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Abstract: Nonsynonymous single-nucleotide polymorphisms (nsSNPs) of genes are coding 

variants that introduce amino acid changes to proteins. Because nsSNPs have diverse effects on 

protein structure and function, these variants can have a large impact on human health. Likewise, 

polymorphisms in genes encoding drug targets directly affect target protein function, drug–

target interaction, or both to produce profound effects on drug response. Pharmacogenomics 

provides insight into how polymorphisms can affect drug responses that vary from potentially 

fatal adverse drug reactions to equally severe lack of therapeutic efficacy. This review focuses 

on the effects of deleterious nsSNPs at both functional and structural protein level, as well as on 

protein–protein interactions. It also explains current methods by which to predict the functional 

impact of nsSNPs based on physicochemical amino acid properties, sequence information, and 

structural attributes. Additionally, the review details the recent advances in the field of in silico 

pharmacogenomics, which provide insight into disease phenotypes and individual susceptibil-

ity to disease. In the near future, this information will be used to predict the most appropriate 

treatment and individualized drug therapy. Finally, this article provides an overview of in silico 

approaches for the assessment and development of safe and efficient tailored drugs.

Keywords: pharmacogenomics, nonsynonymous single-nucleotide polymorphisms, drug 

responses, drug-target protein, personalized medicine

Introduction
Triggered by the completion of the human genome sequence – along with the accu-

mulated information on genetic polymorphisms – the relatively new science of phar-

macogenomics provides, in principle, the possibility of personalized medicines with 

reduced side effects.1,2 Millions of severe adverse drug reactions (ADRs) in humans 

are reported every year, which results in thousands of avoidable deaths.3 Finding safe 

and effective drugs, however, is a complicated and slow process, mostly because each 

person responds differently to drugs and side effects are unpredictable.2,4 Treatments for 

certain psychiatric disorders, pulmonary and cardiac diseases, and cancer (especially in 

geriatric patients) sometimes lead to polymedication, which, in turn, leads to harmful 

drug interactions or ADRs.1,5 Currently, there is no easy way to anticipate an indi-

vidual’s response to drugs. Nevertheless, it is worth noting that genetic polymorphisms 

of drug-metabolizing enzymes and transporters can affect the absorption, distribution, 

metabolism, elimination, and toxicity (ADMET) of drugs and, thereby, contribute to the 

susceptibility of patients to treatment and to whether drugs do or do not cause adverse 

reactions.2–6 Pharmacogenomics provides insight into how genetic polymorphisms 

affect response to drugs, and how drugs can be  customized to match the genetically 
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determined response of each person to drug therapies.2–6 

Indeed, pharmacogenomics can be used to improve drug 

efficacy, notably by overcoming drug resistance, finding new 

drug targets, and optimizing ADMET.2–6

Drug discovery involves screening strategies for hit-

identification and optimization to increase affinity, selectivity, 

efficacy/potency, metabolic stability, and oral bioavailability. 

Once a compound that fulfills these requirements has been 

identified, the process of drug development begins to bring a 

new drug to the market. This process includes preclinical test-

ing (on microorganisms/animals), clinical trials (on humans), 

and regulatory approval to market the drug. Numerous new 

chemical entities fail drug development due to a poor ADMET 

profile. The progress in computational techniques enables 

the use of in silico methods to predict ADMET properties in 

parallel with or prior to experimental investigations, so that 

huge numbers of compounds can be evaluated prior to their 

being synthesized and assayed.

The most common genetic variants are single-nucle-

otide polymorphisms (SNPs), which occur at a frequency 

of about 1 in 1650 bp throughout the human genome.5 

Since many diseases have a strong genetic component, 

the identification of SNPs and the understanding of their 

involvement in pathologic conditions would shed light on 

disease susceptibility and aid in the development of more 

effective targeting treatments. As of June 26, 2012, about 

53,558,214 human SNPs were identified and deposited in 

the National Center for Biotechnology Information (NCBI) 

Database of Single-Nucleotide Polymorphism ([dbSNP] 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.

cgi?view+summary=view+summary&build_id=137, 

dbSNP Build 137).

The most identifiable group of SNPs is constituted by the 

nonsynonymous SNPs (nsSNPs), a small (,1%) proportion 

of which are located within the coding regions of genes 

that lead to alterations in the amino-acid sequence of their 

corresponding proteins.7,8 Nonsynonymous SNPs have the 

potential to affect the structure and function of expressed 

proteins and are, therefore, likely to represent modifiers of 

inherited susceptibility to disease.7,8 Most nsSNPs have been 

identified by sequencing and genotyping DNA samples from 

general populations, particularly by the HapMap project 

(http://hapmap.ncbi.nlm.nih.gov/), a key resource for finding 

genetic variants that affect disease and response to drugs. 

Moreover, important databases that contain these variations 

include the Human Genome Variation Database ([HGVBase] 

https://www.gwascentral.org/) and the NCBI’s dbSNP (http://

www.ncbi.nlm.nih.gov/omim). Additionally, the Online 

Mendelian Inheritance in Man ([OMIM] http://www.ncbi.

nlm.nih.gov/omim) database organizes genetic disorders of 

inherited diseases mapped to human genes.

According to these databases, half of all genetic changes 

related to human diseases are attributable to nsSNPs. Hence, 

these polymorphisms are considered to be deleterious nsSNPs 

because they lead to dramatic phenotypic consequence.9–11 

However, not all nsSNPs are associated with disease. Some 

nsSNPs, called tolerant nsSNPs, maintain protein function 

even though the corresponding first-order structure has 

changed.1,5,12,13 One of the current main problems of medical 

genetics is to identify nsSNPs disease-related phenotypes. 

Differentiation of deleterious nsSNPs from tolerant nsSNPs 

is important to characterize the genetic basis of human dis-

ease, and pathogenesis of disease and thus be able to assess 

individual susceptibility to disease.14

nsSNPs often alter function by disrupting protein 

structure and/or stability and by impacting functional 

binding sites.10–12 Structural changes of receptors or active 

target-enzyme sites may affect drug–receptor or drug–

enzyme interactions and, consequently, drug response.15–18 

Genetic polymorphisms of drug-metabolizing enzymes 

and transporters can affect the drug ADMET profile, 

thereby leading to an accumulation of unmetabolized drugs 

around the metabolic pathway and, as a result, increased 

ADR.15–18 nsSNPs can be located in a pocket or in a void 

(type P), on a convex region (type S), or be completely 

buried inside the protein (type I). It has been found that 

88% of pathogenic nsSNPs are of type P and rarely of 

type I.19,20 By considering physicochemical differences of 

exchanged amino acids, evolutionary conservation, and 

structural features, numerous studies have found that about 

70% of disease-associated nsSNPs correspond to highly 

conserved residues, usually buried inside the protein with 

a strong impact on protein structure, folding, stability, and 

function.7,9,14,19–24

There is a need to identify functional nsSNPs that may 

be deleterious. However, the identification of a single nsSNP 

may not be sufficient to relate the variation of a target protein 

to a disease or a drug response. Groups of genetic variants 

are inherited together in linkage disequilibrium and, thus, 

are particularly useful in genome–phenotype analyses. For 

this reason, in silico techniques are developed to integrate 

sets of nsSNPs across the entire genome to identify genetic 

loci that exist in linkage disequilibrium. These approaches 

increase the probability of success in identifying polymor-

phisms of drug targets, drug-metabolizing enzymes, drug 

transporters, and other genes that influence drug response, 
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as well as new disease susceptibility genes and pathways that 

are important in the etiology and pathogenesis of chronic 

diseases.7,23,25–29

Effects induced by nsSNPs  
on protein function
nsSNPs alter cellular functions in many ways. Indeed, 

 nsSNPs often influence normal protein function by a 

combination of effects on protein stability, protein–pro-

tein interactions, and many others features as described 

below.

Characteristics of active-sites
If an amino acid is altered in the active-site region of a protein, 

it may decrease or destroy the ability of the protein to perform 

its function and lead to a disease phenotype. A critical site 

may be a catalytic residue or a residue involved in ligand-

binding in an enzyme, or a residue involved in binding to 

partner molecules. In these cases, a disease phenotype may 

arise from loss/gain of function, altered binding specificity, 

or affinity in the protein, while the stability of the protein 

product is not affected. On the other hand, any conformational 

change altering the active sites will also affect the biochemi-

cal reaction. Thus, even if the nsSNP occurs close to the 

active site, the characteristics of the catalytic groups may be 

altered.30–32 In such a case, the mutation may not completely 

abolish the biochemical reaction, but can change its kinetics 

and the native suitable cellular environment (pH, tempera-

ture), leading to a malfunctioning protein.30–32 One example 

is the Snyder–Robinson syndrome (SRS) caused by three 

missense mutations (G56S, V132G, I150T) in the spermine 

synthase (SMS) gene that encodes a dimeric  protein. Position 

G56 is at the periphery of the dimer binding interface, the 

V132 site is exactly at the dimer interface, and the I150 site 

is far away from the interface. Even if it is difficult to imagine 

any direct effect of the binding, almost any mutation at site 

I150 is expected to cause SRS. Site V132 is capable of hav-

ing either disease-causing or harmless mutations. In terms 

of monomer stability and hydrogen-bond effect, site G56 is 

quite tolerable. Since the dimer formation is essential for 

the function of the SMS, such mutations are expected to be 

disease-causing.30,31

Solvent accessibility
A number of studies have shown that most of the deleterious 

nsSNPs affect protein function by disruption of the protein 

hydrophobic core.9,10,12,20 Protein cores usually involve 

conserved residues, which are critical for protein stability 

through hydrophobic contacts maintained with other resi-

dues.33–36 The probability of the nsSNP being deleterious is 

increased when the volume, mass, and hydrophobicity differ-

ence between the original and mutated residues increases.37 

Therefore, introducing a hydrophobic residue on the sur-

face could result in protein aggregation and, in turn, in a 

deleterious phenotype. Instead, a hydrophilic residue in the 

core protein would destabilize the folding processes due to 

vulnerable hydrogen side-chains that take part in hydrogen 

bonds.38 The presence of a given nsSNP at solvent-accessible 

sites or at the interacting interface (protein–protein, protein–

DNA) might alter interactions with other molecules or influ-

ence the protein solubility. Indeed, if the nsSNP is located 

in a highly conserved or a charged surface patch, possible 

alterations are of high biological significance.9,10,27 In such 

cases, nsSNP effects are susceptible to alteration via binding 

to other molecules such as drugs.35 Only a small number of 

nsSNPs are completely buried in the interior, and these are 

more likely to occur at conserved sites, whereas about 88% 

of disease-related nsSNPs are located in the surface pocket 

or an interior void of the protein, and do not exhibit the same 

tendency.20

Protein-folding, flexibility, and aggregation
Mechanisms of protein-folding are governed by the burial 

of side-chains inside the molecule, out of contact with 

water, and the formation of intramolecular interactions 

between amino-acid side-chains. Protein-folding involves 

the establishment of regular secondary structure, in which 

the protein’s main structural domains (helices, strands, 

turns, and coils) are distributed through the most ener-

getically favorable protein organization.39 These structural 

domains, formed by hydrogen-bonding among main-chain 

polar groups and hydrogen bonds among side-chains, 

contribute to the stability of protein tertiary structure.38 

nsSNPs that modify the biophysical properties of residues 

at critical folding positions will have a profound impact 

on residue contacts and, thereby, may cause alterations in 

folding. Even if the mutant protein is correctly folded, it 

will be less stable or, if the folded mutant protein is confor-

mationally fairly stable, in some cases it will be different 

enough to result in a dysfunctional protein.40 As a conse-

quence of the nsSNP, the most important conformational 

stabilizing forces such as hydrogen-bonding36,38,41 and the 

hydrophobic36,41,42 contacts may be disrupted, together with 

disulfide bonds43 and van der Waals42 and electrostatic44 

interactions. Furthermore, nsSNPs can also alter protein 

flexibility.30,45
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When a protein performs its function, slight conforma-

tional changes often occur that are specifically suited for this 

particular function. If a mutation alters the protein’s flexibility 

compared with its native structure, it will affect the protein’s 

capacity to regulate these slight conformational changes, 

which are necessary for protein function.30,45 Additionally, 

conformational flexibility is the principal mechanism affect-

ing the tendency of the protein to aggregate.46 The formation 

of aggregates is activated by the destabilization and opening 

of the native protein structure, which exposes aggregation-

susceptible regions previously buried inside the structure. 

Aggregation involves the irreversible interaction of denatured 

protein molecules. The sequences of proteins determine – at 

least in part – aggregation propensities of proteins, which is 

why even slight alterations such as nsSNPs may have a con-

siderable effect in the solubility and aggregation propensity 

of a protein.46 Disease-related proteins have less-defined 

folds, isoelectric points closer to neutrality, contain more 

alternating hydrophilic/hydrophobic stretches compared to 

the average human protein, and have a higher tendency to 

aggregate.47 Mutations that trigger protein aggregation are 

associated with molecular mechanisms involving amyloid 

formation being recognized as the cause of neurodegenera-

tive disorders such as Alzheimer’s disease.48 Cystic fibrosis 

is an example of a genetic disease in which a variant protein 

is unable to fold correctly to a stable state in the endoplasmic 

reticulum, thereby failing to reach the cell membrane and be 

secreted in the quantity required for proper function. Other 

diseases, including some types of emphysema, result from 

mutations leading to the improper trafficking of proteins to 

the sites where they are needed.

Substitutions involving specific amino acids
About half of the mutated sites are involved in strong amino 

acid interactions; distributions of contact energy of residues 

are similar except for β-structures.39 Due to their special 

characteristics, some residues can produce a distinct group of 

mutations. Glycine and proline residues are commonly found 

in regions in turns present in protein secondary structure, and 

their substitutions are expected to destabilize the protein or 

cause it to adopt a different fold.39 Arginine and glycine are 

the most frequently mutated amino acids in secondary struc-

tures.39 Tryptophan, tyrosine, and cysteine residues increase 

the chance of the nsSNPs being disease-related.37,49

Protein–protein, protein–DNA,  
and protein–membrane interactions
Cellular processes such as transcription, signal transduction, 

and transport, as well as most regulatory mechanisms, are 

mediated by protein–protein and protein–DNA interactions. 

Therefore, almost any change of an amino acid within the 

interface should affect the binding, often severely impacting 

the phenotype and raising the disease susceptibility.50

Binding recognition and specificity are altered by  residue 

substitution involved in networking processes.15,16 For 

instance, when substituting a small side-chain for a bulky 

side-chain in a narrow binding pocket, the entrance of the 

partner group will be blocked and the binding process will 

be completely or partially prevented.16,31 Moreover, proteins 

with the largest number of interactions evolve slowly, sug-

gesting that proteins with more interacting partners have a 

greater fraction of residues directly involved in their  function. 

Hence, disease-associated nsSNPs are more likely to be con-

served.51,52 Protein–protein interfaces often contain binding 

hot spots – structurally conserved charged and polar residues 

surrounded by water – blocking hydrophobic residues that 

contribute mostly to binding.53 Mutations that affect protein 

surface electrostatics may, thus, have diverse effects, ranging 

from changes in folding or stability, to alterations in partner/

ligand binding affinity and specificity, and, in turn, protein 

function.53 Similarly, nsSNPs at the protein–DNA interface 

can affect DNA regulation.54 Those occurring at the protein–

membrane interface can affect the signal processes across 

the membrane, the function of channels and pumps, and 

cellular adhesion.55

A typical example of disease caused by the disruption of 

protein-binding is Charcot-Marie-Tooth neuropathy, which 

can be triggered by the loss of interaction between myelin 

protein zero monomers that link adjacent membranes of the 

myelin sheath. In other cases, protein-binding is a means of 

allosteric regulation. To give an example, mutations in the 

binding interface of pantothenate kinase lead to inherited 

pantothenate kinase-associated neurodegeneration. Finally, 

there is also the possibility for mutations to change the 

binding specificity of a protein and thus lead to new and 

potentially disruptive interactions. Mutations in the family 

of human crystallin genes have been shown to alter affinity 

for binding partners. These erroneous interactions lead to 

congenital cataract.

Subcellular localization
Subcellular localization provides a specific environment for 

protein function and interactions with its biological partners 

for signaling pathways. A protein in a wrong subcellular 

location will have harmful effects on the other proteins 

functioning there and can affect DNA-transcription factors, 

resulting in altered expression of the corresponding protein, 

which in turn will disrupt the normal cell cycle, causing 
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diseases.56 In about 1% of cases, the disease is caused by 

protein subcellular delocalization.28 Indeed, a specific nsSNP 

within the signaling peptide – critical for protein transport 

across membranes – could result in a subcellular localization 

different from that of the native protein.57,58 Even rare, severe 

inherited diseases are caused by nsSNPs in signal peptides, 

including familial hypoparathyroidism and coagulation 

factor X deficiency.57,58

Posttranslational modifications (PTMs)
PTMs are covalent modifications of side-chains in proteins 

after their translation. By adding functional groups (phos-

phorylation) to individual amino acids or by altering the 

chemical properties of amino acids (citrullination), PTMs 

create or disrupt covalent bonds to change the structure, 

localization, and function of proteins, playing an essential 

role in almost all cellular signaling and determining cellular 

dynamics and plasticity. A given nsSNP may abolish a PTM 

by replacing residues that cannot be modified, which leads to 

protein destabilization and changes in protein interactions, 

catalytic properties, or other protein functions.59 Deleterious 

nsSNPs in PTM sites have been found in cancer60 or immune 

deficiency61 phenotypes.

In summary, alterations caused by nsSNPs on any of 

these features are likely to affect the structure and stabil-

ity of the protein and, in turn, its function, contributing to 

disease susceptibility. Therefore, an accurate prediction of 

functional nsSNP effects and their consequences on related 

diseases is an important issue in improving drug discovery 

and drug development.

Approaches to predicting functional 
nsSNP effects
Many disease-causing protein nsSNPs have been 

 characterized. Databases combined with available biochemi-

cal data on  nsSNPs have encouraged the development of in 

silico methods to predict the effects of deleterious mutations 

on the corresponding proteins or assemblages. Most of them 

are based on a combination of physicochemical properties of 

amino acids, protein structure information, and evolutionary 

sequence conservation analysis.

Physicochemical properties-based 
methods
Amino-acid properties, such as size, flexibility and polarity 

side-chains, salt bridge and hydrogen-bond susceptibilities, 

and other geometrical considerations, play a crucial role in 

folding, stability, and function of proteins and in protein–

protein interactions.52 These amino-acid properties are dis-

tinguishable: therefore, the compatibility of a substitution 

can be used to predict its impact and to identify deleterious 

mutations.11 A given nsSNP may change the physicochemi-

cal properties of the original residue to affect the protein 

stability and dynamics, or disrupt the interacting interface 

that prevents complex formation.62

Structure-based methods
Structure-based methods take an input sequence and find the 

best match against a protein structure database.9,20,34 Because 

most predictive structure-based methods use general struc-

tural features surrounding the site of substitution and do not 

require detailed information at the atomic level, they can 

model the substitution onto the structure of a homologous 

protein rather than require the exact structure of the input 

sequence. These methods examine the position of nsSNPs 

and consider several structural properties such as solvent 

accessibility, secondary structure, or active-sites, and the 

difference in free energy between the exchanged amino 

acids.9,10,21 If the nsSNP site is involved in ligand-binding, 

then the substitution may cause structural arrangements such 

as stability, affinity of receptor ligand complex, residue–

residue contacts, and flexibility. Structural information is 

needed to fully understand the effects of mutations and 

disease phenotype.63 Mapping of a specific nsSNP into the 

known three-dimensional (3D) structure can reveal whether 

the replacement is likely to have an impact on the normal 

folding or structure of the protein, or whether the amino-acid 

replacement destroys essential structure-maintaining contacts 

in the hydrophobic protein core, has a destabilizing impact 

on electrostatic interactions, or interacts with ligands.9 Due 

to the difficulty in eliciting 3D structures experimentally, 

in silico approaches are useful in predicting the structural 

effects of functional nsSNPs.

Sequence homology-based methods
Sequence homology-based methods use evolutionary proper-

ties such as sequence conservation and phylogenetic trees. 

These methods calculate the probability of the substitutions 

based on multiple sequence alignments to identify evolu-

tionarily related positions and distinguish between tolerant 

mutations and those involved in disease. The natural selec-

tion retains the more stable amino acids among species that 

are critical for protein function, stability, and interactions.7,63 

Among homologous proteins, the highly conserved residues 

are therefore evolving under strong selective pressure.7 Such 

evolutionarily conserved residues are mapped on the repre-

sentative structure. Based on the extraction of functionally 

important residues, these methods can identify active sites 
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and functional interfaces of proteins. Highly conserved 

and functionally important residues, such as those in active 

centers of enzymes as well as key residues for preservation 

of the protein stability, in particular those located in buried 

positions, have been shown to be frequent targets of disease-

associated mutations.49 By using disease-associated mutation 

data and multiple species of phylogenetic lineage, it has been 

shown that deleterious nsSNPs occur more frequently in 

evolutionarily conserved positions.47,63 Genetic variants fixed 

during evolution may have selective effects for the organism, 

they may be neutral, or they may be deleterious and cause 

pathology. About 26%–32% of naturally occurring mutations 

have been predicted to affect protein function.34

Most functional nsSNP prediction methods are based 

on sequential or structural features.14 However, the methods 

based on homology sequence can lead to incorrect annota-

tions because there is no simple relationship between mea-

sures of sequence similarity and protein function. Structural 

analysis has been demonstrated to be more accurate, but 

studies have also reported ambiguous results from similarities 

based on structural comparisons alone.9–12 Similar proteins 

can catalyze distinct reactions and different proteins can 

catalyze identical chemical reactions. Sequence analysis has 

proven to be valuable and can provide accurate functional 

inference for proteins sharing more than 70% sequence 

 identity. More reliable is functional assignment using struc-

ture when a structural homology can be identified and active 

sites directly compared. Protein function is commonly associ-

ated with a particular 3D disposition of residues involved in 

binding and/or catalysis. Knowledge of protein 3D structure 

provides crucial insight into the function and activity of the 

protein. However, the structures of less than 1% of sequences 

have been experimentally solved. To face these limitations, 

numerous studies demonstrate that deleterious nsSNPs and 

their impact on protein function can be predicted by com-

bined analysis of multiple sequence alignments and protein 

structural information.9–12,21,34

An increasing number of in silico approaches to dis-

criminate between deleterious nsSNPs leading to a protein 

disorder and neutral polymorphisms that do not modify the 

phenotype have been implemented into webservers. The most 

representative are described below:9,13,17,23,27–29,64–68

1. Sorting Intolerant From Tolerant (SIFT) uses sequence 

homology to predict whether an amino acid substitution 

affects protein function and, hence, potentially alter 

phenotypes.

2. Polymorphism Phenotyping (PolyPhen) is a  multiple 

sequence alignment webserver. The prediction is 

made through sequence-based characterization of the 

 substitution site, calculation of position-specific indepen-

dent count (PSIC) profile scores for two amino-acid vari-

ants, and calculation of structural parameters and  contacts. 

It combines a variety of features such as sequences, 

evolutionary properties, and 3D structural information 

to predict if an nsSNP will affect the protein function 

and performs optimally if the structural information is 

available. More than 11,000 nsSNPs are annotated by this 

webserver. PolyPhen maps the amino-acid substitution to 

the known 3D structure of the protein to examine whether 

the substitution might destroy the protein’s hydrophobic 

core, electrostatic interactions or interactions with ligands, 

or other important features of a protein based on the 

analysis of several structural parameters, and also on the 

analysis of several contact parameters.

3. SNPs3D is a website that assigns molecular functional 

effects of nsSNPs based on structure and sequence 

 analysis. It provides various disease/gene relationships at 

the molecular level and models of gene–pathway–disease 

interaction. This server identifies the gene candidates 

involved in a specific disease, correlates the sets of can-

didate genes, and analyses the possible effects of nsSNPs 

on normal protein function.

4. SNPeffect 4.0 is another online tool that focuses on the 

molecular characterization and annotation of disease and 

polymorphism variants in the human proteome. It uses a 

combination of sequence- and structure-based bioinfor-

matics tools that improve the accuracy of local nsSNPs 

functionality prediction.

5. Large-scale annotation of coding nsSNPs (LS-SNP) maps 

nsSNPs onto protein sequences, functional pathways, and 

comparative protein structure models and predicts the 

positions where nsSNPs cause the effects. The results 

can be used to find out the functional SNP candidates 

within a gene, haplotype, or pathway.

6. Structure SNP (StSNP) is a webserver for mapping and 

modeling nsSNPs on protein structures with linkage 

to metabolic pathways, which allows for examination 

of possible disease-related pathways associated with a 

particular nsSNP and linking of diseases with the current 

available molecular structure data.

7.	 AUTO-MUTE is a knowledge-based computational muta-

genesis used to predict the disease potential of human 

nsSNPs.

These methods differ in the nature and properties of the 

variant they take into account. Some of them are based on 

evolutionary information. Others combine protein structural 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

36

Rodriguez-Casado

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Medicinal Chemistry 2012:2

and/or functional parameters. Information about protein 

3D structures would increase prediction performance. The 

very best methods use also structural and functional informa-

tion, whereas others that are solely based on sequence-level 

information perform rather well. These studies9,13,17,23,27-29,64–68 

compare the methods pair-wise, and whether the type of origi-

nal or substituting amino acid residue, the structural class of 

the protein, or the structural environment of the amino acid 

substitution, had an effect on the prediction performance. 

Considering all the evaluation measures, no single method 

could be rated as the best.

Modern drug-discovery process
The endpoint of identification of disease-associated  nsSNPs 

should be functional analysis, an understanding of the 

molecular mechanism of causation of the disease pheno-

type, and the development of drugs to target these mutants. 

Certain nsSNPs are associated with significant changes in 

drug efficacy and drug disposition. Given that these nsSNPs 

could occur in candidate drug-target proteins, they can influ-

ence treatment response and whether drugs produce adverse 

reactions.

The success of a drug is determined by the balance of 

target potency, selectivity, and ADMET profile.69 Tradition-

ally, drugs were discovered by synthesizing compounds in 

a time-consuming multi-step process against a battery of 

in vivo biological screens, then further investigating the 

candidates for their ADMET properties. Novel compounds 

entering clinical trial undergo years of rigorous preclinical 

testing, but only about 8% reach the market.70 It has been 

estimated that 30% of compounds fail to show efficacy, while 

50% of active compounds are removed from the pipeline due 

to toxicity.71 Thus, early evaluation of ADMET properties has 

become mandatory to increase success in clinical studies. 

There are many factors that impede early determination of 

these factors, including large amounts of compound required 

for the in vivo studies, lack of reliable high-throughput 

in vitro assays, and inability of animal models to predict 

some human toxicity. Today, the process of drug discovery has 

been revolutionized by the advent of genomics, proteomics, 

bioinformatics, and efficient technologies such as combina-

torial chemistry, high-throughput screening (HTS), virtual 

screening, de novo design, in silico ADMET screening, and 

structure-based drug design.

The drug-discovery process operates on a target-based 

approach in which a developed drug is designed to affect 

only specific genes and molecular mechanisms in order to 

selectively treat the disease without producing side effects. In 

silico techniques are used to simulate the chemical compound 

and design chemical structures that might work against it. 

These tools are helpful at any of the following stages of 

modern drug design process:

1. Target identification. Drug discovery begins with the 

identification of the function of a potential drug target 

and its role in the disease.72 A drug target is a key mol-

ecule, such as a gene or protein, which is involved in a 

signaling pathway specific to a disease condition. Drugs 

may be designed that bind to the active region and inhibit 

this molecule, or may enhance the normal pathway by 

promoting specific molecules that may have been affected 

during disease development.72,73 The specific molecular 

targets and groups of patients are identified by bioinfor-

matics approaches such as homology-based, ligand-base, 

structures-based, and HTS technologies.

2. Target validation. After a drug target has been identified, 

it is necessary to demonstrate that it will yield the 

desired clinical outcome, specifically the improvement or 

elimination of a phenotype. In silico characterization can 

be performed by using approaches such as  genetic-network 

mapping, protein-pathway mapping, disease-locus 

mapping, protein–protein interactions, and subcellular 

localization predictions.74

3. Hit-to-lead identification phase assures that the identified 

drug possesses favorable ADMET properties, improved 

potency, undesirable activities at other biological targets, 

and physiochemical/metabolic properties suggestive of 

reasonable in vivo pharmacokinetics.74 The hit-to-lead 

phase can be identified by approaches like high-through-

put biochemical, cellular, and natural product assays, 

structure-based design, and virtual HTS (vHTS).74

4. Lead optimization is the process of ref ining the 

 chemical structure of a confirmed hit to improve its drug 

 characteristics. Lead structures are optimized for target 

affinity and selectivity. Docking techniques are currently 

applied to aid in structure-based ADMET.75

5. Preclinical studies with and without the use of animals 

have the purpose of limiting risks whenever a new active 

substance is to be used as a human medicine. Preclinical 

testing involves: pharmacology, toxicology, preformula-

tion, formulation analysis, and pharmacokinetics.75

6. Clinical trials are the fastest and safest way to find treat-

ments that work in humans. Patients with predetermined 

characteristics are recruited, and data is collected on their 

health for a defined time period. Clinical trials are orga-

nized into prevention, screening, diagnostics, treatment, 

and quality of life.
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7. The New Drug Application (NDA) and Food And Drug 

Administration (FDA) approval. The role of the NDA 

is to provide information from previous years of work, 

and submit manufacturing and labeling proposals of 

new pharmaceuticals, the goal of which is to gain FDA 

approval by demonstrating that the medicine is safe and 

effective for humans.70

In silico approaches to the drug 
discovery process
nsSNPs play important roles in the diverse responses in 

efficacy and toxicity of the human population to therapeutic 

agents by affecting drug-target proteins such as G-protein 

coupled receptors, enzymes, ion channels, and proteins 

involved in the detoxification pathways. In silico methods 

such as SIFT and PolyPhen allow screening for polymor-

phisms of various genes that may potentially cause diseases 

and altered drug-response or toxicity. Therapeutic targets 

of many disease-causing nsSNPs can be investigated by 

a computational approach with important implications for 

potential target discovery. Furthermore, the study of cur-

rent therapeutic targets of drugs can lead to a new direction 

for future target identification. The identification of new 

therapeutic targets and the exploration of novel drugs show 

a promising future for the use of bioinformatics tools. This 

is valuable for the drug discovery and development process 

and, ultimately, for improving drug efficacy and safety 

profiles. The drug discovery process from identification of 

new selective, effective, and safe compounds to the develop-

ment of drug candidates in clinical trials can be developed 

through a variety of in silico approaches such as ligand- and 

structure-based drug design, de novo design, and homology 

modeling, depending on how much information is available 

about drug targets and the potential drug.76,77

virtual screening and de novo design 
approaches
These approaches use computer methods to select a set of 

new ligands on the basis of structures that are predicted to 

exhibit a biological activity on a given target. Virtual screen-

ing is divided into structural- and ligand-based methods.78,79 

The assumption of the ligand-based approach is that similar 

structures have similar biological activity.80 These methods 

operate only on known active ligands and therefore they 

are adequate if the structure of a protein is not known. 

 Docking is a computational tool of structure-based drug use 

to predict protein–ligand interaction geometries and binding 

affinities. It consists of a docking, which is the search pattern 

for  identifying suitable conformations, and a score, which 

is a measure of the affinity of various conformations.81,82 

Notable docking softwares are GOLD  (The Cambridge 

Crystallographic Data Centre, Cambridge, UK), AutoDock 

(The Scripps Research Institute, La Jolla, CA), and DOCK 

(http://dock.compbio.ucsf.edu/). A complete webserver is 

DockingServer (Virtua Drug Ltd, Budapest, Hungary).

De novo design methods
These are automated computational procedures that create 

new molecules with drug-like properties by using genetic 

algorithms to improve the specified properties of the mol-

ecules.83 De novo design is complementary to HTS83 and, 

instead of searching for bioactive molecules in large col-

lections of physically available compounds, de novo design 

creates chemical structures from scratch by assembling 

molecular fragments. Most approaches to de novo design 

consist of virtual synthesis of molecules assembled from 

fragments, evaluation of their biological activity by com-

putational function, and optimization of the generated com-

pounds. De novo design methods can be performed either by 

computing some similarity index of candidate compounds 

and known reference ligands (ligand-based approach) or 

be based on the 3D structure of a ligand-binding cavity 

(receptor-based approach).83,84 The synthesis of combinato-

rial libraries is another important strategy in drug discovery 

that may be achieved with docking programs (LEA3D 

[Institut de Pharmacologie Moléculaire et Cellulaire, Val-

bonne, France], PLANTS [http://www.tcd.uni-konstanz.

de/research/plants.php], FlexX [BioSolveIT GmbH, Sankt 

Augustin, Germany]) focused on building combinatorial 

libraries of molecules and performing virtual screenings.78,79 

As an alternative to docking methods and as a complementary 

modeling method to 3D structures at atomic level, pharma-

cophore is the spatial arrangement of features essential for 

a molecule to interact with a specific drug target receptor in 

a specific binding mode.85,86 The PharmMapper webserver 

identifies potential drug targets from the pharmacophore 

database (namely PharmTargetDB) annotated from all the 

target information in TargetBank, BindingDB, DrugBank, 

and potential drug target databases, which provide informa-

tion about disease-associated genes, genetic variations, and 

drugs or 3D structural models of drugs.85,86

Homology modeling
This refers to constructing an atomic-resolution model of 

the target protein from its amino-acid sequence and the 

experimental 3D structure of a related homologous protein. 
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It has been shown that protein structures are more conserved 

than protein sequences amongst homologues, but sequences 

falling below a 20% sequence identity can have very different 

structures.87,88

DNA microarrays
These are used to measure the expression patterns of 

 thousands of genes in parallel, generating clues to gene 

 function that can help to identify appropriate targets for thera-

peutic intervention. They can also be used to monitor changes 

in gene expression in response to drug treatments.89

vHTS
vHTS examines protein targets against databases of small-

molecule compounds and chooses molecules that bind strongly 

to the target. If there is a “hit” with a particular compound, it 

can be extracted from the database for further testing.88,90

Drug lead optimization
This usually involves a series of modifications to the 

sequence and secondary structure of the potential drug. This 

process can be enhanced using software tools that explore 

related compounds to the lead candidate. The estimation of 

the activity is addressed by various ligand- and structure-

based methods depending on the data on known ligands and 

the availability of the 3D structure of the target.78,79

Drug bioavailability and bioactivity 
(ADMET profile)
These are key characteristics of drugs. Traditionally, quantita-

tive structure–activity relationships (QSAR) have been used to 

investigate the molecular features that influence the ADMET 

drug profile.91 These methods use statistical approaches and 

experimental data to model complex biological processes.92 As 

the 3D structures of major ADMET proteins become available, 

structure-based methods can be used to complement QSAR 

studies.92 Several recent studies have shown how in silico 

ADMET predictions of drugs can minimize the number of 

compounds needed to be synthesized to obtain the required 

biochemical and/or physicochemical profile.91,92

Advances in genomics have triggered a shift in drug 

discovery, from strong single-target interaction to more 

global and comparative analysis of multi-target networks.76 

 Numerous research works72,88,91,92 have demonstrated that in 

silico methods offer the advantage of delivering new drug 

candidates more quickly and at a lower cost, with great 

potential across the pharmaceutical industry and also in other 

industries, such as consumer goods, where non-animal alter-

natives are being sought for assuring the safety of drugs.

Conclusion and future 
developments
Variations in protein sequence and function are mainly due to 

nsSNPs. The fraction of nsSNPs in the genome is relatively 

low (∼10% of coding SNPs) but has a profound impact on the 

function of associated genes. About 30% of the nsSNPs con-

stitute a set of genetic factors associated with disease predis-

position. Most known disease-related nsSNPs in proteins of 

known 3D structure appear to affect important sites relevant 

for function, like ligand-binding surfaces and catalytic and 

regulatory sites. Structural mutations affect buried residues 

in the protein core, causing changes in amino-acid size and 

charge, hydrogen bonds, salt bridges, and S–S bridges. These 

changes cause loss of thermodynamic stability as well as 

aberrant folding and aggregation of proteins.

Certain nsSNPs are known to be associated with signifi-

cant changes in drug efficacy and drug disposition. Given 

that these nsSNPs could be located in candidate drug-target 

proteins, they can influence treatment response and whether 

drugs produce adverse reactions. Variation in drug response 

is attributed to multiple genes rather than a single-gene muta-

tion; therefore, it appears appropriate to perform pharmacog-

enomic studies comparing nsSNP maps and gene expression 

between normal and affected  individuals. Pharmacogenomic 

screening of selected polymorphisms in clinical trial subjects 

should also allow clinical trials to be smaller, faster, and less 

expensive because they could be subjects from clinical trials 

whose genetic profile would result in ADRs or ineffective 

responses to a drug under evaluation. In silico pharmacog-

enomics is already identifying new mechanisms of drug action 

and novel therapeutic targets. Indeed, this field represents a 

powerful instrument with which to identify the relationship 

between genetics and chronic pain states. One example is 

the relationship between β-adrenergic receptors and opioid-

induced hyperalgesia and the identification of novel targets 

of analgesic action, such as an inward rectifying potassium 

channel, which modulates analgesic response to multiple 

drugs. The utility of pharmacogenomics in drug therapy 

also manifests in its potential to translate into individualized 

medicine, drug development, and drug regulation which, like 

pharmacogenomics itself, need to cope with individual vari-

ability in drug therapy and which are only at the beginning of 

meeting this difficult and complex challenge.

Therefore, knowledge of effect of functional nsSNPs could 

improve drug therapy by optimizing efficacy and diagnostics and 
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reducing toxicity of drugs. The greatest challenge for the future 

is to understand the genotypic–environmental factor interaction, 

ethnicity, inheritance patterns in drug response, and how genetic 

variance responds to medicine. If the goals of pharmacogenom-

ics are satisfied, physicians may genetically subdivide patients 

and treat each patient group according to their genetic profile, 

thereby prescribing appropriate medications aimed at the right 

target at the right dose, to achieve maximal therapeutic benefit 

with minimal, tolerable adverse effects.
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