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Abstract: Skin engineering provides a new strategy for treating a wide variety of skin defects. 

In particular, electrospun nanofibrous membranes have been used as carriers for epidermis 

engineering. The aim of this study was to investigate the feasibility of a modified gelatin and poly-

caprolactone (GT/PCL) electrospun membrane for epidermis engineering. The biocompatibility of 

the membranes was evaluated by seeding HaCaT cells (human keratinocyte cell line) on the mem-

brane and the mechanical properties of the membranes were determined with and without cells 

after culture. A cell proliferation assay showing that HaCaT cells attached and proliferated well 

on the membranes demonstrated that the membranes possess good biocompatibility. Mechanical 

tests showed that the membranes are strong enough to be handled during transplantation. Further 

in vivo transplantation studies revealed that epidermises engineered with GT/PCL membranes 

were able to repair skin defects in the nude mouse. These results demonstrate that GT/PCL 

electrospun membranes could be suitable scaffolds for skin engineering.

Keywords: epidermis engineering, electrospun nanof ibrous membrane, gelatin, 

polycaprolactone

Introduction
The early and permanent coverage of extensive skin injury caused by trauma, burns, or 

diabetic diseases is usually hampered by insufficient supplies of donor skin. Skin engi-

neering provides a new strategy to treat a wide variety of skin defects.1 In early studies, 

cultured keratinocyte (KC) sheets from autologous skin were applied in clinical use;2 

however, the cell sheets are too fragile for engraftment. To improve the mechanical 

properties of the grafts, various membranes that can support the growth of KCs have 

been developed.3–6 Such scaffolds can be classified into naturally occurring or artificial 

substrates, or combinations of the two.

An ideal scaffold for epidermis engineering should provide suitable mechanical 

properties that can support the transfer of engineered graft from a culture dish to the 

wound. It should also have good biocompatibility that can provide a favorable environ-

ment for KC growth.7 In addition, the quality of the scaffolds should be controllable 

so that stable clinical outcomes can be achieved. Electrospinning technology, which 

can easily mass-produce thin nanofibrous membranes with good conformability, could 

offer a solution to the manufacture of scaffolds for epidermis engineering. Electrospun 

nanofibers resemble the native topographical features of the natural extracellular matrix 

and may thus promote the cell’s natural functions in a biomimetic fashion.8,9 Several 

electrospun nanofibrous membranes have been tested in epidermis engineering, includ-

ing those fabricated from pure natural materials or natural materials combined with 
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synthetic polymers.3,5,10–14 The latter hybrid materials, which 

combine the merits of the natural and synthetic polymeric 

components, have shown great advantages. One applicable 

hybrid scaffold is the gelatin and polycaprolactone (GT/

PCL) electrospun membrane. The presence of GT enhances 

the biodegradability and biocompatibility of the membranes, 

whereas PCL improves the mechanical properties of the 

sheets. This hybrid material has been used in both skin and 

nerve engineering.12,15

However, electrospinning of GT and PCL could raise a 

phase separation problem during electrospinning because 

of the dissimilarity of the two materials, which might 

be detrimental to the resultant fiber performance. Fiber 

inhomogeneities at the ultrastructural level could lead to 

unfavorable performance (eg, weakened mechanical prop-

erties).3,16–18 To address phase separation related issues, we 

previously used a tiny amount (,0.3%) of acetic acid to 

improve miscibility, which clarified the originally turbid 

solution to be single-phase stable for more than 1 week. 

The resultant nanofibers appeared to be thinner, smooth, and 

homogeneous, with enhanced performance in wettability 

and mechanical properties.19 Thus, it was of great interest to 

determine whether this improved membrane could be used 

for epidermis engineering.

In this study, the mechanical properties and biocompat-

ibility of the improved GT/PCL nanofibrous membranes 

were investigated in vitro by seeding with human KCs. The 

potential of the scaffold for skin engineering was further 

evaluated in vivo by transplantation of engineered epidermis 

into a wound-healing model in the nude mouse.

Materials and methods
Preparation of GT/PCL membranes
Composite GT/PCL (50:50) nanofibers were fabricated as 

described previously.20 The GT/PCL membranes were tai-

lored into round shapes (diameter 15.6 mm), sterilized for 

30 minutes under ultraviolet irradiation, and then lyophilized 

in a vacuum freeze-drier (Virtis Benchtop 6.6; SP Industries, 

Inc, Gardiner, NY, USA).

HaCaT cell culture on GT/PCL membranes
The human KC cell line, HaCaT, was purchased from 

Fuxiang Biological Technology Co, Ltd (Shanghai, People’s 

Republic of China) and maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) (HyClone, Logan City, UT, USA) 

with 10% fetal bovine serum (FBS; Hyclone). Cells at 90% 

confluency were trypsinized, resuspended in medium, and 

counted using a hemocytometer. Cells were seeded onto 

GT/PCL membranes at 2.5 × 104 cells/cm2 and maintained 

with medium changes every 2 days. Cell proliferation and 

biomechanical properties were measured after 7 days of 

culture.

Confocal microscopic analyses
GT/PCL membranes seeded with HaCaT cells were rinsed 

with phosphate-buffered saline (PBS), fixed with 4% para-

formaldehyde for 15 minutes at room temperature, and then 

counterstained by 4′,6-diamidino-2-phenylindole (DAPI 

1:1000; Life Technologies, Carlsbad, CA, USA). Samples 

were sealed and examined using a confocal microscope 

(Leica Microsystems, Wetzlar, Germany).

Scanning electron microscopy  
(SEM) analyses
GT/PCL membranes, with or without cells, were rinsed using 

PBS, and fixed overnight in 0.05% glutaraldehyde at 4°C. 

After dehydration through a graded ethanol series, samples 

were critical-point dried and then examined using a scanning 

electron microscope (SEM) (JEOL-6380 LV; JEOL, Tokyo, 

Japan). The pore size of the membrane was measured in SEM 

by Image J software (National Institutes of Health, Bethesda, 

MD, USA),21 and the thickness was determined with the aid 

of a micrometer.12

Cell proliferation assay
The biocompatibility of the scaffold was evaluated by moni-

toring the cell proliferation of HaCaT cells on the membranes. 

Briefly, HaCaT cells were seeded on GT/PCL membranes 

that were commensurate with the size of 24 well plates, at 

5 × 104 cells/well in 500 µL of DMEM with 10% FBS. The 

same amount of culture medium was added into a well with 

a GT/PCL membrane acting as a control. Cell proliferation 

was assessed using a Cell Count-8 kit (CCK-8; Dojindo 

Molecular Technologies, Inc, Kumamoto, Japan) following 

the manufacturer’s protocol. The plates were then measured 

at 450 nm wavelength on an enzyme-linked immunosorbent 

assay instrument (Thermo Fisher Scientific, Waltham, MA, 

USA). Optical density values were calculated from tripli-

cates of each group, and the experiment was then repeated 

three times.

Biomechanical test
Mechanical properties of the electrospun fibrous membranes 

with or without cells were determined using a tabletop 

uniaxial material testing machine (Instron-3343; Instron, 

Norwood, MA, USA) equipped with a 50 N load cell. 
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Rectangular shaped specimens (50 mm × 10 mm × 0.10 mm 

∼ 0.20 mm) were stretched at a constant cross-head speed of 

10 mm/minute. Five samples in each group were tested. The 

load–elongation behaviors of the scaffolds and failure modes 

were recorded. The structural properties of the scaffolds were 

represented by typical stress–strain curves, Young’s modulus 

(MPa), breaking strength (MPa), and strain at break (%). The 

original data were transformed into stress–strain values by

 Load/(Width × Thickness) (1)

and Change in length/original length using Origin 8.5.1 soft-

ware (OriginLab, Hampton, MA, USA). For each scaffold, 

the greatest slope in the linear region of the stress–strain 

curve corresponding to strain between 0%–20% was used 

to calculate the tensile modulus.

Transplantation of engineered epidermis 
in a mouse wound-healing model
Two types of cells were used for epidermis engineering: the 

HaCaT and human KCs. Human KCs were isolated from 

foreskin specimens, which were obtained from five donors 

aged from 6 years to 12 years who underwent a routine 

circumcision procedure at the Shanghai 9th Hospital with 

informed consent. The study was performed with approval 

from the local ethics committee (Shanghai Jiao Tong 

University School of Medicine, People’s Republic of China). 

KCs were isolated as previously described.22 Primary KCs 

were suspended in KC-serum free medium (Gibco®; Life 

Technologies, Carlsbad, CA, USA) and seeded onto tissue 

culture plates (BD Pharmingen, Franklin Lakes, NJ, USA) at 

3.5 × 104 cells/cm2 in 10 mL of complete medium and incu-

bated at 37°C with 5% CO
2
. Culture medium was changed 

every other day. Upon reaching 70%–80% confluency, KCs 

were trypsinized and replated at a 1:3 split ratio. Cells at 

passage 3 were used for epidermis engineering.

For epidermis engineering, cells (HaCaT or human KCs) 

were seeded onto GT/PCL membranes (round shape, 1.56 cm 

in diameter) at 1 × 106 cells/cm2 in DMEM with 10% FBS. 

Cell cultures were maintained for 7 days with the medium 

changed every other day. The engineered epidermises were 

then used for transplantation.

Twelve male BALB/c nude mice were purchased from 

the Shanghai Laboratory Animal Center National Rodent 

Laboratory Animal Resources (Shanghai, People’s Republic 

of China). Mice were anesthetized with intraperitoneal injec-

tions of pentobarbital sodium (20 mg/kg body weight). One 

full-thickness circular wound, 1 cm in diameter, was created 

on the back of each mouse. The wound was covered by a 

GT/PCL membrane or engineered epidermis (with HaCaT 

or human KCs; n = 4 for each group), fixed by 50 nylon 

sutures at the corners, followed by covering with a Vaseline 

(Unilever House, London, UK) gauze and adhesive bandages. 

Animal behavior and bandage integrity were monitored 

throughout the experiment. Wound healings were evalu-

ated at days 0, 4, 7, 11, and 14 postoperation. Images were 

recorded with a digital camera (Panasonic Corporation, 

Osaka, Japan). The wound area was measured by tracing the 

wound margin using Image-Pro Plus Software (version 5.0; 

Media Cybernetics LP). The person taking measurements 

was blinded to the groups and to treatment. Wound-healing 

rates were calculated as:

(Original wound area − Actual wound area) 

 /Original wound area × 100%. (2)

Histological analyses and 
immunofluorescence staining
For histological analyses and immunofluorescence staining, 

skin grafts were harvested at day 14, embedded in Tissue-

Tek® OCT™ compound (Sakura Finetek, Torrance, CA, 

USA), followed by snap-freezing and sectioning into 5 µm 

sections. Cells of donor origin were detected by antihuman 

human leukocyte antigen (HLA)-ABC staining. Briefly, 

sections were labeled with a mouse antihuman HLA-ABC 

monoclonal antibody (1:200; Abcam plc, Cambridge, MA, 

USA), followed by a secondary Alexa–Fluor 488-labeled goat 

antimouse immunoglobulin G (1:1000; Life Technologies). 

The slides were then counterstained by DAPI (1:1000; Life 

Technologies) and observed under a confocal microscope. 

After immunofluorescence observation, the slides were 

further stained with hematoxylin and eosin for histological 

structure analyses.

Statistical analysis
Data were expressed as the mean ± standard deviation. A two-

way analysis of variance was used to determine the statistical 

significance between groups, and a value of P , 0.05 was 

considered statistically significant.

Results
Preparation of the electrospun  
GT/PCL membranes
The electrospun GT/PCL membranes were first tailored into a 

round shape, 1.56 cm in diameter, which was commensurate 

with the size of 24-well plates (Figure 1A). SEM analysis 
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Table 1 Diameter, thickness, and pore size of GT/PCL 
nanofibrous membrane

Diameter (nm) Thickness (μm) Pore size (μm)

409 ± 88 25 ± 4 7.2 ± 1.5

Notes: Data are representative of three independent experiments, and all data are 
recorded as the mean values ± SD.
Abbreviations: GT/PCL, gelatin and polycaprolactone; SD, standard deviation.
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Figure 1 Characterization of electrospun GT/PCL membranes. (A) Gross view of a round membrane; (B and C) Microscopic structure of the membrane by SEM analysis.
Note: Scale bars: 5 µm.
Abbreviations: GT/PCL, gelatin and polycaprolactone; SEM, scanning electron microscopy; D, diameter of fibers.

was performed to evaluate the microscopic structure. As 

shown in Figures 1B and C, the GT/PCL (50:50) fibers were 

smooth, uniform, and fine, with an average fiber diameter of 

409 nm ± 88 nm (Figure 1D). The average pore size of the 

membrane was about 7.2 µm ± 1.5 µm and the thickness was 

25 µm ± 4 µm (Table 1).

Biocompatibility of GT/PCL  
membranes in vitro
The biocompatibility of the GT/PCL membranes was tested 

by seeding HaCaT cells on top of the membrane. HaCaT 

cells adhered to and spread on the membrane 1 day after 

seeding. Confocal microscope and SEM analyses showed 

that cells proliferated continuously on the membrane and 

reached approximately 85% confluency after 7 days of 

culture (Figures 2A and B). The results were confirmed by 

CCK-8 analysis. An increase in the optical density value 

was observed with increasing culture time (Figure 2C). 

These data proved that GT/PCL membranes possess good 

biocompatibility.

Mechanical properties of GT/PCL 
membranes and engineered epidermis
The engineered epidermis should ideally be mechani-

cally strong for handling during transplantation. Thus, 

the mechanical properties of GT/PCL membranes with 

or without cells were evaluated after culture. The repre-

sentative stress–strain behaviors of electrospun GT/PCL 

50:50 nanofibers soaked in culture medium for 8 hours, 

1 week, 2 weeks, or seeded with HaCaT cells for 1 week 

are shown in Figure 3A. Young’s modulus and breaking 

strengths were comparable, and no significant difference was 

observed between groups (Figures 3B and C). The elastic-

ity (elongation) of the nanofibrous membranes decreased 

with extended immersion time (Figure 3D), which is likely 

because of the rapid degradation of GT. Interestingly, seed-

ing of the HaCaT cells could improve the elasticity of the 

membranes (P , 0.05, compared with membranes at 1 week 

without cells). The membranes were strong enough to be 

handled after 1 week of culture.

Repair of skin defects with engineered 
epidermis in vivo
The appearances of animals treated with HaCaT-membranes, 

KC membranes, or membranes alone were digitally recorded 

on days 0, 4, 7, 11, and 14 postsurgery. Representative views 

in each group are shown in Figure 4. Wound closure with 

shrinking of wound size was observed in all groups at day 14. 

Statistical analyses from four animals in each group showed 

that wound closure rates in the groups treated with engineered 

epidermises, made of either HaCaT cells or human KCs, were 

significantly (P , 0.05) higher than the group treated with 

membranes alone at days 4, 7, and 11. However, no significant 

difference was observed between the three groups at day 14, 

and the majority of the defects were closed (94.4% ± 6.8% 

in the membrane-alone group; 99.7% ± 0.6% in the HaCaT-

membrane group; and 99.8% ± 0.3% in the KC membrane 

group) (Figure 5). These results indicate that the engineered 

epidermis could accelerate the wound closure progress.

Histological analyses of repaired skin at day 14 showed 

that in the epidermis-treated groups, multiple layers of epi-

thelial cells covered the wound area. The repaired area could 

be distinguished by the absence of skin appendages, which 

only existed in the native mouse skin (Figure 6). To further 

determine whether HaCaT cells and human KCs contributed 

to the wound healing, immunofluorescence staining of anti-

human HLA-ABC was performed using cell nuclei count 

stained by Hoechst. As shown in Figure 6, positive staining 

of HLA-ABC on the epithelial layers was observed in the 

groups treated with engineered epidermises, but not in the 
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group treated with the membrane alone, suggesting that donor 

cells survived and contributed to the wound healing.

Discussion
Good biocompatibility and sufficient mechanical strength are 

basic requirements for membranes in epidermis engineering. 

The electrospun nanofibrous membranes of GT/PCL meet the 

requirements by taking advantage of both material properties. 

GT is a natural component of the extracellular matrix that 

can provide a suitable ground for cell adhesion, proliferation, 

and differentiation, whereas PCL provides good mechanical 

properties because of its slow degradation rate.20 Several 

ratios of GT/PCL combinations were tested in the preliminary 

studies (unpublished data). An increase in GT content aided 

in cell adhesion, but decreased the mechanical strength of 

the membrane. On the contrary, an increase in PCL content 
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Figure 2 Biocompatibility of GT/PCL membranes. (A) SEM images of HaCaT cells on a membrane at day 1 and day 7. Scale bars: 200 µm; (B) Confocal microscope images 
of HaCaT cells on a membrane at day 1 and day 7. Scale bars: 100 µm; (C) Proliferation of HaCaT cells on a membrane measured by a CCK-8 kit.
Abbreviations: GT/PCL, gelatin and polycaprolactone; SEM, scanning electron microscopy; CCK-8, Cell Counting Kit-8; OD, optical density.
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improved the mechanical strength but reduced cell adhesion. 

The current GT/PCL ratio (50:50) takes the requirements of 

both epidermis engineering and further surgical operation 

into account. The in vitro and in vivo experiments demon-

strated that the GT/PCL (50:50) membranes are suitable for 

epidermis engineering.

Degradation of the GT/PCL membranes is slow. 

Undegraded membranes could still be observed even after 

9 months when used for cartilage engineering (unpublished 

data). The membrane scaffold in epidermis engineering acted 

simply as a carrier that supports KC growth. After the KCs 

covered the wounds and wound healing had progressed, the 

membranes eventually detached from the skin; therefore, 

the slow degradation of the membrane is not problematic in 

practice. Our previous work demonstrated that chitosan–gelatin 

membranes, which are also slowly degrading materials, could 

be used for epidermis engineering in animal models as well 

as in patients.6,22 Compared with chitosan–gelatin membranes, 

the current GT/PCL nanofibrous membranes could provide 

a biomimetic substrate for cell adhesion and proliferation. 

In addition, the fiber networks create better permeability, 

which allows for the easy passage of liquid. With this latter 

advantage, an epidermis engineered with GT/PCL membranes 

would give a better performance in the repair of wounds with 

inflammation and exudates. A comparative study of the two 

membranes in a skin burn model is under investigation.

It is well known that wound repair processes are 

initiated immediately after injury by various growth fac-

tors and cytokine secretions, cellular proliferation, and 

neovascularization.23 The improvement of wound heal-

ing in the groups treated with engineered epidermis was 

demonstrated by accelerating the wound closure progress 

at early time points (Figure 5). The wounds treated with 

membrane alone were also healed at day 14. This is due to 

the contraction of the wound in the mouse model. Although a 

shrinking of wound size was also observed in the experiment 

groups, HLA-ABC staining confirmed that the wounds were 

covered by grafted cells, indicating that donor cells played a 

role in this wound healing process. Studies have shown that 

engineered epidermis can not only cover the wound, but also 

secrete growth factors to stimulate skin regeneration.24–26 

Therefore, instead of using epithelial cells, many studies 

have focused on the modification of membranes with growth 

factors. Choi et al27 immobilized recombinant human epi-

dermal growth factor on an electrospun scaffold for diabetic 

ulcers, whereas Yang et al28 imbedded human basic fibroblast 

growth factor into nanofibers to improve the wound recovery 

rate. Other factors, including granulocyte colony-stimulating 

factor and platelet-derived growth factor-BB, have also been 

used for skin tissue engineering.29,30 Blending of growth 

factors into the GT/PCL electrospun nanofibers is worthy 

of investigation in the future.

Electrospun nanofibers have been proven to be a promising 

scaffold for tissue engineering with limited host response.31 

One of the components, GT, is the nature products of the 

extracellular matrix that would barely induce  an immune 

response for repairing murine skin trauma,32 while PCL would 

not induce inflammatory reactions when used in vivo as a 

wound dressing.33 In this study, no significant immune reac-

tivity was observed in the animal study (Figure 6). Whether 

the GT/PCL membranes possess antiinflammation activity is 

worthy of investigation in wounds with infection. In addition, 

Day 0
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HaCaT

Membrane

Day 4 Day 7 Day 11 Day 14

Figure 4 Repair of skin defects with engineered epidermis in the nude mouse.
Notes: Animals were treated with engineered epidermis (HaCaT or KC) or 
membrane alone, and observed for 14 days.
Abbreviation: KC, keratinocyte.
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nanofibrous membranes embedded with antibiotic drugs are 

also worthy of being developed.34

Conclusion
The current study demonstrated that GT/PCL nanofibrous 

membranes, improved by the inclusion of acetic acid dur-

ing the spinning process, possess good biocompatibility and 

mechanical properties. The membranes may thus be a suitable 

scaffold for epidermis engineering.
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