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Abstract: The high prevalence of type 2 diabetes mellitus in the world as well as the increasing 

reports about the adverse side effects of the existing diabetes treatment drugs have made devel-

oping new and effective drugs against the disease a very high priority. In this study, we report 

ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) 

using virtual screening and core hopping approaches. PPARs have drawn increasing attention 

for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, 

lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, 

and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the 

dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) 

and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more 

powerful in treating diabetes because they can enhance metabolic effects while minimizing the 

side effects. This was observed in the studies on molecular dynamics simulations, as well as on 

absorption, distribution, metabolism, and excretion, that these novel dual agonists not only pos-

sessed the same function as ragaglitazar (an investigational drug developed by Novo  Nordisk for 

treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable 

conformation for binding to the two receptors. Moreover, the residues involved in forming the 

binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, 

and this will be very useful for the in-depth conduction of mutagenesis experiments. It is 

anticipated that the ten compounds may become potential drug candidates, or at the very least, 

the findings reported here may stimulate new strategies or provide useful insights for designing 

new and more powerful dual-agonist drugs for treating type 2 diabetes.

Keywords: diabetes, PPAR-alpha, PPAR-gamma, dual-agonist drug, core hopping, molecular 

docking, ADME, binding pocket

Introduction
Type 2 diabetes mellitus (T2DM) is the most common type of diabetes mellitus, which 

is characterized by insulin resistance and combined with relatively reduced insulin 

secretion.1 It is a chronic metabolic disease that affects the body’s ability to turn 

food into energy. People developing T2DM may suffer from blindness, renal failure, 

coronary artery disease, and so forth.2 Because of its dramatic increase worldwide, 

T2DM has reached an epidemic scale that is anticipated to affect over 360 million 

people by 2030.3,4

Belonging to the nuclear hormone receptor family, peroxisome proliferator-

activated receptors (PPARs) are the ligand-activated transcription factors.5,6 PPARs, 

particularly the subtypes PPARα and PPARγ, played a central role in regulating the 

expression of genes involved in the control of lipid and lipoprotein metabolism,  glucose 
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homeostasis, and inflammatory processes. Accordingly, acti-

vating these receptors has become a promising therapeutic 

strategy for designing drugs against T2DM.7

The activated PPARα receptors have a benef icial 

effect on lipid metabolism by regulating genes on fatty 

acid and cholesterol metabolism.8 PPARα agonists belong 

to the class of lipid-lowering drugs (such as fenofibrate 

and  gemfibrozil), and are widely prescribed to reduce 

 triglycerides.9 The PPARγ receptors, the most widely stud-

ied subtype of PPARs, are located in adipocytes, muscles, 

and  macrophages, where they have a direct influence on 

T2DM,  dyslipidemia,  atherosclerosis, and cardiovascular 

diseases.10,11  Thiazolidinediones are a class of PPARγ agonists 

used in clinical practice to reduce plasma glucose level in 

type 2 diabetic patients, or to regulate glucose homeostasis 

by increasing insulin sensitivity and glucose disposal.12

Unfortunately, if the drug were used alone, the undesirable 

side effects such as weight gain, edema, and anemia would 

be caused;13 therefore, it is an urgent and challenging task to 

develop new dual agonists. In this regard, the novel PPARα/

PPARγ dual agonist, formed by combining the lipid benefit of 

PPARα agonists (such as fibrates) with the glycemic advan-

tages of the PPARγ agonists (such as thiazolidinediones), 

has drawn considerable attention.14 In developing the dual 

agonists, a critical problem surrounds how to identify the 

selectivity ratio of the receptor subtype,15 because it may 

provide useful insights for finding the new drug candidates. 

There is more information available about designing potential 

dual treatments for treating T2DM.16

Many studies have indicated that computational 

approaches, such as structural bioinformatics,17 molecu-

lar docking,18 pharmacophore modeling,19 Quantitative 

Structure–Activity Relationship (QSAR) techniques,20–24 

and a series of user-friendly web server predictors developed 

recently, such as G-protein-coupled receptors-grey inci-

dent degree analysis (GPCR-GIA) and G-protein-coupled 

receptors -2-layer predictor (GPCR-2L) for identifying G 

protein-coupled receptors and their types,25,26 iLoc-Euk and 

iLoc-Hum for predicting subcellular localization of eukary-

otic and human proteins,27,28 NR-2L for identifying nuclear 

receptors and their subfamilies,29 ProtIdent for identifying 

proteases and their types,30 and HIVcleave for predicting 

human immunodeficiency virus protease cleavage sites in 

proteins,31,32 can provide timely and very useful information, 

as well as insights for drug  development. In addition to the 

aforementioned approaches, the Virtual Screening technique 

and Core Hopping technique are also very useful.33–36 The for-

mer can be used to screen for novel molecular scaffolds,37,38 

while the latter can be used to generate new lead compounds 

with improved core properties.37,38

Encouraged by the aforementioned successful studies, the 

present study was initiated in an attempt to screen the frag-

ment database in hopes to find a new antidiabetic compound. 

Meanwhile, the techniques of the core hopping associated 

with the glide docking and molecular dynamic simulation 

were utilized to analyze the binding interactions between 

the agonist and PPARs.39,40 The absorption, distribution, 

metabolism, and excretion (ADME) predictions were also 

used to evaluate whether the new agonist found to date pos-

sesses great potential to become a promising drug candidate 

for treating diabetes mellitus.41,42

Materials and methods
The representative complex crystal structures of PPARα 

(Protein Data Bank [PDB] ID 1k7l) and PPARγ (PDB ID 

1k74) were downloaded from the PDB,43,44 and were to be 

used for the molecular modeling studies.

Our calculations are operated with the Schrödinger 

software package (version 9.0.111; Schrödinger, LLC, New 

York, NY, USA), which runs on a Dell Precision™ T5500 

computer (Dell, Round Rock, TX, USA). The molecular 

dynamic simulation was performed using the Gromacs 4.0 

package (www.gromacs.com) for the Linux system.

Protein structures and databases
We downloaded the crystal structures of PPARα (1k71.pdb) 

and PPARγ (1k74.pdb) from the Protein Data Bank,43,44 and 

used them as receptors for the current modeling. The reasons 

behind the selection of the two proteins are: (1) the two proteins 

contain the same ligand, GW409544, which is used to easily 

identify the binding site for comparison; (2) the resolutions 

of the two crystal structures are quite similar with one (1k7l.

pdb) having 2.50 Å and the other (1k74.pdb) having 2.30 Å; 

(3) the source organism of both structures was humans.43

The protein-ligand binding site was identified by the 

SiteMap tool embedded in the Schrodinger Suite 2009 

(Schrödinger, LLC), as described previously.45–47 The binding 

site encompassed the ligand GW409544, which was observed 

in the crystal structures of both PPARα (1k7l) and PPARγ 

(1k74). The binding site of PPARs is composed of three arms: 

arm 1, arm 2, and arm 3, as marked in the panels A and B of 

Figure 1. These three segments play an important role in the 

interactions between the receptor and ligand.

Several hydrophobic interactions between the three 

“arms” and the Y-shaped ligand were deemed as the key 

points for designing the new PPARs agonist.48
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Arm 1 has a predominately polar character and includes 

the AF2-helix (shown as the purple ribbon in Figure 1), which 

is responsible for the function of transcriptional activation. 

The vital conformation of AF2-helix could generate a charge 

clamp formed by the network hydrogen bonds, thus sig-

nificantly reducing the mobility of AF2 and regulating gene 

expression.7 The hydrophobic tail of the agonist interacts with 

either arm 2 or arm 3 to improve binding affinity.7

The lead compounds and the fragment databases derived 

from ZINC (Shoichet Laboratory, Department of Pharma-

ceutical Chemistry, University of California, San Francisco, 

CA, USA) were used for virtual screening and core hopping 

searching,49 as described below, respectively.

Virtual screening
ZINC (Shoichet Library, Department of Pharmaceutical 

Chemistry, University California) was a free database of 

commercially available compounds and contained over 

13 million purchasable compounds in three-dimensional 

formats.49 The lead compound (or “lead-now”) database, one 

subdatabase of the ZINC, was chosen for virtual screening 

to find the optimal molecular scaffold by the Glide5 docking 

program (Schrödinger, LLC),35,36 which was interfaced with 

Schrödinger Suite 2009 (Schrödinger, LLC). The prepara-

tion and refinement protocols for the protein receptor and 

all compound structures were performed on the Protein 

Preparation Wizard and LigPrep modules embedded in the 

Schrödinger Suite (2009; Schrödinger, LLC),35 respectively. 

For protein preparation, the process included assigning bond 

orders, adding hydrogen, treating metals, treating disul-

fides, deleting waters, alleviating potential steric hindrance, 

adjusting bond order, and assigning the formal charges by 

protein minimization with the OPLS2005 force field;50 the 

constrained refinement value of RMSD (root mean square 

deviation) for the protein was limited to 0.3 Å. Meanwhile, 

for the compounds of the databases, the preparation consisted 

of generating possible states by ionization at a target pH of 

7.0 ± 2.0, desalting, retaining specified chiralities from the 

three-dimensional structure, and completing geometry mini-

mization with the OPLS2005 force field.50 When the above 

steps were accomplished, all the investigated compounds 

were docked into the receptor pocket through the rigid dock-

ing model with a high throughput virtual screening scoring 

function to estimate the binding affinities.39,40

Molecular docking with core  
hopping method
Many useful insights for drug design could be gained 

by conducting molecular docking studies.17,18,51–53 In this 

study, a new docking algorithm called “core hopping” was 

employed.35,36 Core hopping offers function of being able to 

perform both the fragment-based replacing and molecular 

docking,36 which makes it a very powerful and cutting-edge 

technique for de novo drug design because it allows for 

rapidly screening novel cores to help overcome unwanted 

properties by generating new lead compounds with improved 

core properties, as demonstrated by a series of previous 

studies.37,38

The procedures of the core hopping computation can be 

briefly described as follows. The first step was to define the 

possible points to which the cores were attached; this could 

be done by using the program “Define Combinations” from 

the Combinatorial Screening panel in Schrodinger 2009 

(Schrödinger, LLC). The second step was to define the 

“receptor grid file,” which could be done in the “Receptor 

Preparation” panel. The third step was the cores preparation; 

this could be done by operating the “Protocore Preparation” 

module to find the cores attached to the scaffold and using 

the fragment database derived from ZINC.49

The fourth step was to align and dock the entire molecular 

structure built up by the core and scaffold. After all the above 

four steps were accomplished, all the investigated compounds 

were redocked into the receptor pocket via the rigid protein 

Figure 1 Illustration to show the superimposed conformations obtained by docking 
ragaglitazar and the ten derivative compounds (Comp#1–#10) to PPARα and 
PPARγ receptors, respectively. (A) Ragaglitazar and Comp#1–#10 to PPARα (1k7l). 
(B) Ragaglitazar and Comp#1–#10 to PPARγ (1k74). (C) Ragaglitazar and Comp#1 
to PPARα (1k7l). (D) Ragaglitazar and Comp#1 to PPARγ (1k74). 
Notes: The binding pocket is defined by those residues that have at least one heavy 
atom within a distance of 5Å from the ligand.92 The carbon atoms of ragaglitazar are 
in black, while the carbon atoms for Comp#1 are in gray. For the overlapping part 
between ragaglitazar and Comp#1, part of the Comp#1 was covered by ragaglitazar. 
The blue dotted lines indicate the H-bond interactions of the receptor with its 
ligands. The purple helix is a part of the AF2 function domain. See the text for 
further explanation.
Abbreviations: PPARα, peroxisome proliferator-activated receptor-alpha; 
PPARγ, peroxisome proliferator-activated receptor-gamma.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

281

Dual-agonist drugs for diabetes

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2013:7

docking model with the Stand-Precision scoring function to 

estimate the binding affinities.39,40

Molecular dynamics simulations
Many marvelous biological functions in proteins and 

deoxyribonucleic acid (DNA) and their profound dynamic 

mechanisms, such as switching between active and inactive 

states,54,55 cooperative effects,56 allosteric transition,57–59 

intercalation of drugs into DNA,60 and assembly of 

microtubules,61 can be revealed by studying their internal 

motions.62  Likewise, to really understand the interaction 

mechanism of a receptor with its ligand, we should consider 

not only the static structures concerned, but also the dynamic 

information obtained by simulating their internal motions or 

dynamic processes.63,64

To examine whether the designed agonist remains bound 

by an explicit solvent from a dynamic point of view, the 

molecular dynamic simulation was performed with the peri-

odic boundary conditions using the GROMACS 4.0 package 

under GROMACS 96-53a6 force fields for proteins.65 The 

topology files and charges for the ligand atoms were gener-

ated by the Dundee PRODRG2.5 Server (beta).66 Before 

starting the simulations, the systems were solvated in explicit 

water with a flexible simple point charge model in a cubic 

box, under the condition that the surface of the protein was 

covered with a water shell of 1.0 nm (nanometer or 10−9 of a 

meter). The minimum number of sodium and chloride ions 

needed to balance the system charge was placed randomly 

in the solvated system. Subsequently, the energy minimiza-

tion was performed for the complex system by using the 

steepest descent method.67,68 Then, the 10 ns (or 10−9 of a 

second) MD simulations were carried out with a time step 

of 2 fs (femtosecond, or 10−15 of a second). The correspond-

ing coordinates are stored every 2ps (picosecond, or 10−12 

of a second). The Particle Mesh Ewald algorithm was used 

to calculate the electrostatic interactions.69 All simulations 

were run under the periodic boundary condition with the 

Normal Pressure and Temperature (NPT) ensemble by using 

Berenson’s coupling algorithm for keeping the temperature 

at 310 K and the pressure at 1 atm. All bonds are constrained 

by using the Linear Constraint Solver algorithm.70

ADME prediction
ADME is a very useful program to eliminate unfavorable 

compounds with undesired properties in the early stage of 

drug development via evaluating the proposed structural 

refinements prior to expensive synthesis.27,42,71 Incorporating 

ADME predictions as a part of the drug development process 

can generate lead compounds that are more likely to exhibit 

satisfactory ADME performances during clinical trials.

The program of QikProp embedded in Schrödinger 

2009 (Schrödinger, LLC) is a quick, accurate, and easy-

to-use program for predicting the ADME properties of 

the compounds.41,72,73 The QikProp program adopted here 

was featured by having the functions predict a total of 44 

properties of compounds, including the principal descriptors 

and physiochemical properties.

All the investigated compounds need not be neutralized 

before using QikProp because it will be automatically done 

in QikProp. The normal mode of prediction of QikProp was 

used in this study. The property analysis for the molecular 

weight – partition coefficient (QP logP o/w) – predicted 

aqueous solubility (QP logS); in addition, apparent PMDCK 

permeability (QPP MDCK) was computed in the QikProp 

program to evaluate whether the compounds hold the poten-

tial to become drug candidates.74

Results and discussion
Virtual screening and core hopping
The detailed procedure of discovering the desired dual ago-

nists is shown in Figure 2. The lead-now database from ZINC 

was screened by utilizing the Glide5 software for its optimal 

performance targeting the PPAR receptors (PPARα:1k7l 

and PPARγ:1k74).35,36,49 The top hit, ZINC36728034 (see 

Figure 2) was selected as the optimal lead compound for 

further modification according to the well known structures 

of ragaglitazar and GW409544, as shown in Figure 2.43,75 

Consequently, the phenyl group rendered by red color in 

ZINC36728034 (see Figure 2) is modified into an acidic 

group colored with blue, as shown in Comp#0 (Figure 2). 

The functional acidic group also exits in the following struc-

tures muraglitazar,76 faraglitazar,77 GW6471,78 GW7845,77 

CHEMBL166572,79 and so on. The new molecule Comp#0 

was designed with the intention so it has stronger affin-

ity than ZINC36728034. Subsequently, the core hopping 

method was used to search the fragment database for 

the desired chemical groups to replace the amide group 

(ie, the R
0
 group) (Figure 2). Doing this was to help lengthen 

the Comp#0 structure so as to make it better fit the roomy 

space in arm 2 (see Figure 1). As a result, the amide group 

(ie, R
0
 group) of Comp#0 in Figure 2 was replaced by each 

of the best ten R groups (ie, the R
1
 to R

10,
 as marked on the 

right side of Figure 2). Subsequently, they were used to 

generate the whole molecules (ie, Comp#1 to Comp#10) 

through the core hopping approach (see Figure 2). The 

ten compounds displayed the same chiral center (S) of the 
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α carbon atom of the acidic group with the ragaglitazar and 

the GW409544 (see Figure 2), and the other compounds of 

Comp#5 to Comp#10 with the other preferred chiral centers 

in R groups allowed them to match the active pocket.

The above strategy of this study is very similar that in 

to our previous paper;38 however, the starting point at which 

the study was carried out is very different. This current study 

used virtual screening as the first operation to find the novel 

scaffold against PPARs; we also used a previous study for this 

same purpose,80 and we then developed new compounds with 

the core hopping method, while the previous study mainly 

modified the well known ligand GW409544 though the use 

of two steps of the core hopping method.38 At first glance, 

the current study is quite similar to a previous study,38 for 

we used the same protein targets, fragment database, core 

hopping method, and molecular dynamics modeling, but the 

detailed approaches are completely different. Therefore, it 

will be necessary to combine both studies that use the core 

hopping method for novel drug development in order to 

provide more comprehensive information.

Modeling of PPAR agonist complex
The best ten potential lead compounds or candidates obtained 

via the above step were redocked into the two receptors, 

PPARα (1k71) and PPARγ (1k74), respectively. As shown 

in the panels A and B of Figure 1, the best docked poses of 

the ten compounds are superposed together in the active 

pockets of the two receptors, PPARα (1k71) and PPARγ 

(1k74), respectively. From the docking simulation results, it 

can be seen that all the compounds form good steric comple-

mentarity with the hydrophobic pocket of each receptor and 

produce strong van der Waals contacts and hydrophobic 

interactions. As shown in the black in panels C and D of 

Figure 1, ragaglitazar (a novel dual agonist for PPARα and 

PPARγ that also includes the important polar acidic head 

group in its structure) was chosen as a positive control for 

its high affinity with the PPARα and PPARγ receptors in 

the previous research.75,81–83

Listed in Table 1 are the top ten compounds (ie, 

Comp#1 to Comp#10) that are much stronger than raga-

glitazar and Comp#0 in binding to the two PPARα (1k71) 

and PPARγ (1k74) receptors, and these are ranked roughly 

according to their docking scores to the receptors. The best 

docked conformations of Comp#1 (carbon atoms colored in 

gray) and ragaglitazar (carbon atoms colored in black) are 

aligned together in panels C and D of Figure 1. The results 

of receptor–ligand interactions obtained from the docking 

simulation had proved that the key residues for the binding 

interactions between Comp#1 and the receptor were fully 

consistent with the previous reports.43,71,84 The conservative 

H-bonding network formed by the polar acidic head group 

in both ragaglitazar and Comp#1 to the four key residues of 

PPARα (or PPARγ), such as Ser280 (or Ser289), Tyr314 

(or His323), Tyr464 (or Tyr473), and His440 (or His449) 

were observed in our docking simulation. It is noteworthy 

that Comp#1 has three oxygen atoms to serve as the polar 

acidic head, which allows Comp#1 to have more opportuni-

ties to interact with the AF2-helix. In addition, one more 

H-bond formed between the oxygen atom of the R1 group 

and Ala333 residue only in the PPARα (1k7l) receptor was 

observed in this study. The H-bonding networks made a 

major contribution in stabilizing the active conformation 

of AF2-helix in arm I1, which is extraordinarily important 

for the regulation of gene expression.7 The hydrophobic 

part of Comp#1 derived from ZINC36728034 played an 

important role in complementing the hydrophobic arm 1 

formed by the hydrophobic residues, as shown by the light 

green surface (see panels C and D of Figure 1). Compared 

with ragaglitazar, the Comp#1 compound has an extra 

hydrophobic part, making it more fitted to the hydrophobic 

arm 1, and hence resulting in a much better binding affin-

ity than ragaglitazar, as clearly indicated by the docking 

scores shown in Table 1. Among the compounds listed in 
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Figure 2 Illustration to show how to generate the best ten compounds from the 
ZINC36728034 structure through the core hopping method.
Notes: The top hit compound, ZINC36728034, screened out from the lead-now 
database was selected as the most potential lead compound for further modification, 
according to the vital importance of the acidic head of the ligand. Based on 
ZINC36728034, the new molecule Comp#0 was designed, as shown on the left 
bottom. Subsequently, the core hopping method was used to search the fragment 
database for replacing the amide group (ie, the R0 group) by the best ten R groups 
(ie, R1 to R10), as shown on the right side of the figure.
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Table 1 The compound ragaglitazar was used as a positive control, and the ten compounds (Comp#1–#10) were ranked roughly 
according to their docking scores to the receptors PPARα and PPARγ

Compound Docking scores (Kcal/mol) ADME properties predicted

PPARα  
(1k71)

PPARγ  
(1k74)

PSAa logPo/wb logSc PPCacod Human oral 
absorptione

Ragaglitazar −11.49 −12.29 70.42 6.07 −6.38 364.38 95.35
Comp#0f −10.33 −11.79 126.98 3.27 −4.65 258.17 71.34

Comp#1 −13.65 −14.98 180.80 5.61 −5.76 106.26 48.14

Comp#2 −13.64 −14.58 185.78 4.16 −6.05 114.87 37.69

Comp#3 −13.31 −14.55 146.67 4.23 −4.60 111.24 57.53

Comp#4 −13.22 −14.41 121.81 6.42 −6.59 176.39 73.58

Comp#5 −13.18 −13.85 130.62 5.96 −6.40 141.02 64.80

Comp#6 −13.01 −13.68 183.70 4.55 −6.47 106.99 55.75

Comp#7 −12.95 −14.11 118.33 6.23 −6.25 175.59 71.11

Comp#8 −13.85 −13.07 152.69 5.01 −6.15 105.27 43.31

Comp#9 −13.36 −13.45 146.77 5.83 −6.30 134.45 62.69
Comp#10 −13.04 −14.89 145.04 4.58 −5.00 112.41 60.36

Notes: Listed are also the corresponding physiochemical descriptors calculated with QP simulations.41,72,73 aThe van der Waals surface area of the polar nitrogen and oxygen 
atoms; the accepted region is (7.0 to 200.0); bthe predicted octanol/water partition coefficient; the accepted region is (−2.0 to 6.5); cthe predicted aqueous solubility, where 
S (mol dm−3) is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid; the accepted region is (−6.5 to 0.5); dpredicted apparent 
Caco-2 cell permeability in nm/second. Caco-2 cells are a model for the gut–blood barrier. QikProp predictions are for nonactive transport. The result of ,25 is poor; 
epredicted percent of human oral absorption on a scale from 0% to 100%. The prediction is based on a quantitative multiple linear regression model. This property usually 
correlates well with human oral absorption. The result of ,25% is poor; fComp#0 was an initial structure for core hopping that was designed with the intention to make it 
have stronger affinity than ZINC36728034. See the bottom left of Figure 2 for its structure.
Abbreviations: PPARα, peroxisome proliferator-activated receptor-alpha; PPARγ, peroxisome proliferator-activated receptor-gamma; ADME, absorption, distribution, 
metabolism, and excretion; PSA, polar surface area; QP, QikProp.

Table 1, Comp#1 has the strongest binding affinity with 

the two receptors PPARα and PPARγ, and hence it was 

singled out as the representative compound used for further 

investigation.

Molecular dynamics trajectory analysis
To acquire the relevant information from a dynamic point of 

view, the 10 ns molecular dynamic simulations were carried 

out, respectively, for the crystal structures of PPARα (1k7l), 

PPARγ (1k74), as well as their complexes with ragaglitazar 

and Comp#1: PPARα–ragaglitazar, PPARγ–ragaglitazar, 

PPARα–Comp#1, and PPARγ–Comp#1. As we can see 

from Figure 3, all of the characters concerned reached 

the simulation equilibrium within the 5 ns.

The RMSD from the initial conformation is a major crite-

rion used to evaluate the stability of a protein system. Shown 

in the panels A and B of Figure 3 are the backbone RMSD 

curves for PPARα, PPARγ, PPARα–ragaglitazar, PPARγ–

ragaglitazar, PPARα–Comp#1, and PPARγ–Comp#1. It is 

interesting to see that the RMSD values of PPARα–Comp#1 

and PPARγ–Comp#1 are remarkably smaller than those of 

PPARα–ragaglitazar and PPARγ–ragaglitazar, indicating 

that the complexes of PPARα–Comp#1 and PPARγ–

Comp#1 are more stable than PPARα–ragaglitazar and 

PPARγ–ragaglitazar.

In order to perform an in-depth study of the interactions 

of the AF2 helix with the agonist (Figure 1), the root mean 

square fluctuations for all the side-chain atoms of the recep-

tors were also computed, as shown in panels C and D of 

Figure 3. It can be seen from the figure that the side-chain 

of the root mean square fluctuations of PPARα–Comp#1 

or PPARγ–Comp#1 were very similar to that of PPARα–

ragaglitazar or PPARγ–ragaglitazar, respectively. This is par-

ticularly true for the residues 459–465 of PPARα–Comp#1 

and the residues 469–477 of PPARγ–Comp#1 (see the gray 

framed box marked with AF2 in panels C and D of Figure 3), 

indicating that the new designed Comp#1 is very likely to 

perform exactly the same function in activating the AF2 helix 

as the compound ragaglitazar did.

ADME prediction
Also listed in Table 1 are the corresponding ADME properties 

that are directly relevant to pharmaceutical potentials. It can 

be seen from the table that, compared with ragaglitazar, the 

predicted ADME properties, such as the polar surface area, 

logPo/w, logS, PPCaco, and percent of human oral absorption 

for the newly designed agonists are either much better than or 

quite close to that of ragaglitazar. Actually, these percentages 

are all within the acceptable ranges for humans, indicating 

that the ten compounds found in this study, particularly 
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Figure 3 Illustration to show the outcomes of molecular dynamic simulations for 
the interactions of the receptors with Comp#1 – the best derivative found in this 
study, as shown in Table 1. (A) The RMSD of all backbone atoms for the receptor 
PPARα. (B) The RMSD of all backbone atoms for the receptor PPARγ. (C) The 
RMSF of the side-chain atoms for the receptor PPARα. (D) The RMSF of the side-
chain atoms for the receptor PPARγ. 
Notes: The blue line indicates the outcome for the system of the receptor alone 
without any ligand; the red line indicates the outcome for the system of the receptor 
with the ligand Comp#1; and the green line indicates the outcome for the system of 
the receptor with the ligand Comp#1. The curves involved with the AF2 helix region 
are framed with the grey box.
Abbreviations: RMSD, root mean square deviation; PPARα, peroxisome 
proliferator-activated receptor-alpha; PPARγ, peroxisome proliferator-activated 
receptor-gamma; RMSF, root mean square fluctuation.

Table 2 The residues involved in forming the binding pocket 
of PPARα and PPARγ for the ligand Comp#1a

PPARα (1k7l) PPARγ (1k74)

Leu-254 Glu-269 Ile-272 Pro-269 Ala-278 Arg-280
Phe-273 Cys-275 Cys-276 Ile-281 Phe-282 Gly-284
Gln-277 Cys278 Thr-279 Cys-285 Gln-286 Phe-287
*Ser-280 *Tyr-314 Ile-317 Arg-288 *Ser-289 *His-323
Phe-318 Leu-321 Val-324 Ile-326 Tyr-327 Leu-330
Met-330 Leu-331 Val-332 Leu-333 Val-339 Leu-340
*Ala-333 Tyr-334 Leu-344 Ile-341 Ser-342 Met348
Leu-347 Phe-351 Ile-354 Leu-353 Phe-360 Phe-363
Met-355 Lys-358 *His-440 Met-364 *His-449 Leu-453
Val-444 Ile-447 Leu-456 Leu-465 Leu-469 *Tyr-473
Leu-460 *Tyr-464

Notes: aSee the text or the study by Chakrabarti et al83 for the definition of binding 
pockets used in this study. Those residues marked with an asterisk are the key 
residues for forming the H-bonding network, as shown in Figure 1.
Abbreviations: PPARα, peroxisome proliferator-activated receptor-alpha; 
PPARγ, peroxisome proliferator-activated receptor-gamma.

the Comp#1 compound, hold very high potential to become 

a new drug candidate.

Binding pocket
In drug design, particularly for conducting mutagenesis 

studies,17 the information of the binding pocket of a targeted 

receptor with its ligand is crucially important. According to a 

previous study,85 such binding pockets were defined by those 

residues of the receptor that have at least one heavy atom (ie, 

an atom other than hydrogen) with a distance # 5 Å from 

a heavy atom of the ligand. Similar criteria were also used 

to define the binding pockets of many other receptor–ligand 

interactions.37,51,86–91 The same criterion used in a previous 

study was also used in this study for defining the binding 

pockets of receptors PPARα and PPARγ with the ligand, 

GW409544.85 From this point of view, the residues involved 

in forming the binding pocket of PPARα and PPARγ for 

the docked ligand Comp#1 are listed in Table 2, which are 

identical to the other nine compounds, where those marked 

by an asterisk are the key residues for forming the H-bonding 

network, as shown in Figure 1.
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