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Abstract: The objectives of this study were to develop a novel solid dutasteride formulation 

with improved physicochemical properties and oral bioavailability, and to examine the correla-

tion between its in vitro dissolution and in vivo pharmacokinetic parameters. Hydroxypropyl-β-

cyclodextrin (HP-β-CD) nanostructures with or without hydrophilic additives were manufactured 

using the supercritical antisolvent process. The dutasteride-loaded HP-β-CD nanoparticles 

formed aggregates with a mean particle size of less than 160 nm and a specific surface area 

greater than 100 m2/g. Increases in the supersaturation and dissolution rate for dutasteride were 

dependent on the type of additive; increases in maximum solubility and extended supersaturation 

were observed in dutasteride-loaded HP-β-CD nanostructures with hydroxypropylmethyl cellu-

lose, whereas the dissolution rate was the highest for nanostructures containing d-α-tocopheryl 

polyethylene glycol 1000 succinate. In rats, the oral bioavailability of dutasteride increased with 

the supersaturation induced by the HP-β-CD nanostructures. In addition, compared with the in 

vitro drug release rate, the in vivo pharmacokinetic parameters were more closely correlated 

with in vitro parameters related to supersaturation (solubility). Further, the bioavailability of the 

dutasteride-loaded HP-β-CD nanostructures with hydroxypropylmethyl cellulose was similar to 

that of the commercially available soft gelatin capsule (Avodart®). In conclusion, preparation of 

dutasteride-loaded HP-β-CD nanostructures using the supercritical antisolvent process affords 

a viable alternative solid dosage form for dutasteride.
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Introduction
Dutasteride, a 4-azasteroid, is a potent inhibitor of 5α-reductase types 1 and 2.1  Currently, 

this agent is used for the treatment of benign prostatic hyperplasia and hair loss.2 

 However, dutasteride is insoluble in water (,0.038 ng/mL),3 and in its commercial 

dosage form is formulated as a soft gelatin capsule containing monoglycerides and 

diglycerides of caprylic/capric acid as solubilizers. Although the oral bioavailability of 

the soft gelatin capsule is 60% (range 40%–94%) in humans, it must be swallowed whole 

and not chewed or opened because the contents may irritate the oropharyngeal  mucosa.4 

Further, the rate of drug release from the soft gelatin capsule is reduced by gelatin 

crosslinking.5 We have previously evaluated various formulation strategies, including 

a solid dispersion, a Eudragit E nanoparticle suspension, a self-microemulsifying drug 

delivery system, and the Soluplus® (BASF, Ludwigshafen, Germany)-coated colloidal 

silica nanomatrix system, for their ability to enhance the solubility and bioavailability of 
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dutasteride.6–9 Among these formulations studied, the Eudragit 

E nanoparticle suspension afforded a dutasteride bioavailabil-

ity 5.5-fold higher than that afforded by a 0.3% w/v Soluplus 

suspension (mean particle size 1.92 µm). However, use of the 

Eudragit E nanoparticle suspension was limited by its stability 

and difficulty in scaleup.10

Supersaturatable dosage forms improve the solubility and 

oral bioavailability of water-insoluble drugs, and are now 

being widely explored in the pharmaceutical industry.11–15 

Amorphous solid dispersion and lipid-based formulations 

(eg, the supersaturatable self-microemulsifying drug deliv-

ery system) containing polymeric precipitation inhibitors 

are regarded as supersaturatable formulations. The super-

saturated state is a thermodynamically unstable amorphous 

form and eventually reverts to a stable state because of drug 

precipitation. However, drug precipitation inhibitors help to 

maintain the supersaturated state by inhibiting nucleation and 

crystal growth by steric stabilization, surface stabilization, 

and/or specific interactions with the drug.16–18

Cyclodextrin and its derivatives have gained considerable 

attention in drug formulation because of their ability to increase 

solubility and stability by forming inclusion complexes,19 as 

well as by forming molecular aggregates and micelle-like 

structures.20,21 Studies have also reported enhanced supersatu-

ration and inhibition of drug precipitation by cyclodextrin.22,23 

Commercial supersaturatable formulations such as solid 

dispersions are manufactured using hot-melt extrusion, 

spray-drying, and supercritical fluid processes.24–26 Among 

the supercritical fluid processes, the supercritical antisolvent 

process may be used for manufacturing nanoparticles and 

nanostructures of a solid supersaturatable composition by 

using carbon dioxide as a green solvent.27–29

The objectives of this study were to develop a novel 

solid dutasteride formulation with improved physicochemi-

cal properties and higher bioavailability, and to establish a 

correlation between the in vitro dissolution and in vivo phar-

macokinetic parameters for orally administered dutasteride. 

Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as a 

drug precipitation inhibitor to enhance the solubility and oral 

bioavailability of dutasteride. Dutasteride-loaded HP-β-CD 

nanostructures with or without hydrophilic additives were 

manufactured using the supercritical antisolvent process. In 

vitro and in vivo evaluations were performed.

Materials and methods
Dutasteride and f inasteride were purchased from Dr 

Reddy’s Laboratories Ltd (Andhra Pradesh, India) and 

Sigma-Aldrich (St Louis, MO, USA), respectively. 

 Hydroxypropyl- β-cyclodextrin (HP-β-CD, Cavitron® W7 

HP5 Pharma, ISP Pharmaceuticals, Wayne, NJ, USA), 

hydroxypropyl cellulose (Nippon Soda Co, Ltd, Tokyo, Japan), 

hydroxypropylmethyl cellulose (HPMC 2910, Shin-Etsu 

Chemical Co, Ltd, Tokyo, Japan), polyethylene glycol (PEG 

6000, Sigma-Aldrich), polyvinylpyrrolidone (PVP K30, BASF 

Co, Ltd,  Germany), Poloxamer 407 and polyvinylpyrrolidone 

vinyl acetate (PVP-VA 64, BASF Co, Ltd), and d-α-tocopheryl 

polyethylene glycol 1000 succinate (Vitamin E TPGS, 

 Eastman Chemical Company, Kingsport, TN, USA) were 

used as hydrophilic additives. Avodart® soft gelatin capsules 

 (GlaxoSmithKline, Middlesex, UK) containing 0.5 mg dutas-

teride were purchased from a pharmacy. The acetonitrile and 

methanol used were high-performance liquid chromatography 

grade; all other chemicals were analytical grade.

Preparation of drug-loaded  
hP-β-CD nanostructures
Dutasteride-loaded HP-β-CD nanostructures with or with-

out hydrophilic additives were prepared using SAS200 

(Thar  Technologies, Pittsburgh, PA, USA).30 First, dutasteride/

excipient solutions (1.0%, w/v) were prepared by dissolving 

the dutasteride with excipients in ethanol or a 50/50 (v/v) 

mixture of ethanol and dichloromethane. Compositions of 

the dutasteride-loaded HP-β-CD nanostructures are shown in 

Table 1. The flow rates for the supercritical carbon dioxide and 

dutasteride/excipient solutions were 11 g per minute and 1.0 mL 

per minute, respectively. During formation of the particles, the 

operating pressure and temperature were fixed at 40°C and 

15 mPa, respectively, based on preliminary experiments (data 

not shown). The precipitated dutasteride-loaded HP-β-CD 

nanostructures were obtained from the particle collection bas-

ket. For comparison, physical mixtures were also prepared by 

simply mixing the drug with the excipients in a glass vial.

Characterization of drug-loaded  
hP-β-CD nanostructures
The morphology of the dutasteride-loaded HP-β-CD nano-

structures was observed using scanning electron microscopy 

(JSM-7000F, JEOL Ltd, Tokyo, Japan). The size of the 

dutasteride-loaded HP-β-CD nanostructures was determined 

using a laser particle size analyzer (BI-9000, Brookhaven, 

Upton, NY, USA). The samples were dispersed in mineral 

oil and sonicated for 10 minutes. The specific surface area 

of the dutasteride-loaded HP-β-CD nanostructures was 

determined by nitrogen adsorption using a surface area 

 analyzer (ASAP 2010, Micromeritics Instrument Corporation, 

Norcross, GA, USA). The crystal structure of the dutasteride 
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Table 1 Composition and physicochemical properties of dutasteride-
loaded hP-β-CD nanostructures with or without hydrophilic 
additives prepared using the supercritical antisolvent process

Formulation  
(weight ratio)

Drug 
content  
(%)

Mean  
particle  
size (nm)

Specific  
surface 
area (m2/g)

DT:hP-β-CD, 1:13.3 98.5 ± 1.1 140.5 ± 15.6 107.52 ± 1.59
DT:hP-β-CD, 1:26.6 97.9 ± 1.9 155.3 ± 22.5 110.63 ± 1.28
DT:hP-β-CD, 1:39.9 99.1 ± 0.9 150.9 ± 20.5 102.52 ± 1.09
DT:hP-β-CD:hPC, 
1:26.6:13.3

98.5 ± 1.6 201.6 ± 22.3 85.38 ± 1.10

DT:hP-β-CD:hPMC  
2910, 1:26.6:13.3

99.5 ± 1.3 209.8 ± 25.6 82.15 ± 0.89

DT:hP-β-CD:PVP  
K30, 1:26.6:13.3

98.2 ± 1.1 189.5 ± 15.6 90.31 ± 1.01

DT:hP-β-CD:PVP-VA  
64, 1:26.6:13.3

98.5 ± 1.5 215.3 ± 26.7 87.21 ± 0.75

DT:hP-β-CD:PEG  
6000, 1:26.6:13.3

97.6 ± 2.0 225.8 ± 20.2 71.51 ± 0.68

DT:hP-β-CD:Poloxamer  
407, 1:26.6:13.3

99.6 ± 2.1 230.2 ± 35.2 60.71 ± 0.59

DT:hP-β-CD:Ryotoester  
L1695, 1:26.6:13.3

98.6 ± 0.9 278.5 ± 50.5 66.61 ± 0.58

DT:hP-β-CD:SLS,  
1:26.6:13.3

99.2 ± 0.9 170.2 ± 15.9 96.51 ± 0.89

DT:hP-β-CD:TPGS,  
1:26.6:13.3

98.5 ± 1.1 ND 48.59 ± 0.47

Notes: Drug content (%) = weight of loaded drug/weight of feeding drug × 100. 
Data are expressed as the mean ± standard deviation (n = 3). 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPC,  
hydroxypropyl cellulose; hPMC, hydroxypropylmethyl cellulose; ND, not determined; 
PEG, polyethylene glycol; PVP, polyvinylpyrrolidone; PVP-VA, polyvinylpyrrolidone-
vinyl acetate; SAS, supercritical antisolvent; SLS, sodium lauryl sulfate; TPGS, 
d-α-tocopheryl polyethylene glycol 1000 succinate.

within the HP-β-CD nanostructure was analyzed using a 

D8 Advance x-ray diffraction system (Bruker AXS GmbH, 

Karlsruhe, Germany). The scanning speed was 3°C per minute 

from 5°C to 50°C with a step size of 0.02°C. The drug content 

in the HP-β-CD nanostructure was determined using high-

performance liquid chromatography (an LC 10ADvp pump 

with an SPD-10ADvp UV detector, Shimadzu Corporation, 

Kyoto, Japan). A sample of approximately 20 mg was dis-

solved in 100 mL of methanol. An analytical Luna C18(2) 

column (5 µm, 250 × 4.6 mm, Phenomenex, Torrance, CA, 

USA) was used, and the mobile phase consisted of a mixture 

of acetonitrile and water (60/40, v/v). A flow rate of 1.0 mL 

per minute was used. The injection volume was 20 µL, and 

detection was performed at 210 nm.

Supersaturated dissolution tests were performed using a 

USP rotating paddle apparatus (USP apparatus II; VK 7000, 

Vankel, Cary, NC, USA). Different HP-β-CD nanostructures 

equivalent to 15 mg of dutasteride were added into a disso-

lution vessel containing 300 mL of simulated gastric fluids 

without pepsin at a pH of 1.2, maintained at 37°C ± 0.5°C, 

and stirred at 100 rpm. At different time intervals, 3 mL 

samples were drawn and filtered using a 0.11 µm nylon 

syringe filter. The filtrate was diluted with methanol, and 

the concentration of dutasteride was analyzed using high-

performance liquid chromatography.

Dissolution tests, using two different under-sink condi-

tions, were performed in simulated gastric fluids (pH 1.2) 

containing sodium lauryl sulfate 0.1% or 2%. The sodium 

lauryl sulfate concentration was determined by the phase 

solubility study. The dissolution medium was maintained at 

37°C with continuous stirring at 50 rpm. Accurately weighed 

nanostructures containing the equivalent of 0.5 mg dutasteride 

and the commercial product were added to the dissolution 

vessel. Next, 3 mL samples were taken at different time 

intervals, filtered using a 0.11 µm nylon syringe filter, diluted 

using methanol, and analyzed using high-performance liquid 

chromatography. The phase solubility analysis was performed 

by adding excess amounts of dutasteride into a capped glass 

vial containing 5 mL of simulated gastric fluids (pH 1.2) with 

different concentrations of sodium lauryl sulfate. The samples 

were placed on a shaking water bath and agitated (60 rpm) at 

37°C for 24 hours, which was previously determined to be 

an adequate time for equilibration. At the end of this period, 

an aliquot of the sample was collected and filtered through 

a 0.11 µm nylon syringe filter. The filtrate was diluted with 

methanol, and the concentration of dutasteride was analyzed 

using high-performance liquid chromatography.

Pharmacokinetic study
The animal experiments were approved by the Commit-

tee on the Care and Use of Laboratory Animals at Inje 

 University and performed according to the guidelines of 

the university. Male Sprague-Dawley rats (240–260 g) 

were purchased from Samtaco Bio Korea Inc (Osan-si, 

Korea) and randomly divided into six groups of four 

animals each. The rats were fasted for 24 hours prior 

to the study, and the jugular veins cannulated using a 

23-gauge polyethylene cannula under zolazepam anesthesia 

(25 mg/kg, intramuscularly). The animals were allowed 

access to food four hours after dosing. Each group was 

given dutasteride-loaded HP-β-CD nanostructures or the 

commercial product by oral gavage at a dose of 2 mg/kg. 

The dutasteride-loaded HP-β-CD nanostructures or nano-

structures modified with PVP-VA 64, TPGS, or HPMC 

were dispersed in 1 mL of water immediately prior to oral 

dosing; the selection of additives was based on the results 

of an in vitro supersaturation study. After  administration 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2031

Dutasteride-loaded hP-β-CD nanostructures

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2013:8

Figure 1 Scanning electron microscopic images of dutasteride-loaded hP-β-CD nanostructures with or without hydrophilic additives prepared using the supercritical 
antisolvent process. DT:hP-β-CD, 1:39.9 (A), DT:hP-β-CD:hPC (B), DT:hP-β-CD:hPMC 2910 (C), DT:hP-β-CD:PVP K30 (D), DT:hP-β-CD:PVP-VA 64 (E), DT:hP-β-
CD:PEG 6000 (F), DT:hP-β-CD:Poloxamer 407 (G), DT:hP-β-CD:Ryotoester L1695 (H), DT:hP-β-CD:SLS (I), and DT:hP-β-CD:TPGS (J). 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPC, hydroxypropyl cellulose; hPMC, hydroxypropylmethyl cellulose; PEG, polyethylene glycol;  
PVP, polyvinylpyrrolidone; PVP-VA, polyvinylpyrrolidone-vinyl acetate; SLS, sodium lauryl sulfate; TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate.
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DT:HP-β-CD:Ryotoester L1695 = 1:26.6:13.3

DT:HP-β-CD:Poloxamer 407 = 1:26.6:13.3

DT:HP-β-CD:PEG 6000 = 1:26.6:13.3

DT:HP-β-CD:PVP-VA 64 = 1:26.6:13.3

DT:HP-β-CD:PVP K30 = 1:26.6:13.3

DT:HP-β-CD:HPMC 2910 = 1:26.6:13.3

DT:HP-β-CD:HPC = 1:26.6:13.3

DT:HP-β-CD = 1:39.9

DT:HP-β-CD = 1:26.6

DT:HP-β-CD = 1:13.3

DT (raw material)

10 20 30

2θ
40 50

DT:HP-β-CD:SLS = 1:26.6:13.3

DT:HP-β-CD:TPGS = 1:26.6:13.3

Figure 2 X-ray diffraction patterns of raw material and dutasteride-loaded hP-β-CD nanostructures with or without hydrophilic additives prepared using the supercritical 
antisolvent process. 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPC, hydroxypropyl cellulose; hPMC, hydroxypropylmethyl cellulose; PEG, polyethylene glycol; 
PVP, polyvinylpyrrolidone; PVP-VA, polyvinylpyrrolidone-vinyl acetate; SLS, sodium lauryl sulfate; TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate.

of the liquid content of the commercial product  (equivalent 

to 2 mg/kg), the animals immediately received 1 mL of 

water. Blood samples (approximately 350 µL) were col-

lected into heparinized tubes at indicated time  intervals. 

Plasma samples were obtained from blood by centrifugation 

at 12,000 rpm (16,582 × g) for five minutes.  Dutasteride 

was extracted from the plasma matrix by protein precipita-

tion, and drug concentrations in the plasma samples were 

analyzed using liquid chromatography with tandem mass 

spectrometry as previously reported.6 The pharmacokinetic 

parameters, ie, AUC
0→24h

 (area under the concentration-time 

curve), C
max

 (peak concentration), and T
max

 (time to peak 

concentration), were calculated using noncompartmental 

analysis. Relative bioavailability was calculated using 

the following equation, with the commercial product 

used as a reference: relative bioavailability (%) = AUC
test

/

AUC
reference

 × 100.

Statistical analysis
The data were analyzed by one-way analysis of variance fol-

lowed by the least squares difference and Student-Newman-

Keuls test using Statistical Package for Social Sciences 

version 19.0 software (IBM Corporation, Armonk, NY, USA). 

P , 0.05 was considered to be statistically significant.

Results and discussion
Scanning electron microscopic images showed that the 

dutasteride-loaded HP-β-CD nanostructures (Figure 1A–C) 

were composed of aggregated nanoparticles with a mean 

particle size of less than 160 nm, resulting in a very high 

specific surface area greater than 100 m2/g (Table 1). 

Hydrophilic additives decreased the mean particle size and 

increased the specific surface area of the nanostructures 

(Table 1). In particular, Poloxamer 407 or TPGS caused 

high particle aggregation and fusion (Figure 1G and J), 

which might be attributed to the lower melting tempera-

tures of the surfactant used. The melting temperatures of 

Poloxamer 407 and TPGS were approximately 55°C and 

37°C, respectively. Similar results were observed in previ-

ous studies.15,28,31 Dutasteride was not degraded during the 

supercritical antisolvent process, and the drug content of 

all the prepared nanostructures was at least 98% (Table 1). 

X-ray diffraction patterns for the nanostructures did not 

show any characteristic diffraction peaks corresponding to 

the raw material (dutasteride), suggesting that dutasteride 

existed in an amorphous form within the HP-β-CD nano-

structures (Figure 2).

As shown in Figure 3 and Table 2, the dutasteride-loaded 

HP-β-CD nanostructures at a ratio of 1:13.3 showed a 
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Figure 3 Supersaturated dissolution of a physical mixture and dutasteride-loaded hP-β-CD nanostructures with or without hydrophilic additives prepared using the 
supercritical antisolvent process. 
Note: Data are expressed as the mean ± standard deviation (n = 3). 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPC, hydroxypropyl cellulose; hPMC, hydroxypropylmethyl cellulose; PEG, polyethylene glycol; 
PVP, polyvinylpyrrolidone; PVP-VA, polyvinylpyrrolidone-vinyl acetate; SLS, sodium lauryl sulfate; TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate.

 maximum solubility of 7.77 µg/mL and rapid subsequent 

drug precipitation. The solubility of dutasteride was main-

tained above 20 µg/mL for 24 hours in dutasteride-loaded 

HP-β-CD nanostructures at ratios of 1:26.6 and 1:39.9; maxi-

mum solubility was not different at these ratios (P . 0.05). 

In fact, as an inhibitor of drug precipitation, the HP-β-CD 

nanostructure provided a high degree of supersaturation 

and extended supersaturation of dutasteride, suggesting 

that mechanisms other than simple complex formation were 

responsible for the stabilization effects, such as inhibition of 

nucleation and/or crystal growth from a highly supersaturated 

state. In general, drug precipitation inhibitors inhibit nucle-

ation and/or crystal growth by steric stabilization, surface 

stabilization by adsorption onto an active surface, and/or 

specific interactions with a drug (eg, by hydrogen bonding 

or hydrophobic interactions).32,33 Cyclodextrin can solubi-

lize and stabilize drugs by forming an inclusion complex 

with a drug and/or by forming molecular aggregates and 
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Table 2 Supersaturated dissolution data for dutasteride-loaded hP-β-CD nanostructures with or without hydrophilic additives 
prepared using the supercritical antisolvent process

Formulation (weight ratio) HP-β-CD nanostructure Physical mixture

Maximum  
solubility (μg/mL)

Degree of  
supersaturationa

Relative  
AUC (%)b

Relative  
Cmax (%)c

Equilibrium 
solubility (μg/mL)

DT:hP-β-CD, 1:13.3 7.77 ± 1.23 38.85 3.5 21.6 0.21 ± 0.01
DT:hP-β-CD, 1:26.6 31.25 ± 3.21 89.29 84.0 86.8 0.35 ± 0.03
DT:hP-β-CD, 1:39.9 35.99 ± 4.52 76.57 100.0 100.0 0.47 ± 0.03
DT:hP-β-CD:hPC, 1:26.6:13.3 13.70 ± 2.30 32.61 16.4 38.1 0.42 ± 0.01
DT:hP-β-CD:hPMC 2910, 1:26.6:13.3 47.10 ± 3.05 104.88 140.2 130.9 0.45 ± 0.01
DT:hP-β-CD:PVP K30, 1:26.6:13.3 10.59 ± 3.52 25.83 6.7 29.4 0.41 ± 0.02
DT:hP-β-CD:PVP-VA 64, 1:26.6:13.3 16.16 ± 3.41 34.39 12.2 44.9 0.47 ± 0.03
DT:hP-β-CD:PEG 6000, 1:26.6:13.3 6.89 ± 1.23 17.7 4.3 19.1 0.39 ± 0.01
DT:hP-β-CD:Poloxamer 407, 1:26.6:13.3 15.30 ± 3.16 7.97 44.6 42.5 1.92 ± 0.23
DT:hP-β-CD:Ryotoester L1695, 1:26.6:13.3 8.94 ± 3.12 10.34 14.6 24.8 0.86 ± 0.11
DT:hP-β-CD:SLS, 1:26.6:13.3 13.52 ± 2.58 6.44 42.7 37.6 2.11 ± 0.31
DT:hP-β-CD:TPGS, 1:26.6:13.3 30.83 ± 3.58 19.51 61.5 85.7 1.58 ± 0.19

Notes: aDegree of supersaturation is defined as the maximum solubility of dutasteride (HP-β-CD nanostructure) in the dissolution medium divided by the equilibrium 
solubility of dutasteride (physical mixture) within medium; brelative AUC (%) = AUC0→6h of sample/AUC0→6h of the hP-β-CD nanostructure (1:39.9) × 100. The AUC0→6h was 
calculated using noncompartmental analysis from supersaturated dissolution data; crelative Cmax (%) = Cmax of sample/Cmax of hP-β-CD nanostructure (1:39.9) × 100. Data are 
expressed as the mean ± standard deviation (n = 3). 
Abbreviations: AUC, area under the concentration-time curve; Cmax, peak concentration; DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPC, hydroxypropyl 
cellulose; hPMC, hydroxypropylmethyl cellulose; PEG, polyethylene glycol; PVP, polyvinylpyrrolidone; PVP-VA, polyvinylpyrrolidone-vinyl acetate; SLS, sodium lauryl sulfate; 
TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate.

 micelle-like structures.34,35 Recently, Makhlof et al reported 

that cyclodextrin could act as a surface stabilizer of nano-

crystals by forming a cyclodextrin network via intermolecular 

interaction of cyclodextrin molecules.36

Hydrophilic additives significantly influenced the maxi-

mum solubility and supersaturation of dutasteride. HPMC 

was the most effective hydrophilic additive examined, 

followed by TPGS, and PVP-VA 64. Of the hydrophilic 

additives used, only HPMC had a synergistic effect on the 

maximum solubility and extended supersaturation of the 

dutasteride-loaded HP-β-CD nanostructures. Conversely, 

compared with HP-β-CD alone, the other hydrophilic addi-

tives showed an antagonistic effect, resulting in a decreased 

degree of supersaturation and/or an increase in drug pre-

cipitation from the supersaturated state. In particular, rapid 

drug precipitation was observed in HP-β-CD nanostructures 

with PEG 6000, with a maximum solubility of 6.89 µg/mL. 

HP-β-CD nanostructures with TPGS also showed rapid 

drug precipitation compared with the HP-β-CD nanostruc-

tures alone at ratios of 1:26.6 and 1:39.9, but no difference 

in maximum solubility was observed (P . 0.05). Lastly, 

HP-β-CD nanostructures with sodium lauryl sulfate or Polox-

amer 407 showed a decrease in degree of supersaturation, 

although it was maintained above 10 µg/mL for 24 hours. 

Therefore, the surfactants added, with the exception of TPGS, 

inhibited supersaturation of the HP-β-CD nanostructures. 

Conversely, the equilibrium solubility of the physical mix-

tures consisting of HP-β-CD and hydrophilic polymers was 

increased compared with that of the physical mixture with 

HP-β-CD and drug at a ratio of 1:26.6. Moreover, the hydro-

philic additives, with the exception of TPGS and HPMC, 

inhibited supersaturation of the HP-β-CD nanostructures, but 

increased the equilibrium solubility of dutasteride. The effect 

of the hydrophilic additives on the degree of supersaturation 

might be attributed to specific and/or nonspecific interactions 

between dutasteride, HP-β-CD, and the hydrophilic additives, 

and/or the miscibility of the HP-β-CD and hydrophilic addi-

tives within the nanostructure matrix. According to classi-

cal nucleation theory, the nucleation rate would depend on 

the interfacial tension and degree of supersaturation.37 The 

hydrophilic additives also affected the interfacial tension 

of the HP-β-CD nanostructures. However, the synergistic 

or antagonistic effects of the hydrophilic additives on the 

supersaturation of dutasteride require further study.

The dissolution rate of the dutasteride-loaded HP-β-CD 

nanostructures was determined in simulated gastric fluids 

(pH 1.2) containing 2% sodium lauryl sulfate. The  dissolution 

test was performed according to US Pharmacopeia guidelines.38 

Dutasteride did not dissolve in the dissolution medium in the 

absence of sodium lauryl sulfate because it is insoluble in water 

(less than 0.038 ng/mL). As shown in Figure 4A, approximately 

90% of the dutasteride from all the HP-β-CD nanostructures 
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Figure 4 Dissolution profiles for the commercial product and dutasteride-loaded 
hP-β-CD nanostructures with or without hydrophilic additives prepared using the 
supercritical antisolvent process in a ph 1.2 dissolution medium containing two 
different concentrations of sodium lauryl sulfate, ie, (A) 2% and (B) 0.1%. 
Note: Data are expressed as the mean ± standard deviation (n = 3).
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPMC, 
hydroxypropylmethyl cellulose; PVP-VA, polyvinylpyrrolidone-vinyl acetate; TPGS, 
d-α-tocopheryl polyethylene glycol 1000 succinate.
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Figure 5 Effect of sodium lauryl sulfate concentration on the solubility of 
dutasteride. 
Note: Data are expressed as the mean ± standard deviation (n = 3). 
Abbreviation: SLS, sodium lauryl sulfate.

Table 3 Dissolution kinetic parameters for dutasteride-loaded 
hP-β-CD nanostructures with or without hydrophilic additives 
prepared using the supercritical antisolvent process

Formulation (weight ratio) k (mg1/3 per  
minute)

t50%  
(minutes)

DT:hP-β-CD, 1:13.3 0.0184 ± 0.0017 9.22 ± 0.68
DT:hP-β-CD, 1:39.9 0.0259 ± 0.0025 7.43 ± 0.61
DT:hP-β-CD:PVP-VA 64, 1:26.6:13.3 0.0213 ± 0.0021 8.52 ± 0.78
DT:hP-β-CD:TPGS, 1:26.6:13.3 0.0290 ± 0.0031 6.59 ± 0.55
DT:hP-β-CD:hPMC 2910, 1:26.6:13.3 0.0233 ± 0.0020 8.27 ± 0.71

Notes: Drug release rate was determined using the hixson-Crowell equation: 
W0

1/3 - Wt
1/3 = kt + C, where W0 is the initial amount of drug, Wt is the remaining 

amount of drug at time t, k is the drug release rate, and C is a constant. The t50% 
parameter corresponds to the time necessary for release of 50% of the drug 
and is calculated using the hixson-Crowell equation. Data are expressed as the 
mean ± standard deviation (n = 4). 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPMC, 
hydroxypropylmethyl cellulose; PVP-VA, polyvinylpyrrolidone-vinyl acetate; TPGS, 
d-α-tocopheryl polyethylene glycol 1000 succinate.

tested dissolved within nine minutes in the dissolution medium 

containing 2% sodium lauryl sulfate. Because the nanostruc-

tures showed a rapid dissolution rate in this condition, a phase 

solubility study was performed to modify the dissolution 

medium for comparison between the formulations. As shown 

in Figure 5, the equilibrium solubility of dutasteride increased 

linearly with increasing concentration of sodium lauryl sulfate 

because of micellar solubilization. Dissolution studies were 

performed in simulated gastric fluids (pH 1.2) containing 0.1% 

sodium lauryl sulfate for the sink condition (C
s
 = 11.86 µg/mL, 

C
t
 , 0.1 C

s
); the in vitro dissolution parameter, drug release 

rate (k), and t
50%

 (time necessary to release 50% of the drug) 

were calculated using the Hixson-Crowell equation (Table 3). 

The most rapid dissolution rate was observed in HP-β-CD 

nanostructures with TPGS, followed by HP-β-CD nanostruc-

tures at a ratio of 1:39.9. Further, the percentage of dutasteride 

released from the HP-β-CD nanostructures was significantly 

higher than that of the commercial product. Drug release from 

the commercial product was dependent on the sodium lauryl 

sulfate concentration in the dissolution medium, which might 

be attributed to emulsification of the liquid oil content, ie, 

monoglycerides and diglycerides of caprylic/capric acid and 

butylated hydroxytoluene,3 from the soft capsule by sodium 

lauryl sulfate.

The plasma concentration-time profiles and pharma-

cokinetic parameters (AUC
0→24h

, C
max

, and T
max

) are shown 

in Figure 6 and Table 4, respectively. Bioavailability of the 

drug from the dutasteride-loaded HP-β-CD nanostructures 

with HPMC was significantly improved compared with 

that from the other formulations. After oral administra-

tion of the dutasteride-loaded HP-β-CD nanostructures 
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Table 4 Pharmacokinetic parameters for the dutasteride-loaded hP-β-CD nanostructures with or without hydrophilic additives 
prepared using the supercritical antisolvent process

Formulation (weight ratio) AUC0→24h  
(ng ⋅ hour/mL)

Cmax  
(ng/mL)

Tmax  
(hours)

Relative  
AUC (%)

Relative  
Cmax (%)

Relative 
BA (%)

DT:hP-β-CD, 1:13.3 1367.9 ± 286.0 124.0 ± 22.7 4.3 ± 2.1 49.9 59.8 38.8

DT:hP-β-CD, 1:39.9 2738.7 ± 413.7a–c 207.3 ± 24.7ab 5.5 ± 4.5 100.0 100 77.7

DT:hP-β-CD:PVP-VA 64, 1:26.6:13.3 1746.4 ± 290.9a 161.6 ± 20.1a 3.8 ± 2.2 63.8 78.0 49.6

DT:hP-β-CD:TPGS, 1:26.6:13.3 2137.6 ± 387.2a 195.7 ± 19.1a 3.5 ± 2.4 78.1 94.4 60.7

DT:hP-β-CD:hPMC 2910, 1:26.6:13.3 3570.5 ± 443.3a–d 255.5 ± 27.9a–e 3.8 ± 1.0 130.4 123.3 101.3
Commercial product 3523.9 ± 402.1a–d 210.1 ± 29.5ab 8.3 ± 2.5 128.7 101.4 100

Notes: aSignificant at P , 0.05 versus DT:hP-β-CD = 1:13.3; bsignificant at P , 0.05 versus DT:hP-β-CD:PVP-VA 64 = 1:26.6:13.3; csignificant at P , 0.05 versus DT:hP-
β-CD:TPGS = 1:26.6:13.3; dsignificant at P , 0.05 versus DT:hP-β-CD = 1:39.9; esignificant at P , 0.05 versus commercial product. Relative AUC (%) = AUC0→24h of sample/
AUC0→24h of hP-β-CD nanostructure (1:39.9) × 100. Relative Cmax (%) = Cmax of sample/Cmax of hP-β-CD nanostructure (1:39.9) × 100. Relative bioavailability was calculated 
using the following equation, with the commercial product used as a reference: relative bioavailability (%) = AUCtest/AUCreference × 100. Data are expressed as the mean ± 
standard deviation (n = 4). 
Abbreviations: AUC, area under the concentration-time curve; BA, bioavailability; Cmax, peak plasma concentration; DT, dutasteride; hP-β-CD, hydroxypropyl-β-
cyclodextrin; hPMC, hydroxypropylmethyl cellulose; PVP-VA, polyvinylpyrrolidone-vinyl acetate; Tmax, time to peak concentration; TPGS, d-α-tocopheryl polyethylene glycol 
1000 succinate.
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Figure 6 Plasma concentration-time profile for dutasteride in rats after oral 
administration of the commercial product and hP-β-CD nanostructures with or 
without hydrophilic additives prepared using the supercritical antisolvent process. 
Note: Data are expressed as the mean ± standard deviation (n = 4). 
Abbreviations: DT, dutasteride; hP-β-CD, hydroxypropyl-β-cyclodextrin; hPMC, 
hydroxypropylmethyl cellulose; PVP-VA, polyvinylpyrrolidone-vinyl acetate; TPGS, 
d-α-tocopheryl polyethylene glycol 1000 succinate.

with HPMC, the AUC
0→24h

, C
max

, and relative bioavail-

ability were 3570.5 ± 443.3 ng ⋅ h/mL, 255.5 ± 27.9 ng/

mL, and 101.3%, respectively. Further, bioavailability 

of the dutasteride-loaded HP-β-CD nanostructures with 

HPMC was similar to that of the commercial soft gela-

tin capsule, indicating that dutasteride-loaded HP-β-CD 

nanostructures manufactured using the supercritical 

antisolvent process could help achieve a novel supersatu-

ratable solid formulation with a high oral bioavailability 

of dutasteride. This differed from the oil-based solubi-

lization principle of the commercial product. Thus, the 

soft gelatin capsule could be switched to a solid dosage 

form, such as a tablet.

The relationship between the in vitro dissolution and 

in vivo pharmacokinetic parameters was investigated for 

the various formulations of dutasteride-loaded HP-β-CD 

nanostructures. A good linear correlation was observed 

between the relative AUC in vitro and the relative AUC 

parameters in vivo (Figure 7A), and for the relative C
max

 

parameters  (Figure 7B). Interestingly, the oral bioavailabil-

ity of dutasteride increased with maximum solubility, ie, 

supersaturation. After oral administration of the dutasteride-

loaded HP-β-CD nanostructures, a highly supersaturated 

solution was generated within the gastrointestinal tract, which 

resulted in a higher local concentration, and consequently, 

higher movement through the gastrointestinal epithelial 

membrane.39,40 However, a poor correlation was observed 

between the drug release rate and relative bioavailability 

(Figure 7C). Therefore, these data suggest that it is more 

important to enhance maximum supersaturation by prolonged 

supersaturation than the dissolution rate under sink conditions 

to achieve an effective solid dosage form of dutasteride with 

high bioavailability.

Conclusion
The supersaturation and dissolution rate of dutasteride were 

significantly increased by preparing dutasteride-loaded 

HP-β-CD nanostructures using the supercritical antisolvent 

process. The maximum supersaturation and drug precipita-

tion rate of dutasteride depends on the type of hydrophilic 

additive used. Among these, HPMC conferred a high maxi-

mum solubility with prolonged supersaturation. The oral 
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in vitro drug release rate. Further, the bioavailability of the 

dutasteride-loaded HP-β-CD nanostructures with HPMC was 

similar to that of the commercial soft capsule formulation. 

In conclusion, preparation of dutasteride-loaded HP-β-CD 

nanostructures using the supercritical antisolvent process is 

a feasible strategy for developing a new solid dosage form 

containing dutasteride.
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Figure 7 Correlation between in vitro dissolution and in vivo pharmacokinetic 
parameters. (A) relative AUC, (B) relative Cmax, and (C) drug release rate.
Abbreviations: AUC, area under the concentration-time curve; Cmax, peak 
concentration; R2, coefficient of determination.
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supersaturation induced by the HP-β-CD nanostructures with 

or without hydrophilic additives. Furthermore, in vivo phar-

macokinetic parameters were better correlated with in vitro 
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