H-2g, a glucose analog of blood group H antigen, mediates monocyte recruitment in vitro and in vivo via IL-8/CXCL8

Bradley J Rabquer1,2
Yong Hou1
Jeffrey H Ruth1
Wei Luo1
Daniel T Eitzman1
Alisa E Koch3,1
Mohammad A Amin1
1University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, MI, USA; 2Albion College, Biology Department, Albion, MI, USA; 3VA Medical Service, Department of Veterans Affairs, Ann Arbor, MI, USA

Objective: Monocyte (MN) recruitment is an essential inflammatory component of many autoimmune diseases, including rheumatoid arthritis (RA). In this study we investigated the ability of 2-fucosyllactose (H-2g), a glucose analog of blood group H antigen to induce MN migration in vivo and determined if H-2g-induced interleukin-8 (IL-8/CXCL8) plays a role in MN ingress in RA.

Methods: Sponge granuloma and intravital microscopy assays were performed to examine H-2g-induced in vivo MN migration and rolling, respectively. MNs were stimulated with H-2g, and the production of IL-8/CXCL8 was assessed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Lastly, in vitro MN migration assays and an in vivo RA synovial tissue severe combined immunodeficiency mouse model were used to determine the role of IL-8/CXCL8 in H-2g-induced MN migration.

Results: In vivo, H-2g induced significantly greater MN migration compared to phosphate buffered saline. Intravital microscopy revealed that H-2g mediates MN migration in vivo by inducing MN rolling. In addition, H-2g induced MN production of IL-8/CXCL8, a process that was dependent on Src kinase. Moreover, we found that H-2g mediated MN migration in vitro, and in vivo migration was inhibited by a neutralizing anti-IL-8/CXCL8 antibody.

Conclusion: These findings suggest that H-2g mediates MN recruitment in vitro and in vivo (in part) via IL-8/CXCL8.

Keywords: inflammation, rheumatoid arthritis, chemokine, migration

Introduction
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by synovial hyperplasia, neovascularization, and inflammation. Many chemokines are upregulated in RA serum and synovial fluid.1 Interleukin-8 (IL-8/CXCL8) is a member of the CXC chemokine family that is abundantly expressed by key pathogenic cell types in RA, including fibroblasts, endothelial cells, and macrophages.2–5 IL-8/CXCL8 promotes neutrophil and monocyte (MN) migration by upregulating the expression of adhesion molecules.6 These cells perpetuate the disease by producing a variety of chemokines, angiogenic factors, and inflammatory mediators.7

In addition to chemokines, other types of mediators have chemotactic properties. We have previously shown that 2-fucosyllactose (H-2g), a soluble analog of the blood group H antigen, directly mediates leukocyte recruitment both in vitro and in vivo.8 Here, we sought to investigate if H-2g induces MN migration in vivo, and to determine if H-2g mediates MN recruitment via IL-8/CXCL8.
Materials and methods

Patients and controls

Peripheral blood (PB) samples were collected from healthy volunteers. RA synovial tissue (ST) samples were obtained from patients undergoing synovectomy or total joint replacement. The study was approved by the University of Michigan Institutional Review Board.

Animals

All experiments were performed with approval from the University of Michigan Committee on Use and Care of Animals.

Sponge granuloma model

We performed a mouse sponge model to evaluate MN recruitment in vivo as previously described. Briefly, phosphate-buffered saline (PBS) or H-2g-treated polyvinyl sponges were inserted subcutaneously into C57BL/6 mice (National Cancer Institute at the National Institutes of Health, Bethesda, MD). Simultaneously, human PB MNs, dye-tagged with PKH26 (Sigma-Aldrich, St Louis, MO), were injected intravenously. After 48 hours, mice were euthanized, sponges removed, and MNs isolated. Cytospins were performed and dye-tagged cells were counted by a blinded observer.

Intravital microscopy

Intravital microscopy was performed as previously described using C57BL/6 mice (National Cancer Institute at the National Institutes of Health, Bethesda, MD). H-2g (100 µM) or PBS was injected intravenously 2 hours before executing intravital microscopy (three mice per group). Three to five videos were taken per mouse. Rolling leukocytes were defined as leukocytes that rolled at a velocity slower than red blood cells.

Isolation of human MNs

MNIs were isolated from the PB of normal healthy volunteers as previously described. The viability of MNs determined by trypan blue exclusion was found to be >98%, and the purity was >90%.

Enzyme-linked immunosorbent assay (ELISA)

Isolated human MNs were serum-starved for 2 hours and incubated with PP2 529573 (Src inhibitor), LY294002 (phosphatidylinositol 3-kinase [PI3K] inhibitor), PDTC (nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB] inhibitor), Ro31 (protein kinase C [PKC] inhibitor), or dimethyl sulfoxide (vehicle control) for 1 hour. All inhibitors were purchased from Calbiochem (Calbiochem Novabiochem Corp, San Diego, CA) and were used at 10 µM. The MNs were then stimulated with H-2g (500 nM) in the presence of each inhibitor, based on our previous study. Cell culture supernatants were collected after 24 hours and assayed using a human IL-8/CXCL8 ELISA kit (R&D Systems, Inc, Minneapolis, MN).

RNA extraction and quantitative polymerase chain reaction (qPCR)

MNIs were cultured as described above, RNA was extracted, and qPCR was performed as previously described. Primers for human IL-8/CXCL8 (5′-GAGGGTTGTGGAGAAGTTTTG-3′, 5′-CTGGGATCTCTGAGTTTGG-3′) and human β-actin (5′-GTCAGGCAGCTGATCTTGG-3′, 5′-GCATGTCAGCTGATCCA-3′) were used. All samples were run in duplicate and the relative abundance of each gene was normalized to β-actin.

MN chemotaxis

MN chemotaxis was performed using 48-well modified Boyden chambers (Neuro Probe, Inc, Cabinjohn, MD) as previously described. H-2g (500 nM) in the presence of mouse anti-human IL-8/CXCL8 antibody (R&D Systems, Inc) or an isotype-matched control antibody (R&D Systems, Inc) was added to the bottom wells of the chambers. Formyl-met-leu-phe and Hank’s balanced salt solution served as positive and negative controls, respectively. Each test group was assayed in quadruplicate. Three high-power fields (hpfs; ×400) were counted in each replicate well.

Human RA ST-SCID chimeras

Severe combined immunodeficiency (SCID) mice (National Cancer Institute at the National Institutes of Health) were anesthetized, and each mouse received one RA ST graft. After 4 weeks of engraftment, human PB MNs were dye-tagged with PKH26 fluorescent dye (Sigma-Aldrich), and were injected intravenously. Simultaneously, H-2g (10 µM) with an anti-IL-8/CXCL8 antibody or an isotype control antibody (R&D Systems, Inc) was injected into the RA ST grafts. Mice were euthanized after 48 hours and grafts were removed and snap frozen in liquid nitrogen. Cryosections were examined for cell homing using a fluorescence microscope. Migrated MNs were quantified by counting
three slides per mouse, with two sections per slide, and at 6 hpf/s per section.

Statistical analysis
Student’s t-tests were performed, and P-values less than 0.05 were considered significant. All values presented were the mean ± standard error of the mean (SEM).

Results
H-2g induces MN migration in vivo
Sponges containing H-2g and PBS were implanted in SCID mice, and dye-tagged PB MNs were injected intravenously in the mice at the same time. In this model, leukocytes enter the sponges and form inflammatory tissue. Sponges containing H-2g recruited significantly more MNs than sponges containing PBS (Figure 1A; P < 0.05). These results suggest that the increase in MN migration in vivo is due, in part, to H-2g-increased MN rolling.

Src is required for H-2g induced MN secretion of IL-8/CXCL8
Human PB MNs were treated with H-2g and chemical signaling inhibitors, and cell culture supernatants and mRNA lysates were collected. H-2g stimulated MNs showed IL-8/CXCL8 expression at both the mRNA and protein levels (Figure 2). Moreover, H-2g-induced MN production of IL-8/CXCL8 was significantly decreased in the presence of a Src inhibitor (Figure 2; P < 0.05). In contrast, inhibitors of PKC, PI3K, and NF-κB did not inhibit H-2g-induced MN secretion of IL-8/CXCL8 (Figure 2).

IL-8/CXCL8 is required for H-2g-induced MN migration in vitro
In vitro chemotaxis assays were performed to determine if IL-8/CXCL8 plays a role in H-2g-induced MN migration. MN migration to H-2g was significantly decreased in the

![Figure 1](Image)

Figure 1 H-2g induces MN migration and leukocyte rolling in vivo. (A) H-2g or PBS was applied to sponges, which were then inserted into C57BL/6 mice. The sponges were removed, sectioned, and MN were counted. (B) C57BL/6 were injected intravenously with either H-2g or PBS, and the amount of rolling leukocytes was assessed using intravital microscopy. Representative photographs are shown for (C) PBS- and (D) H-2g-treated mice.

Notes: Arrows indicate rolling MNs. For both experiments, n = the number of mice; means are presented with SEM; differences were determined using the Student’s t-test; and P-values less than 0.05 were significant *P < 0.05.

Abbreviations: MN, monocyte; H-2g, 2-fucosyllactose; PBS, phosphate-buffered saline.
presence of a neutralizing anti-IL-8/CXCL8 antibody when compared to H-2g induced migration with an isotype control antibody (Figure 3A; \(P < 0.05 \)). This result suggests that IL-8/CXCL8 mediates H-2g-induced MN migration.

IL-8/CXCL8 is required for H-2g induced MN migration to RA ST in vivo

We employed an RA ST-SCID mouse chimera to determine if IL-8/CXCL8 plays a role in H-2g-induced MN migration in vivo. RA ST grafts treated with H-2g and an isotype control antibody showed a significant increase in MN migration compared to those treated with PBS (\(P < 0.05 \)) (Figure 3B–D). In comparison, treating RA ST grafts with H-2g and a neutralizing anti-IL-8/CXCL8 antibody resulted in a significant decrease in MN migration compared to those treated with H-2g with an isotype control antibody (\(P < 0.05 \)). Collectively, these results suggest that H-2g mediates MN migration in vitro and in vivo via IL-8/CXCL8.

Discussion

MN migration is a key step in the pathogenesis of RA. Here we investigated the ability of H-2g to induce MN migration in vivo and tested the hypothesis that H-2g mediates MN migration, in part, via IL-8/CXCL8. We first showed that H-2g induces monocyte migration in vivo in a sponge model. Our data also demonstrated that H-2g increases the ability of MNs to roll along vessels. As rolling adhesion is the first step in the leukocyte migration cascade, these findings further implicate H-2g as a mediator of MN migration.

We then determined if MNs stimulated with H-2g secrete IL-8/CXCL8. Previous studies have shown that the stimulation of MNs with lipopolysaccharides increases the production of IL-8/CXCL8, a potent MN chemotactant.\(^\text{14}\) We found that IL-8/CXCL8 production occurs in MNs treated with H-2g. This process was dependent on Src, but not NF-\(\kappa \)B, PKC, or PI3K. Src family kinases have previously been shown to be required for MN production of IL-8/CXCL8 following stimulation by lipopolysaccharides and other mediators.\(^\text{15,16}\) Previously, we demonstrated that H-2g induces the phosphorylation of Src, PKC, Akt, and IxkB\(\alpha \) in MNs, and that H-2g-mediated MN chemotaxis in vitro is dependent on Src and PI3K.\(^\text{8}\) Our data now suggest that Src is required for H-2g-induced MN production of IL-8/CXCL8 and further illustrates the importance of Src in MN migration.

After observing that H-2g stimulates MN production of IL-8/CXCL8, we explored the relationship between H-2g and IL-8/CXCL8 with respect to MN chemotaxis.\(^\text{6}\) We found that MN chemotaxis in response to H-2g is significantly
impaired with the addition of an anti-IL-8/CXCL8 antibody. Collectively, these findings implicate H-2g as both a direct and an indirect mediator of MN migration.

Following this observation, we utilized an RA ST-SCID mouse chimera model to determine if H-2g induces MN migration in vivo. Here we found that MN migration to RA ST was significantly reduced in the presence of neutralizing anti-IL-8/CXCL8 antibody or an isotype matched IgG control. After 48 hours, the mice were sacrificed, ST was removed and sectioned, and migrated MNs were counted. Six ST sections were analyzed per mouse and 6 hpfs were counted per section. Means are presented with SEM; differences were determined using the Student’s t-test; and n = the number of mice. Representative photographs of RA ST graft sections treated with either H-2g + IgG (C) or H-2g + anti-IL-8/CXCL8 (D) are shown at 200×.

Notes: Arrows indicate MNs. *P < 0.05.

Abbreviations: H-2g, 2-fucosyllactose; MN, monocyte; IL-8/CXCL8, interleukin-8; HBSS, Hank’s balanced salt solution; IgG, immunoglobulin-G; PBS, phosphate-buffered saline; hpfs, high power fields; SCID, severe combined immunodeficiency; RA, rheumatoid arthritis; ST, synovial tissue.

Figure 3 H-2g mediates in vitro and in vivo MN chemotaxis via IL-8/CXCL8. (A) MN chemotaxis assays were performed using a modified Boyden chamber. MN migration was determined in response to H-2g (500 nM) with either neutralizing anti-IL-8/CXCL8 antibody or an isotype matched IgG control. PBS and formyl-met-leu-phe were used as negative and positive controls, respectively. Three hpfs were counted per well and the assay was performed in quadruplicate; n = the number of replicates. Means are presented with SEM, differences were determined using the Student’s t-test. (B) SCID mice were engrafted with RA ST and 4 weeks later fluorescence-labeled MNs were injected intravenously. At the same time, RA ST grafts were injected with H-2g (100 µM) and either a neutralizing anti-IL-8/CXCL8 antibody or an isotype matched IgG control. After 48 hours, the mice were sacrificed, ST was removed and sectioned, and migrated MNs were counted. Six ST sections were analyzed per mouse and 6 hpfs were counted per section. Means are presented with SEM; differences were determined using the Student’s t-test; and n = the number of mice. Representative photographs of RA ST graft sections treated with either H-2g + IgG (C) or H-2g + anti-IL-8/CXCL8 (D) are shown at 200×.

Acknowledgments
This work was supported by the National Institute of Health (grants HL094017 to BJR, AR052482 to MAA, and AR48267 to AEK), the Office of Research and Development, Medical Research Service, Department of Veterans Affairs, and the Frederick GL Huetwell and William D Robinson, MD Professorship in Rheumatology.

Disclosure
The authors report no conflicts of interest in this work.

References

