (Figure S2A 

and B).

Despite undetectable fluorescence in mice after 24 hours, 

examination of excised lungs indicated that nanoparticles 

were still present after 14 days (Figure 3 and Figure S3). 

It is important to note that the lack of fluorescence in the 

intact mouse images upon IN delivery of the nanoparticles 

(Figures 1 and 2) is likely due to the fluorescent signal 

dropping below the limit of detection in deep tissue and 

not because of the complete erosion of the nanoparticles.35 

Additionally, the ROI analysis indicated that while similar 

levels of fluorescence were observed in the whole mouse 

images at the SC and IM administration sites (Figure 2), 

actual fluorescence at the administration site was greatest 

for the IM nanoparticles (Figure 3). This is likely influenced 

by both the erosion kinetics of the particles when exposed 

to different tissue characteristics associated with the various 

administration sites as well as possible differences in immune 

E
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Figure 2 Nanoparticles administered via three different routes persisted at the administration site longest when administered IM, whereas IN particles rapidly disseminated 
throughout the body.
Notes: Analysis of nanoparticle fluorescence from Figure 1 revealed that 50:50 CPTEG:CPH (A) particles persisted at SC and IM administration sites longer than did 50:50 
CPH:SA (B) particles 50:50 CPTEg:CPH (C) and 50:50 CPH:SA (D) nanoparticle biodistribution when administered IN suggested that both chemistries rapidly dispersed 
throughout the mouse within the first 24 hours. MFI values of all treatment groups were normalized to the saline control (saline normalized MFI = 1). Dorsal mouse image 
depicting the ROIs for each of the regions analyzed for fluorescence (E) Letters indicate statistical significance between each treatment group and asterisks indicate statistical 
significance (P-value , 0.05) from the saline control, n = 5 for 50:50 CPTEg:CPH and n = 3 for 50:50 CPH:SA.
Abbreviations: Admin, administration; CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; IN, intranasal; IM, intramuscular; 
MFI, mean fluorescence intensity; ROIs, regions of interest; SA, sebacic acid; SC, subcutaneous.
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Figure 3 Nanoparticles were retained at the IM administration site longer than at the SC and IN sites of administration, as determined by ex vivo tissue ROI analysis 14 days 
after administration.
Notes: Nanoparticles administered IN were associated with the lungs and detectable for at least 14 days for both 50:50 CPTEg:CPH (A) and 50:50 CPH:SA (B) nanoparticles. 
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normalized to the saline control as described in the material and methods section (saline normalized MFI = 1). Letters indicate statistical significance between each treatment 
group and asterisks indicate statistical significance (P-value , 0.05) from the saline control, n = 5 for 50:50 CPTEg:CPH and n = 3 for 50:50 CPH:SA. Y-axis is presented in 
log scale.
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Figure 4 Representative mouse images depicting the detection of two nanoparticle formulations, 50:50 and 20:80 CPH:SA or 50:50 and 20:80 CPTEg:CPH, that were 
simultaneously administered IN.
Notes: The results demonstrate a rapid dispersion of particles of both chemistries throughout the body after administration. The data show that CPTEg:CPH nanoparticles 
tended to localize in different tissue regions than CPH:SA nanoparticles. M1 = mouse administered VT680-loaded 50:50 CPTEg:CPH nanoparticles IN (red) and VT800-
loaded 20:80 CPTEg:CPH nanoparticles (blue) and M2 = mouse administered VT680-loaded 50:50 CPH:SA nanoparticles IN (red) and 20:80 CPH:SA VT800-loaded 
nanoparticles IN (blue). Three mice were imaged per group and images from one representative mouse are shown.
Abbreviations: CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; IN, intranasal; SA, sebacic acid.

cell trafficking at these sites. These findings indicate that the 

IM nanoparticles provided for the longest residence time 

as compared to the SC or IN administered nanoparticles. 

However, the SC and IN nanoparticles disseminated more 

rapidly than the IM nanoparticles.

Nanoparticle chemistry dictates lung 
association and persistence
In these studies, the effect of nanoparticle chemistry on 

persistence within and association with lung tissue upon 

IN administration was investigated. Figure 4 depicts repre-

sentative time course images of mice that were intranasally 

administered both 20:80 and 50:50 CPTEG:CPH nanopar-

ticles (M1) or both 20:80 and 50:50 CPH:SA nanoparticles 

(M2) simultaneously. It is clear that both CPTEG:CPH and 

CPH:SA nanoparticles disseminated rapidly throughout the 

body, consistent with the data shown in Figure 1. Further 

analysis of these images revealed that most nanoparticles 

were undetectable after 24 hours. Figure S4 shows each 

fluorescent image captured independently and provides 

visualization of the in vivo distribution of each individual 

nanoparticle formulation. The ROI analysis of the data in 

Figure 4 is summarized in Figure 5. The 20:80 CPH:SA 

nanoparticles distributed the most rapidly throughout the 

body and were detectable at significantly greater levels than 

the other nanoparticle chemistries in the abdomen after 

3 hours. After IN administration, all other nanoparticle 

chemistries appeared to distribute similarly throughout 

the body, disseminating from the head to abdomen within 

the first 24 hours. Mice administered each individual 

nanoparticle formulation exhibited similar distribution pat-

terns to those of mice administered multiple formulations 

(Figure S4B).

Despite the inability to detect fluorescence in vivo after 

24 hours, ex vivo analysis of the organs 14 days after IN 

administration revealed that all nanoparticle formulations 

(independent of chemistry) were detectable in the lung tis-

sue (Figure 6 and Figure S5). This observation indicates 

that all nanoparticle formulations persisted in the lungs for 

at least 14 days.

Discussion
Polyanhydride particles present compelling advantages as 

vaccine adjuvants in comparison to traditional adjuvants such 

as Alum and monophosphoryl lipid A (MPLA) because of 

their ability to provide robust immune responses in a single 

dose, their versatility in terms of delivery routes, their abil-

ity to induce long-lived, high titer and highly avid antibody, 

their activation of antigen presenting cells, and their polymer 

chemistry-dependent  antigen-specific activation of CD4+ and 

CD8+ T cells.13,16,24,27 To further understand their distribution 

and tissue association in vivo, we utilized a combinatorial 

approach to simultaneously investigate the effect of admin-

istration route and nanoparticle chemistry. This approach 

facilitated the simultaneous evaluation of multiple parameters 

(ie,  particle chemistry and administration route) per mouse, 
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Abbreviations: Admin, administration; CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; IN, intranasal, MFI, mean 
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nanoparticles 14 days after intranasal administration.
Notes: Even though no longer visible in the whole mouse images, all nanoparticle 
chemistries administered IN were detected in the excised lungs for at least 14 days, 
as determined by ex vivo tissue analysis. At day 14, no nanoparticle fluorescence 
was observed in the liver, spleen, or kidneys. MFI values of all treatment groups 
were normalized to the saline control (saline normalized MFI = 1). Asterisks indicate 
statistical significance (P-value ,0.05) from the saline control, n = 3 for all groups.
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thereby reducing the number of experimental subjects, 

time, and cost. These studies revealed that polyanhydride 

nanoparticles persisted at the parenteral administration 

sites (IM and SC) or in lung tissue (IN). This approach also 

enabled the characterization of the distribution of a particular 

nanoparticle formulation away from a given site when par-

ticles were administered at other sites. The findings provide 

a framework for a multi-route vaccination strategy enabling 

simultaneous immunization against multiple pathogens.

Our work demonstrated that polyanhydride nano-

particles persist at the site of administration for at least 

2 weeks upon SC and IM delivery or within the lungs upon 

IN delivery (Figures 3 and 6). This observation suggests 

that polyanhydride nanoparticles will provide a sustained 

release of encapsulated antigen for that period of time. 

Further studies indicated that nanoparticles are still present 

at the site of injection after 2 months (SC) and 3 months 

(IM) (Figures 1 and 2 and data not shown). Upon examina-

tion of excised tissue samples, the presence of fluorescent 

nanoparticles was significantly greater for the IM particles 

than the SC or IN particles (Figure 3). The SC nanoparticles 

would have access to the lymphatics and immune cells to 

facilitate their dispersion. In addition to dispersing to the 

lungs, a portion of the IN nanoparticles would likely be 

swallowed and then taken up from the gastrointestinal tract 

(eg, Peyer’s patches). Unlike SC or IM routes of admin-

istration, these two paths of particle fate would contribute 
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to the pattern of particle distribution observed following 

IN administration.

Together, these data indicate that route of nanoparticle 

administration differentially affected their residence times 

at the site of administration. This finding, in combination 

with the ability to tailor the erosion kinetics of polyanhy-

dride nanoparticles, suggests that in vivo antigen delivery 

could be designed to occur over a specific time frame (eg, 

days to months).32,36,37 This finding has important implica-

tions for the design of single dose vaccines. Kipper et al 

demonstrated that a single dose of polyanhydride particles 

administered parenterally to mice was sufficient to stimulate 

high-titer antibody production and antigen-specific lympho-

cyte proliferation twelve weeks after administration.12 This 

observation was extended by Huntimer et al who showed 

that parenteral administration of particles provided sustained 

release of ovalbumin and allowed for at least a 16-fold dose 

reduction in the dose of antigen required for induction of an 

equivalent antibody production induced by soluble protein 

alone.38 Finally, Ulery et al demonstrated that a single IN 

dose of amphiphilic nanoparticles, together with soluble 

antigen, provided long-term protective immunity against 

lethal challenge with Y. pestis.13 In all these studies, it was 

hypothesized that the slow erosion of the particles enabled 

persistent antigen presentation by antigen presenting cells 

(APCs), thereby promoting affinity maturation of B cells 

and the development of a high titer, high avidity antibody 

response. The persistence of the nanoparticles observed in the 

present work, influenced by particle chemistry and adminis-

tration route, demonstrates a beneficial characteristic of these 

nanoparticles compared to traditional adjuvants such as Alum 

or MPLA for the development of single dose vaccines.

While IM administration is used for many current vac-

cines, immunization via alternate routes, including mucosal 

surfaces, could significantly enhance vaccine efficacy. 

IN vaccination is an advantageous delivery method to 

immunize against respiratory pathogens, such as seasonal 

influenza virus, group A Streptococcus, or aerosolized 

Bacillus  anthracis. However, the relatively poor immune 

response induced by nonadjuvanted antigens and high 

probability of mucociliary clearance often render IN vacci-

nation ineffective.6,39,40 Thus, parenteral immunization with 

adjuvanted subunit vaccines has been primarily used against 

respiratory pathogens. One limitation of parenteral vaccina-

tion is the induction of predominantly serum IgG against the 

vaccine antigen with little production of secretory IgA, con-

sequently limiting immune protection at mucosal  surfaces.6 

The polyanhydride nanoparticles discussed in this work 

can be effectively administered intranasally to enhance the 

induction of a mucosal immune response. Furthermore, they 

are capable of sustained antigen release and the activation of 

APCs, which contributes to the induction of high titer and 

high avidity antibody responses.16,18–20,22,24,25,27–29 In the current 

work, only the IN nanoparticles dispersed rapidly through-

out the body (Figures 1 and 2) and demonstrated prolonged 

residence in lung tissue (Figures 3 and 6). This enhanced 

persistence of nanoparticles in the lungs may provide a suf-

ficient depot for antigen release, immune stimulation, and 

robust antibody production as observed previously.13,14,41

The present work has also demonstrated that polymer 

chemistry plays an integral role in tissue residence time 

and distribution of nanoparticles delivered intranasally 

 (Figures 4–6). Adjuvant chemistry dictates properties such 

as hydrophobicity, glass transition temperature (T
g
), degrada-

tion kinetics, exposed end groups, etc, that are hypothesized 

to influence biodistribution and persistence.27,29 In this work, 

the 20:80 CPH:SA nanoparticles dispersed throughout the 

body most rapidly (Figures 4 and 5). This observation may be 

attributed to a combination of low hydrophobicity and high 

T
g
 (Table 1). These properties may enable the 20:80 CPH:SA 

nanoparticles to disseminate more rapidly throughout the 

body without preferentially associating with the lungs. In 

contrast, the low T
g
 nanoparticles (ie, 50:50 CPTEG:CPH 

and 50:50 CPH:SA) are more malleable and can change 

shape as dictated by their environment,27,29 which may explain 

their strong association with lung tissue (Figure 6). Indeed, 

structural and thermal similarities have been identified 

among these nanoparticles, pathogens, and common surface 

molecules of pathogens (eg, LPS)27,29,42,43 that may explain 

why the lung tissue association of nanoparticles effectively 

induces a robust antibody response. Pathogens persist at 

mucosal surfaces resulting in chronic colonization of the 

respiratory tract. Therefore, intervention strategies employ-

ing nanoparticles that mimic the persistence of respiratory 

pathogens may prove to be more efficacious than traditional 

vaccinations.

In addition to polymer T
g
, hydrophobicity is known 

to play an important role in mucosal transport, with 

the least hydrophobic particles having the highest rate 

of  translocation.44 Szentkuti reported that hydrophobic 

latex nanoparticles (,415 nm) rapidly penetrated the 

mucus layer and attached to the apical membranes of 

epithelial cells,  indicating that they are cell-tropic rather 

than  mucoadhesive.45 Other  studies have shown that the 

least hydrophobic polyanhydride nanoparticles (SA- and 

CPTEG-rich) are the most readily internalized by APCs.26,27 
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However, to enable sufficient  internalization by immune cells 

(eg, alveolar macrophages) in the lung, the nanoparticle 

chemistry must be capable of lung tissue association. Given 

this consideration, the amphiphilic 50:50 CPTEG:CPH for-

mulation, with its ability to enhance both persistence and 

uptake, may be an “optimal” candidate for an IN nanoparticle 

delivery platform. Other structural properties, including the 

presence of hydroxyl end groups, have been shown to influ-

ence bioadhesive interactions to mucosal surfaces caused by 

increased hydrogen bonding.46 Degradation of polyanhydride 

nanoparticles results in the formation of hydroxyl end groups 

that, as suggested, may promote hydrogen bonding and result 

in strong interactions with the lung tissue. Thus, the more 

rapidly degrading chemistries (ie, 50:50 CPTEG:CPH) 

with low T
g
s may provide the best option for treatment or 

vaccination via the respiratory tract. The 50:50 CPTEG:CPH 

nanoparticles displayed longer persistence within the lungs 

than did the other formulations (Figures 4 and 6), making the 

particles more accessible to APCs for uptake and subsequent 

APC activation and migration to draining lymph nodes.27,29 

Following IN administration, polyanhydride nanoparticles 

demonstrated longer persistence within the nasal passages 

than other polymer-based systems, such as N,N,N-trimethyl 

chitosan, indicating that polyanhydride nanoparticles may 

be more effective for immunization against respiratory 

pathogens.39

Conclusion
The combinatorial in vivo studies described herein 

demonstrated a chemistry- and route-dependent in vivo 

distribution and persistence of polyanhydride nanoparticles. 

Amphiphilic 50:50 CPTEG:CPH nanoparticles demon-

strated the longest residence time at parenteral adminis-

tration sites and would be expected to provide a long-term 

antigen depot. Additionally, the low T
g
 50:50 CPTEG:CPH 

and 50:50 CPH:SA nanoparticles demonstrated longer 

persistence in lung tissue following IN administration, 

emphasizing their value as a vaccine delivery system 

against respiratory pathogens. Furthermore, as indicated 

by the combinatorial approach, there was no interference 

of nanoparticle distribution when particles were simultane-

ously administered by multiple routes. This finding indicates 

that a strategy for multiple site immunization against one 

or more pathogens could be developed using this platform. 

The insights gained from these studies will facilitate the 

rational design of a nanoparticle-based platform for local-

ized delivery of vaccines to prevent current and emerging 

respiratory infectious diseases.
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Figure S1 Chemical structures of SA (A) CPH (B) and CPTEg (C) monomers and representative SEM images (D) of all the nanoparticle formulations fabricated in this 
work.
Abbreviations: CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; SA, sebacic acid; SEM, scanning electron microscope.
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Figure S2 Administration of nanoparticles via three different routes simultaneously to the same mouse resulted in similar nanoparticle distribution patterns as compared to 
administration of nanoparticles via each route separately.
Notes: Representative mouse images from Figure 1 separated by filter channel (A) M1 = mouse administered 50:50 CPTEg:CPH nanoparticles and M2 = mouse administered 
50:50 CPH:SA nanoparticles. Images of mice that received administration of nanoparticles via only one route (B) M4 = mouse administered 50:50 CPTEg:CPH SC, 
M5 = mouse administered 50:50 CPTEg:CPH IM, M6 = mouse administered 50:50 CPTEg:CPH IN, M7 = mouse administered 50:50 CPH:SA SC, M8 = mouse administered 
50:50 CPH:SA IM, and M9 = mouse administered 50:50 CPH:SA IN. Blue indicates TR-loaded particles administered SC, red indicates VT680-loaded particles administered 
IM, and yellow indicates VT800-loaded particles administered IN.
Abbreviations: CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; IM, intramuscular; IN, intranasal; SA, sebacic acid; SC, 
subcutaneous.
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Figure S4 Each mouse administered nanoparticles of two different chemistries results in similar nanoparticle distribution compared to separate mice administered 
nanoparticles of each chemistry independently.
Notes: Representative mouse images from Figure 4 separated by filter channel which indicate that the nanoparticle of CPTEG:CPH chemistries may disperse differently 
than those of CPH:SA throughout the mouse body when administered IN (A) M1 = mouse administered VT680-loaded 50:50 CPTEg:CPH nanoparticles IN (red) and 
VT800-loaded 20:80 CPTEg:CPH nanoparticles (blue) and M2 = mouse administered VT680-loaded 50:50 CPH:SA nanoparticles IN (red) and 20:80 CPH:SA VT800-loaded 
nanoparticles IN (blue). Images of mice that received administration of nanoparticles with only one chemistry (B) M3 = mouse administered 50:50 CPTEg:CPH IN (red), 
M4 = mouse administered 20:80 CPTEg:CPH IN (blue), M5 = mouse administered 50:50 CPH:SA IN (red), and M6 = mouse administered 20:80 CPH:SA (blue).
Abbreviations: CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; IM, intramuscular; IN, intranasal; SA, sebacic acid; SC, 
subcutaneous.
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Figure S3 Representative 14 day organ images corresponding to Figure 3 separated by filter channel which indicate that IN administered 50:50 CPTEG:CPH and 
50:50 CPH:SA nanoparticles (yellow) are detectable in the lung tissue while IM (red) and SC (blue) administered nanoparticles were primarily observed at the site of 
administration.
Notes: X-ray, C1-ex: 540 nm and em: 600 nm; C2-ex: 670 nm and em: 750 nm; C3-ex: 760 nm and em: 830 nm images were acquired. M1 = mouse administered 50:50 
CPTEg:CPH nanoparticles and M2 = mouse administered 50:50 CPH:SA nanoparticles. Blue indicates TR-loaded particles administered SC, red indicates VT680-loaded 
particles administered IM, and yellow indicates VT800-loaded particles administered IN.
Abbreviations: Admin, administration; C, channel; CPH, 1,6-bis-(p-carboxyphenoxy) hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; em, emission; ex, 
excitation; IM, intramuscular; IN, intranasal; SA, sebacic acid; SC, subcutaneous.
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Figure S5 Representative 14 day organ images corresponding to Figure 6 separated 
by filter channels which indicate that IN administered nanoparticles are easily 
observed in the lung tissue even though they are no longer detectable in the whole 
mouse images.
Notes: X-ray, C1-ex: 540 nm and em: 750 nm, and C2-ex: 760 nm and em: 830 nm 
images were acquired. M1 = mouse administered VT680-loaded 50:50 CPTEg:CPH 
nanoparticles IN (red) and VT800-loaded 20:80 CPTEg:CPH nanoparticles (blue) 
and M2 = mouse administered VT680-loaded 50:50 CPH:SA nanoparticles IN (red) 
and 20:80 CPH:SA VT800-loaded nanoparticles IN (blue).
Abbreviations: Admin, administration; C, channel; CPH, 1,6-bis-(p-carboxyphenoxy) 
hexane; CPTEg, 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaocatane; em, emission; ex, 
excitation; IM, intramuscular; IN, intranasal; SA, sebacic acid; SC, subcutaneous.
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