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Abstract: A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is 

well established. However, the specific genes responsible for enhanced risk or host differences 

in susceptibility to smoke exposure remain poorly understood. The goal of this review is to 

provide a comprehensive literature overview on the genetics of COPD, highlight the most 

promising findings during the last few years, and ultimately provide an updated COPD gene 

list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before 

January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked 

for. This well-documented COPD candidate-gene list is expected to serve many purposes for 

future replication studies and meta-analyses as well as for reanalyzing collected genomic data 

in the field. In addition, this review summarizes recent genetic loci identified by genome-wide 

association studies on COPD, lung function, and related complications. Assembling resources, 

integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of 

the path forward to elucidate the genetic basis of this debilitating disease.
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Introduction
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of worldwide 

mortality and is predicted to remain a major public health problem in the near future.1,2 

It is characterized by airflow limitations that occur in approximately 10% of adults 

aged $ 40 years.3 Cigarette smoking is the primary risk factor. However, only a 

fraction of smokers (∼20%) develop the disease, and host differences in susceptibility 

are thus persuasive. The author has previously reviewed the genetics of COPD and 

COPD-related phenotypes.4 The current review aims to: (1) update this publication, 

(2) provide a comprehensive literature overview on the genetics of COPD, (3) highlight 

the most promising findings during the last few years, and ultimately (4) provide an 

updated COPD gene list.

Chronic obstructive pulmonary disease  
candidate-gene studies
A systematic review of the literature was conducted in order to provide a comprehensive 

overview of genes associated with COPD and related phenotypes. PubMed was searched 

using the string “genetics and COPD” on January 5, 2012. All titles and abstracts 

were reviewed for inclusion. The goal was to obtain all publications testing genetic 

variants in humans for association with COPD and related phenotypes (ie, spirometric 
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measurements, emphysema, chronic bronchitis, lung-

function decline, etc). Population-based, case-control, and 

family studies were included. The author attempted to include 

all reported articles without quality assessment or exclusion 

criteria based on sample size or other criteria. The search 

for relevant publications was complemented using the list 

of references in relevant manuscripts and the COPD genetic 

association compendium.5 Readers are welcome to contact 

the author for any articles missed in the current review.

A large number of candidate gene–association studies 

were conducted to identify the COPD-susceptibility genes. 

Table 1 provides a comprehensive overview of the genes 

associated with COPD and related phenotypes using this 

genetic approach. Supplementary Table 1 presents additional 

genes tested but showing lack of association with COPD and 

related phenotypes. Most genes in these tables were studied 

because of their potential role in the pathobiology of COPD, 

but some also represent follow-up genes originally identified 

from genome-wide linkage and association studies. Genes 

are presented in alphabetical order. Single studies and meta-

analyses testing each gene are indicated. An attempt was 

made to classify each article as supportive or not of a given 

gene based on the conclusions provided by the authors. Single 

genetic markers, haplotypes, or combinations of variants 

associated with COPD, COPD severity, COPD-related 

phenotypes, or complications were considered as positives. 

Table 1 aims to provide an exhaustive list of publications 

for any given gene.

A total of 192 genes are summarized in Table 1 and 

Supplementary Table 1. Figure 1 illustrates these genes based 

on the number of publications supporting the association 

with COPD phenotypes. Briefly, 86 genes are supported by 

one study, 36 genes by two to five studies, 15 genes by six 

to ten studies, and seven genes by more than ten studies. The 

latter seven genes include ADRB2, TGFB1, TNF, GSTM1, 

GSTP1, SERPINA1, and EPHX1. Note that Figure 1 must be 

interpreted with caution. Replication of genotype–phenotype 

associations is the gold standard to identify genes conferring 

susceptibility.6 However, the number of supportive studies 

is not necessarily an indication that a gene is consistently 

replicated. Figure 2 illustrates the relationship between the 

number of studies supporting and not supporting the list of 

COPD genes. It seems that genes replicated many times in 

COPD are simply the most popular genes studied. For exam-

ple, the author found 20 studies supporting TNF as a COPD-

susceptibility gene. However, lack of association between 

this gene and COPD phenotypes was found in 20 other studies 

(Table 1). Considering publication bias, candidate genes 

associated with COPD are not consistently replicated and 

the overall results are rather inconclusive. In fact, excluding 

SERPINA1 (encoding the alpha-1 antitrypsin protein), none 

of the other genes are well-proven susceptibility genes for 

COPD. Perhaps the most convincing candidate COPD genes 

up to now are those less studied but consistently replicated, 

such as SOD3. Many of the most studied COPD genes have 

now been investigated in meta-analyses.

Meta-analyses
A number of meta-analyses have been conducted to identify 

genes robustly associated with COPD and lung function. So 

far, meta-analyses have been conducted for genes involved 

in the following pathways: inflammation (IL4, IL6, IL13, 

IL1B, IL1RN, LTA, TNF, and TGFB1), protease/antiprotease 

(MMP9, TIMP2, and SERPINA3), oxidative stress (GSTM1, 

GSTP1, GSTT1, EPHX1, SOD2, and SOD3), and others 

(ACE and ADRB2). These studies and their main outcomes 

are summarized by gene in Table 1. Among these genes, 

GSTM1 was consistently associated with COPD in more 

than one meta-analysis.5,7,8 This is also true for TNF, but 

only in Asian populations.5,8–11 In contrast, other genes 

have not been supported in meta-analyses conducted so 

far, including GSTT1,5,7,8 IL1B,5,8 IL6,5,8 and MMP9.5,8 The 

other genes considered in meta-analyses were either reported 

in only one study or showed conflicting results across studies 

(Table 1).

As genetic data accumulates, more genes and polymor-

phisms will be considered in meta-analyses. Combining 

the findings of an increasing number of studies will allow 

pooled analyses in more homogenous subgroups based on 

ethnicity, smoking history, emphysema vs airway type of 

COPD, and others. These subgroup analyses are likely to be 

important in finding susceptibility genes for COPD. Ongoing 

activities gathering genetic data in the field of COPD are 

important. For example, a web application summarizing 

candidate-gene studies was recently established.5 At the time 

of publication, this database included 108 genetic-association 

studies, including population-based and case-control studies 

but excluding family-based studies. Seventy-two genes 

were studied, focusing strictly on single-marker biallelic 

polymorphisms. A total of 27 genetic variants were found to 

be reported in three or more independent study populations 

and summarized into a meta-analysis. Four genes were found 

to carry a single genetic variant significantly associated with 

COPD, being GSTM1, TGFB1, TNF, and SOD3. It should 

be noted that this COPD genetic-association compendium 

has not been updated since April 2010 and does not included 
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Table 1 List of genes associated with chronic obstructive pulmonary disease

Symbol Name Chromosome References

Single studies Meta-analyses

Positive Negative Positive Negative

A2M Alpha-2-macroglobulin 12 51
ABCC1 ATP-binding cassette,  

sub-family C (CFTR/MRP), member 1
16 52–54

ACE Angiotensin I converting enzyme  
(peptidyl-dipeptidase A) 1

17 55–60 61,62 5

ADAM33 ADAM metallopeptidase domain 33 20 63–68 69,70
ADRB2 Adrenergic, beta-2-, receptor, surface 5 71–82 83 5,83
ALOX5AP Arachidonate 5-lipoxygenase-activating protein 13 84
AQP5 Aquaporin 5 12 85,86
BCL2 B-cell CLL/lymphoma 2 18 87
BDKRB2 Bradykinin receptor B2 14 88
CASP10 Caspase 10, apoptosis-related cysteine peptidase 2 89
CAT Catalase 11 90 91,92
CCL5  
(RANTES)

Chemokine (C-C motif) ligand 5 17 93 79

CCR2 Chemokine (C-C motif) receptor 2 3 94
CD14 CD14 molecule 5 95,96
CD40 CD40 molecule, TNF receptor superfamily  

member 5
20 97

CD63 CD63 molecule 12 98
CD86 CD86 molecule 3 99
CDC6 Cell division cycle 6 homolog (S cerevisiae) 17 100
CDKN1A  
(p21)

Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 6 101

CFTR Cystic fibrosis transmembrane conductance regulator 
(ATP-binding cassette sub-family C, member 7)

7 102–108 109,110

CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) 1 111
CHRNA3 Cholinergic receptor, nicotinic, alpha 3 (neuronal) 15 26,30,31, 

112,113
CHRNA5 Cholinergic receptor, nicotinic, alpha 5 (neuronal) 15 26,30,31, 

112,113
CLCA1 Chloride channel accessory 1 1 114
COL4A3 Collagen, type IV, alpha 3 (Goodpasture antigen) 2 115
CRP C-reactive protein, pentraxin-related 1 116 117–119
CSF2 Colony stimulating factor 2 (granulocyte- 

macrophage)
5 120 121

CSF3 Colony stimulating factor 3 (granulocyte) 17 121
CTLA4 Cytotoxic T-lymphocyte-associated protein 4 2 99,122,123
CTSS Cathepsin S 1 124
CYBA Cytochrome b-245, alpha polypeptide 16 125
CYP1A1 Cytochrome P450, family 1, subfamily A,  

polypeptide 1
15 125–128 129,130

CYP1A2 Cytochrome P450, family 1, subfamily A,  
polypeptide 2

15 129,131 125,128

CYP2E1 Cytochrome P450, family 2, subfamily E,  
polypeptide 1

10 127,132 130

CYP2F1 Cytochrome P450, family 2, subfamily F,  
polypeptide 1

19 133

CYP3A5 Cytochrome P450, family 3, subfamily A,  
polypeptide 5

7 134

DEFB1 Defensin, beta 1 8 135,136 137
DEFB4A Defensin, beta 4A 8 138
EDN1 Endothelin 1 6 139–141 142,143
EDNRB Endothelin receptor type B 13 143

(Continued)
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Table 1 (Continued)

Symbol Name Chromosome References

Single studies Meta-analyses

Positive Negative Positive Negative

ELN Elastin (supravalvular aortic stenosis,  
williams–Beuren syndrome)

7 144,145 146,147

EPHX1 Epoxide hydrolase 1, microsomal (xenobiotic) 1 77,83,130, 
146–167

127,168–174 175 5,8,176

ESR1 Estrogen receptor 1 6 177
FAM13A Family with sequence similarity 13, member A 4 26
FGF10 Fibroblast growth factor 10 5 178
GC Group-specific component  

(vitamin D binding protein)
4 179–186 146,147,151, 

155,187
GCLC Glutamate-cysteine ligase, catalytic subunit 6 188 172,189
GCLM Glutamate-cysteine ligase, modifier subunit 1 190 172,188
GSTCD Glutathione S-transferase, C-terminal domain 

containing
4 191

GSTM1 Glutathione S-transferase M1 1 127,148,161, 
164,165, 
192–202

90,130,146,147, 
151,169,203–206

5,7,8

GSTO1 Glutathione S-transferase omega 1 10 207
GSTO2 Glutathione S-transferase omega 2 10 207
GSTP1 Glutathione S-transferase pi 1 11 77,90,146, 

148,151,152, 
157,164,165, 
193,194,196, 
204,208–210

69,127,130,147, 
149,159,171,185, 
197,203,211,212

8,213 5,214

GSTT1 Glutathione S-transferase theta 1 22 127,165,193, 
196–198, 
204–206

90,130,148,161, 
164,169,194, 
199–201,203

5,7,8

HCK Hemopoietic cell kinase 20 215
HHIP Hedgehog interacting protein 4 26,191,216
HLA Classical class 11 subregion of the MHC 6 217,218 219,220
HMOX1 Heme oxygenase (decycling) 1 22 130,151,166, 

221–224
69,147,185, 
196,225

HTR4 5-hydroxytryptamine (serotonin) receptor 4 5 191
IFNG Interferon, gamma 12 226–228
IL1A Interleukin 1, alpha 2 227
IL1B Interleukin 1, beta 2 227,229–233 120,228, 

234–238
5,8

IL1RN Interleukin 1 receptor antagonist 2 231,232, 
234,235

228,230, 
236–238

8

IL2 Interleukin 2 4 227
IL27 Interleukin 27 16 239
IL4 Interleukin 4 5 71,227,240 120,241,242 5
IL4R Interleukin 4 receptor 16 227,243 79,241
IL5 Interleukin 5 (colony-stimulating factor, eosinophil) 5 244
IL6 Interleukin 6 7 118,228,234, 

245–247
116,233, 
236,248

5,8

IL8 Interleukin 8 4 120 234,235,238, 
249,250

IL8RA Interleukin 8 receptor, alpha 2 251 120,146,147
IL8RB  
(CXCR2)

Interleukin 8 receptor, beta 2 250 120,146,147

IL10 Interleukin 10 1 149,227,235, 
248,252–254

120,234,255

IL12B Interleukin 12B (natural killer cell stimulatory  
factor 2, cytotoxic lymphocyte maturation  
factor 2, p40)

5 227 239

(Continued)
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Table 1 (Continued)

Symbol Name Chromosome References

Single studies Meta-analyses

Positive Negative Positive Negative

IL13 Interleukin 13 5 79,241,242, 
256–261

71,120,238, 
243,262

5

IL13RA1 Interleukin 13 receptor, alpha 1 X 241
IL17F Interleukin 17F 6 263
IREB2 Iron-responsive element binding protein 2 15 26,30,47
KCNMB1 Potassium large conductance calcium-activated 

channel, subfamily M, beta member 1
5 264

KEAP1 Kelch-like ECH-associated protein 1 19 265
LEP Leptin 7 266
LEPR Leptin receptor 1 267
LTA Lymphotoxin alpha (TNF superfamily, member 1) 6 234,268–272 120,233,248, 

273–275
5

LTA4H Leukotriene A4 hydrolase 12 84
LTBP4 Latent transforming growth factor beta binding 

protein 4
19 146,147

MBL2 Mannose-binding lectin (protein C) 2, soluble 10 276,277
MICB MHC class I polypeptide-related sequence B 6 278
MIR196A2 MicroRNA 196a-2 12 279
MIR499A MicroRNA 499a 20 279
MMP1 Matrix metallopeptidase 1 (interstitial collagenase) 11 146,280,281 69,128,147, 

151,282–285
MMP2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa 

gelatinase, 72 kDa type IV collagenase)
16 285 69,281

MMP3 Matrix metallopeptidase 3 (stromelysin 1, 
progelatinase)

11 286 128,287

MMP9 Matrix metallopeptidase 9 (gelatinase B, 92 kDa 
gelatinase, 92 kDa type IV collagenase)

20 128,202,281, 
282,284, 
288–290

69,147,151, 
280,283,285,287

5,8

MMP12 Matrix metallopeptidase 12 (macrophage elastase) 11 280,283, 
291,292

69,146,147, 
282,284, 
285,287

MMP14 Matrix metallopeptidase 14 (membrane-inserted) 14 293
MSR1 Macrophage scavenger receptor 1 8 137,294
NAT2 N-acetyltransferase 2 (arylamine N-acetyltransferase) 8 132
NFE2L2 Nuclear factor (erythroid-derived 2)-like 2 2 265,295
NFKBIB Nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, beta
19 185

NOS3 Nitric oxide synthase 3 (endothelial cell) 7 57,62, 
296,297

149

NQO1 NAD(P)H dehydrogenase, quinone 1 16 90
NR3C1 Nuclear receptor subfamily 3, group C, member 1 

(glucocorticoid receptor)
5 298 299

OGG1 8-oxoguanine DNA glycosylase 3 300 189
OR4X1 Olfactory receptor, family 4, subfamily X, member 1 11 301
PDE4D Phosphodiesterase 4D, cAMP-specific 

(phosphodiesterase E3 dunce homolog, drosophila)
5 302

PLAUR Plasminogen activator, urokinase receptor 19 303,304
PPARG Peroxisome proliferator-activated receptor gamma 3 163
PTEN Phosphatase and tensin homolog 10 14
PTGDR Prostaglandin D2 receptor (DP) 14 305
PTGS2  
(COX2)

Prostaglandin-endoperoxide synthase 2  
(prostaglandin G/H synthase and cyclooxygenase)

1 306,307

SERPINA1 Serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 1

14 76,308–325 326–336

(Continued)
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Table 1 (Continued)

Symbol Name Chromosome References

Single studies Meta-analyses

Positive Negative Positive Negative

SERPINA3 Serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 3

14 337–343 146,147,149, 
151,310,314, 
326,332,344

5

SERPINE2 Serpin peptidase inhibitor, clade E (nexin,  
plasminogen activator inhibitor type 1), member 2

2 77,146,149, 
326,345–348

147,152,171, 
349,350

SFTPA1 Surfactant protein A1 10 69,351
SFTPA2 Surfactant protein A2 10 69
SFTPB Surfactant protein B 2 147,151,171, 

351–354
69,77,146, 
149,152,355

SFTPC Surfactant protein C 8 356 357
SFTPD Surfactant protein D 10 69,358,359 151,351
SIRT2 Sirtuin 2 19 185
SLC6A4 Solute carrier family 6 (neurotransmitter  

transporter, serotonin), member 4
17 360

SLC11A1 Solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 1

2 361

SMAD3 SMAD family member 3 15 362
SMOC2 SPARC related modular calcium binding 2 6 363
SOD2 Superoxide dismutase 2, mitochondrial 6 364–366 91,92,271 8
SOD3 Superoxide dismutase 3, extracellular 4 90,91,364, 

367–370
5 8

SOX5 SRY (sex determining region Y)-box 5 12 371
STAT1 Signal transducer and activator of  

transcription 1, 91 kDa
2 185

STAT3 Signal transducer and activator of  
transcription 3 (acute-phase response factor)

17 372

STAT6 Signal transducer and activator of  
transcription 6, interleukin-4 induced

12 79 241

STIP1 Stress-induced-phosphoprotein 1 11 373
TBXA2R Thromboxane A2 receptor 19 244,374
TGFB1 Transforming growth factor, beta 1 19 69,77,146, 

147,238, 
375–382

30,149,151, 
171,383

5,8 384

TGFBR3 Transforming growth factor, beta receptor III 1 190
TIMP1 TIMP metallopeptidase inhibitor 1 X 285 69
TIMP2 TIMP metallopeptidase inhibitor 2 17 146,385,386 147,151,387 5
TLR4 Toll-like receptor 4 9 388,389 96,271
TNF Tumor necrosis factor (TNF superfamily,  

member 2)
6 11,149,151, 

234,238,250, 
262,268, 
270–272, 
390–398

83,120,146, 
147,155,230, 
233,235–237, 
248,269, 
273–275, 
399–403

5,8–11

TNS1 Tensin 1 2 191
TP53  
(p53)

Tumor protein p53 17 101,307

TRPV4 Transient receptor potential cation channel,  
subfamily V, member 4

12 404

TSLP Thymic stromal lymphopoietin 5 405
VDR Vitamin D (1,25-dihydroxyvitamin D3) receptor 12 406–408 409
VEGFA Vascular endothelial growth factor A 6 410 411
XRCC1 X-ray repair complementing defective repair  

in Chinese hamster cells 1
19 300

XRCC5 X-ray repair complementing defective repair  
in Chinese hamster cells 5 (double-strand-break 
rejoining)

2 412
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Figure 1 Candidate genes associated with chronic obstructive pulmonary disease (COPD) or related phenotypes. 
Notes: The upper part shows a histogram of the number of COPD susceptibility genes based on the number of publications supporting a significant genetic association. 
The lower part shows the corresponding genes in each bar. Official gene symbols are indicated. The number of publications that are supportive is indicated in parentheses. 
References are provided in Table 1 for genes supported by at least one publication and in Supplementary Table 1 for genes tested but not supported.

more recent genetic studies on COPD. Updating this type 

of resource is important to draw reliable conclusions about 

the contribution of genes. The number of studies for most 

COPD-susceptibility genes is currently insufficient to reach 

firm conclusions.

Multi-gene-association studies
A systematic replication study of genes associated 

with lung function was recently conducted in the 

SpiroMeta Consortium.12 A literature search identified 

104 publications reporting a positive association with 

lung-function traits in the general populations of diverse 

origins or in cohorts of patients with respiratory diseases. 

A total of 130 genes and 48 intergenic regions were studied 

in 20,288 individuals. Among the 16,936 genotyped or 

imputed single-nucleotide polymorphisms (SNPs) in 

these loci, none was significantly associated with forced 

expiratory volume in one second (FEV
1
) or FEV

1
/forced 

vital capacity (FVC) ratio after correction for multiple 

testing. The strongest genetic association signals with 

FEV
1
 were observed in ever-smokers in the SERPINA1 

and PDE4D genes.

Smaller-scale studies testing multiple genes were 

also conducted in China. First, 170 asthmatic cases and 

347 controls were evaluated for 119 SNPs in 98 genes for 

association with lung function.13 After correction for multiple 

testing, none of the SNPs was significantly associated with 

lung function (ie, FEV
1
, FVC, or FEV

1
/FVC). The strongest 

association was observed between rs320995 (Phe309Phe) 

in CYSLTR1 and FEV
1
/FVC (P = 0.0004). Second, 1,261 

SNPs in 380 candidate genes for cancer or other human 

diseases were tested for association with COPD in 53 cases 

and 107 controls with in-home coal exposure.14 A total of 

22 genes were associated with COPD risk, but only PTEN was 

significant after correction for multiple testing. Considering 

the small sample sizes, the results of these studies must be 

replicated before reaching firm conclusions.

Genome-wide association studies 
on COPD
Table 2 summarizes COPD susceptibility loci identified by 

genome-wide association (GWA) studies. The results of 

the first GWA study on COPD were published in 2009.15 

The GWA study was conducted in a case-control cohort of 
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Norway (823 COPD cases and 810 controls), and the top 

100 SNPs were followed up in the family-based International 

COPD Genetics Network (ICGN). Two susceptibility loci 

were identified. The most definitive evidence of association 

was found with two SNPs at the α-nicotinic acetylcholine 

receptor locus on chromosome 15q25, the same locus 

implicated in the risk of lung cancer.16–18 Two SNPs at the 

hedgehog interacting protein (HHIP) locus on chromosome 

4q31 also showed strong associations.

The case-control cohort of Norway was then combined 

with the COPD cases from the National Emphysema 

Treatment Trial (NETT) and unaffected individuals from the 

Normative Aging Study (NAS), as well as cases and controls 

from the multicenter Evaluation of COPD Longitudinally to 

Identify Predictive Surrogate Endpoints (ECLIPSE) Study.19 

A total of 2940 cases and 1380 controls were considered. Loci 

15q25-CHRNA3/CHRNA5/IREB2 and 4q31-HHIP were 

replicated in this study. A third locus was also identified at 

4q22.1 harboring the FAM13A gene. The latter was followed 

up and validated in the COPDGene study and the ICGN. 

A trend was also observed in the Boston Early-Onset COPD 

Study (EOCOPD). The latest GWA study on COPD was 

performed using 3499 cases and 1922 controls regrouping 

the ECLIPSE, NETT-NAS, Norway, and COPDGene stud-

ies.20 The three GWA-nominated COPD-susceptibility loci 

(ie, CHRNA3/CHRNA5/IREB2, HHIP, and FAM13A) were 

confirmed in this extended GWA study. In addition, a new 

COPD locus was identified on chromosome 19q13, which 

harbored the RAB4B, EGLN2, MIA, and CYP2A6 genes. 

It was estimated that the four GWA-nominated COPD loci 

accounted for ∼5% of the total variance of the sibling relative 

risk of COPD.20

Two of the four genome-wide associated loci found in 

COPD – 15q25 and 19q13 – were previously associated 

with cigarettes smoked per day and cotinine levels,21–25 

suggesting that the risk alleles are acting through smoking 

behavior. Further studies support this hypothesis on 15q25. 

In fact, previous studies suggested that sequence variants 

on chromosome 15q25 confer risk of smoking-related lung 

diseases (ie, COPD and lung cancer) through its effect 

on tobacco addiction.17,26 This is consistent with the lack 

of association between the 15q25 locus and lung cancer 

among never-smokers.27–29 In contrast, other evidence argues 

against this hypothesis, showing weak or no evidence that 

the 15q25 locus directly influences smoking behavior,15,16 

no appreciable variation in the risk of lung cancer across 

smoking categories,18 and significant effect of the 15q25 

locus on smoking-related diseases after adjustment for 

smoking exposure.30,31 Multiple distinct loci affecting both 

smoking behavior24,31 and lung cancer32 were reported on 

15q25. It is still unknown whether genes located at any 

of these loci are causally involved in the pathogenesis of 

COPD and lung cancer or the effect is mediated by chang-

ing smoking behavior. Risk alleles on chromosome 15q25 

were shown to modulate the mRNA expression levels of the 

CHRNA5 gene in the brain33,34 and lung35 tissues as well as 

the expression of CHRNA5 and IREB2 genes in sputum.36 

The regulation of genes in primary disease tissues, such as 

lung and sputum, suggests a direct effect of 15q25 genes on 

COPD susceptibility. More functional studies are needed 

to find the causal alleles and genes on 15q25 as well as to 

disentangle their impact on correlated traits associated with 

this chromosomal region.

GWA studies on lung function
In 2007, Wilk et al37 reported the first GWA study on lung 

function in approximately 1200 individuals. The study 

was conducted as part of the Framingham Heart Study. 

Association tests were performed on 70,987 autosomal SNPs 

and for ten spirometry phenotypes. No SNP was associated 

with lung-function phenotypes using stringent criteria for 

genome-wide significance, but suggestive evidence of 

association was provided for a nonsynonymous coding SNP 

in exon 5 of the GSTO2 gene. In 2009, a larger GWA study 

from the Framingham Heart Study was performed in 7691 

participants.38 Interestingly, the 4q31-HHIP COPD locus 
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Figure 2 Scatter plot showing the number of studies supporting and not supporting 
candidate genes for chronic obstructive pulmonary disease. 
Notes: A total of 192 genes are illustrated. Note that many genes overlap in the 
lower-left corner and the 192 dots cannot be visualized on this display. The gray 
and red lines are the regression and identity lines, respectively. Genes studied many 
times or more consistently replicated are illustrated.
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Table 2 Susceptibility loci for chronic obstructive pulmonary disease (COPD) and related phenotypes identified by genome-wide association 
studies

Reference Study* Sample size 
(cases/controls)

Disease/trait Platform 
(# SNPs)

Region 
(size)

Gene Key SNPs

Pillai et al15 Norway 
ICGN 
NETT-NAS 
EOCOPD

823/810 
1891 
389/472 
949

COPD Illumina  
(Human  
Hap550)

15q25 CHRNA3 
CHRNA5

rs8034191 
rs1051730

4q31 HHIP rs1828591 
rs13118928

Cho et al19 Norway 
NETT-NAS 
ECLIPSE 
COPDGene 
EOCOPD 
ICGN

2940/1380 
 
 
502/504 
949 
2859

COPD Illumina  
(Human  
Hap550 or 
Quad610)

4q22 FAM13A rs7671167 
rs1903003

15q25 CHRNA3 
CHRNA5 
IREB2

rs1062980

4q31 HHIP rs1828591
Cho et al20 ECLIPSE 

NAS-NETT 
GenKOLS 
COPDGene 
ICGN

1764/178 
373/435 
863/808 
499/501 
983 probands/ 
1876 siblings

COPD Illumina  
(Human  
Hap550,  
Quad610, or  
Omni1 Quad)

19q13 RAB4B 
EGLN2 
MIA 
CYP2A6

rs7937 
rs2604894

4q22 FAM13A rs1964516 
rs7671167

4q31 HHIP rs13141641 
rs13118928

15q25 CHRNA3 
CHRNA5 
IREB2

rs11858836 
rs13180

wilk et al37 FHS 1059–1222 Ten spirometry  
phenotypes

Affymetrix  
(70,987)

10q25 GSTO2 rs156697

wilk et al38 FHS 
Family heart 
study

7691 
835

FEV1/FVC Affymetrix  
(500 K + 50 K)

4q31 HHIP rs13147758

Repapi et al40 SpiroMeta 
Consortium 
CHARGE 
consortium 
Health 2000  
survey

20,288 
 
32,184 
21,209 
883

FEV1 and FEV1/FVC Affymetrix  
and Illumina  
(2.5 million)

4q31 HHIP rs12504628

FEV1 2q35 TNS1 rs2571445
4q24 GSTCD rs10516526
5q33 HTR4 rs3995090

FEV1/FVC 6p21 AGER rs2070600
15q23 THSD4 rs12899618

Hancock et al39 CHARGE 
Consortium 
SpiroMeta 
consortium

20,890 
 
16,178

FEV1/FVC Affymetrix  
and Illumina  
(2,515,866)

2q36 PID1 rs1435867

4q22 FAM13A rs2869967
4q31 HHIP rs1980057
5q33 HTR4 rs11168048
5q33 ADAM19 rs2277027
6p21 AGER-PPT2 rs2070600
6q24 GPR126 rs3817928

(Continued)
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Table 2 (Continued)

Reference Study* Sample size 
(cases/controls)

Disease/trait Platform 
(# SNPs)

Region 
(size)

Gene Key SNPs

9q22 PTCH1 rs16909898
FEV1 4q24 INTS12 

GSTCD 
NPNT

rs17331332

Soler  
Artigas et al41,**

23 studies 
17 studies

48,201 
46,411

FEV1 Illumina and  
Affymetrix  
(2,706,349)

3q26 MECOM rs134555

6p22 ZKSCAN3 rs6903823
10q22 C10orf11 rs11001819

FEV1/FVC 1p36 MFAP2 rs2284746
1q41 TGFB2- 

LYPLAL1
rs993925

2q37 HDAC4- 
FLJ43879

rs12477314

3p24 RARB rs1529672
5q15 SPATA9- 

RHOBTB3
rs153916

6q21 ARMC2 rs2798641
6p21 NCR3-AIF1 rs2857595
12q13 LRP1 rs11172113
12q22 CCDC38 rs1036429
16q13 MMP15 rs12447804
16q23 CFDP1 rs2865531
21q22 KCNE2- 

LINC00310
rs9978142

FEV1 and FEV1/FVC 10p23 CDC123 rs7068966
Imboden et al42 SAPALDIA 

ECRHS 
EGEA 
FHS 
ARIC 
B58C 
Dutch  
asthma  
study

2677 nonasthmatic,  
1441 asthmatic 
 
10,858 nonasthmatic,  
1138 asthmatic

FEV1 decline  
in nonasthmatic

Illumina  
Human  
610quad

13q14 DLEU7 rs9316500

FEV1/FVC decline  
in asthmatic

8p22 TUSC3 rs4831760

Kong et al43 ECLIPSE 
Norway

1557 
432

Emphysema  
(qualitative)

Illumina  
Human  
Hap550 
(499,578)

12q11 BICD1 rs10844154 
rs161976

wan et al44 ECLIPSE 
Norway 
NETT 
COPDGene

1734 
851 
365 
502

Cachexia-related  
phenotypes  
(BMI and fat-free  
mass index)

Illumina 16q12 FTO rs8050136

Notes: *Bold entries indicates replication cohorts; **only the new loci are identified for this study, but ten loci previously reported by Hancock et al39 and Repapi et al40 
were also detected.
Abbreviations: ARIC, Atherosclerosis Risk in Communities; B58C, British 1958 Birth Cohort; EOCOPD, Boston Early-Onset COPD Study; BMI, body mass index; 
COPDGene, COPDGene study; ECLIPSE, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; ECRHS, European Community Respiratory 
Health Survey; EGEA, Epidemiological study on the Genetics and Environment of Asthma; FEV1, forced expiratory volume in 1 second; FHS, Framingham Heart Study;  
FVC, forced vital capacity; GenKOLS, Bergen, Norway COPD Cohort; ICGN, International COPD Genetics Network study; NAS-NETT, Normative Aging Study and 
National Emphysema Treatment Trial; SAPALDIA, Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults; SNPs, single-nucleotide polymorphisms.

was associated with percent predicted FEV
1
/FVC ratio. This 

locus was confirmed in a second set of participants from the 

Family Heart Study (n = 835).

In January 2010, two articles reported GWA studies for 

lung function.39,40 First, Repapi et al40 performed a GWA 

study on FEV
1
 and FEV

1
/FVC ratio in the SpiroMeta 

consortium (20,288 individuals of European ancestry). They 

have also followed up the best associated SNPs in 32,184 

additional individuals. Overall, they have identified five 

novel genome-wide significant loci for pulmonary function, 
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being 2q35 (TNS1), 4q24 (GSTCD), and 5q33 (HTR4) for 

FEV
1
, and 6p21 (AGER) and 15q23 (THSD4) for FEV

1
/FVC. 

Second, Hancock et al39 conducted a GWA study on the same 

two clinically important pulmonary function measures in the 

CHARGE consortium consisting of 20,890 participants of 

European ancestry. They identified significant associations 

with FEV
1
/FVC ratio for SNPs located in seven previously 

unrecognized loci: 6q24 (GPR126), 5q33 (ADAM19), 

6p21 (AGER and PPT2), 4q22 (FAM13A), 9q22 (PTCH1), 

2q36 (PID1), and 5q33 (HTR4). For FEV
1
, one new locus 

annotated by three genes (INTS12, GSTCD, and NPNT) 

on 4q24 was identified. 4q24 (GSTCD), 5q33 (HTR4) and 

6p21 (AGER) were common in both consortia, ie, SpiroMeta 

and CHARGE. The previously reported 4q31 locus located 

upstream of the HHIP gene associated with FEV
1
 and FEV

1
/

FVC ratio was also confirmed in these consortia.

More recently, a larger GWA study of FEV
1
 and FEV

1
/FVC 

ratio was reported, comprising more than 48,000 individuals 

of European ancestry and followed up for replication in more 

than 46,000 individuals.41 Ten out of eleven loci previously 

reported by the SpiroMeta and CHARGE consortia were 

replicated in this extended GWA study. Only PID1 on 2q36 

was not replicated. More interestingly, 16 new loci were 

identified, including twelve loci for FEV
1
/FVC, three for 

FEV
1
, and one for both traits. Thus, 26 loci were associated 

with lung function in this GWA study. Together, these loci 

explain 3.2% of the additive polygenic variance for FEV
1
/

FVC and 1.5% of the variance for FEV
1
.

The first GWA study on lung-function decline was 

recently reported.42 Briefly, genome-wide analyses 

on FEV
1
 and FEV

1
/FVC decline were conducted in 

2677 nonasthmatics and 1441 asthmatics separately. The 

top hits were then replicated in 10,858 nonasthmatic and 

1138 asthmatic participants. Decline of FEV
1
 and FEV

1
/FVC 

ratio was evaluated during a follow-up examination period 

of roughly 10 years in these participants. No SNP reached 

genome-wide significance in the discovery set. However, one 

locus on chromosome 13q14.3 containing the DLEU7 gene 

was strongly associated with FEV
1
 decline in nonasthmatics 

from the discovery set and confirmed in the replication 

set. A strong association signal was also reported on 8p22 

harboring the TUSC3 gene for FEV
1
/FVC decrease in 

asthmatics, but not validated in the replication set. Many loci 

previously associated with cross-sectional lung function in 

GWA studies described above were replicated with baseline 

lung function in either asthmatic or nonasthmatic subjects. 

However, few GWAS-nominated lung-function loci were 

associated with lung-function decline, suggesting different 

genetic mechanisms governing baseline lung function and 

decline with age. In addition, this study showed the genetic 

heterogeneity of lung-function decline between subjects 

with and without asthma. Table 2 summarizes lung-function 

susceptibility loci identified by GWA studies.

GWA studies on COPD-related 
phenotypes
Other GWA studies were reported on COPD-related phe-

notypes. Emphysema is an important feature of COPD and 

varies considerably between patients. A recent GWA study 

was performed on emphysema measures by computed 

tomography scan and defined by radiologist qualitative scores 

and quantitative assessments of low-attenuation areas.43 

The qualitative scores obtained in 1557 patients from the 

ECLIPSE study and 432 subjects from the Norway cohort led 

to the identification of an emphysema locus on chromosome 

12p11.2. The most strongly associated SNP is located in 

the BICD1 gene, known to be involved in regulating telomere 

length. The ECLIPSE, Norway, and NETT studies were also 

used to perform a GWA study on COPD-related cachexia 

phenotypes, including body mass index and fat-free mass 

index.44 Cachexia occurs in approximately 10% of patients 

with COPD and is associated with increased mortality. The 

GWA study on body mass index and fat-free mass index in 

patients with COPD identified a single susceptibility locus 

that harbored the FTO gene, the most robust gene associated 

with obesity. Whether FTO acts through obesity or directly 

affects lung function remains to be elucidated.

GWA studies on COPD, lung function, and related 

phenotypes provided strong and consistent evidence of 

genetic susceptibility loci. These studies also highlight the 

large number of participants required to identify reproducible 

genetic loci. So far, GWA studies have identified only a small 

fraction of the genetic variants contributing to COPD risk, 

related complications, and lung-function variability. GWA 

studies on larger sample sizes, especially for COPD, will be 

required to identify the genetic factors underpinning COPD 

and related phenotypes. Large international efforts are under 

way to increase sample sizes and use more comprehensive 

molecular phenotyping (eg, gene expression in the lung) to 

elucidate the genetic component of COPD.45,46 It should be 

emphasized that the causal genes and genetic variants of 

all these newly discovered loci by GWA studies remain to 

be identified. More integrative genomic approaches will be 

required for these purposes. Different study designs testing 

rare and copy-number variants as well as gene-smoking 

interaction are also needed.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

617

COPD gene list

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of COPD 2012:7

Integrative genomic approaches
More studies are being conducted using integrative genomic 

approaches in order to identify COPD susceptibility genes. 

For example, the IREB2 gene was identified by combining 

gene expression in human lungs and genetic association 

in COPD cohorts.47 In this study, lung specimens were 

obtained from patients undergoing lung nodule resection, 

and gene expression was compared between 15 COPD and 

18 non-COPD patients using whole-genome gene-expression 

arrays. A total of 889 SNPs found in the 62 genomic regions 

containing genes differentially expressed between patients 

with or without COPD were tested for association with 

COPD and lung function. Seventy-one SNPs nominally 

associated (P # 0.05) with COPD in the NETT-NAS 

study were followed up for replication in the EOCOPD study. 

A gene-based replication was then completed to confirm 

genetic association between genetic variants in the IREB2 

gene and lung function. Overall, the IREB2 gene was shown 

to be upregulated in lung specimens of COPD patients and 

to contain genetic variants associated with COPD. Gene 

expression in a larger number of lung specimens will be 

required to test whether COPD-associated SNPs in the IREB2 

gene influence the expression of its gene product.

Although Table 2 shows the major susceptibility loci 

identified by GWA studies, many additional loci were 

borderline significant in these studies. Many true positives 

are likely to be missed by this approach owing to the stringent 

threshold used to control for false-discovery rates. Different 

weighting methods and SNP-prioritization strategies are 

currently used to find true-positive signals from previous 

GWA studies. For example, the FGF7 gene was recently 

identified as a COPD susceptibility locus by weighting GWA 

analysis on regions of conserved homozygosity haplotype 

in subjects affected with COPD compared to unaffected 

subjects.48 As mentioned previously,49 further studies 

reanalyzing genome-wide SNP datasets with weighting 

methods based on function annotations (eg, coding variants or 

regions) or prior knowledge (eg, candidate genes or genome-

wide linkage studies) will be required. Similarly, ongoing 

lung expression quantitative trait loci (eQTLs) mapping 

data36,46 are likely to leverage the impact of previous GWA 

studies on COPD by providing a list of SNPs that regulate 

gene expression in relevant tissues. SNPs associated with 

gene expression will provide crucial functional information 

to understand the molecular changes introduced by the 

susceptibility DNA variants. The identification of SNPs 

associated with both disease traits and quantitative transcript 

levels of one or more genes in relevant tissues will highlight 

the most likely causal gene within the susceptibility loci and 

the functional SNPs that are prime candidates to be directly 

involved in the pathogenesis of COPD.

Conclusion
Elucidating the genetic component of COPD and lung 

function turned out to be a challenging task. Major resources 

and collaborative efforts will be required to achieve our 

goal. In this review, the author provides an updated list of 

COPD genes and a summary of GWAS results conducted 

during the last few years. It is hoped that the gene list can 

be used by investigators to replicate or refute susceptibility 

genes of COPD. As eluded above, this gene list can also be 

used to reanalyze GWA data by prioritizing genes previously 

associated with COPD or related phenotypes or enter into 

more global gene network and causality analyses. Owing to the 

challenge faced by the genetic community, large collections 

of patients well characterized for COPD phenotypes are 

ongoing to identify the genuine COPD genes. A lumping 

and splitting strategy is an old idea in the field of genetics of 

complex traits50 that will certainly be essential in the field of 

COPD. Pooling resources (ie, lumping) is required to obtain 

proper sample sizes, but is likely to increase heterogeneity. 

These larger sample sizes, however, provide the opportunity 

to subdivide (ie, splitting) the pooled data into more 

homogeneous subgroups where the molecular defects are 

more likely to be similar. Accordingly, not only the genetic 

community but the entire spectrum of experts managing 

and treating patients with COPD will be required to provide 

samples, precise phenotypes, and expertise to search for the 

underlying genetic mechanisms. In parallel, complementary 

multidimensional genomic data in relevant tissues (eg, lung 

eQTLs) will be crucial to uncover causal genes and genetic 

variants that contribute to COPD and to discover new 

molecular targets for prevention, diagnosis, and treatment.
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Table S1 Genes tested but showing lack of association with chronic obstructive pulmonary disease

Symbol Name Chromosome References

Single studies Meta-analyses

Positive Negative Positive Negative

AGER Advanced glycosylation end  
product-specific receptor

6 1,2

CASP8 Caspase 8, apoptosis-related cysteine peptidase 2 3
CCL17 (TARC) Chemokine (C-C motif) ligand 17 16 4
CCL2 Chemokine (C-C motif) ligand 2 17 5
CFLAR CASP8 and FADD-like apoptosis regulator 2 3
COL6A5 Collagen, type VI, alpha 5 3 6
CXADR Coxsackie virus and adenovirus receptor 21 7
CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 2 8,9
CYP2D6 Cytochrome P450, family 2, subfamily D, polypeptide 6 22 10
DCN Decorin 12 11
DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 19 12
EDNRA Endothelin receptor type A 4 13
FGA Fibrinogen alpha chain 4 14
FGB Fibrinogen beta chain 4 14,15
FGG Fibrinogen gamma chain 4 14
FKBP4 FK506 binding protein 4, 59 kDa 12 12
FKBP5 FK506 binding protein 5 6 12
FLCN Folliculin 17 16
GABPA GA binding protein transcription factor,  

alpha subunit 60 kDa
21 17

GPX1 Glutathione peroxidase 1 3 18,19
GSTM3 Glutathione S-transferase mu 3 (brain) 1 20
HDAC2 Histone deacetylase 2 6 1
HDAC5 Histone deacetylase 5 17 1
HSP90AA1  
(HSPCA)

Heat shock protein 90 kDa alpha (cytosolic),  
class A member 1

14 12

HSP90AB1  
(HSPCB)

Heat shock protein 90 kDa alpha (cytosolic),  
class B member 1

6 12

HSPA1A Heat shock 70 kDa protein 1A 6 21
HSPA1B Heat shock 70 kDa protein 1B 6 21
HSPA1L Heat shock 70 kDa protein 1-like 6 21
HSPA8 Heat shock 70 kDa protein 8 11 12
IL11 Interleukin 11 19 1
IL13RA2 Interleukin 13 receptor, alpha 2 X 22
ITGB5 Integrin, beta 5 3 7
JAK3 Janus kinase 3 19 1
KCND2 Potassium voltage-gated channel,  

Shal-related subfamily, member 2
7 1

MAP3K5 Mitogen-activated protein kinase kinase kinase 5 6 1
MIR146a MicroRNA 146a 5 23
MRPL44 Mitochondrial ribosomal protein L44 2 24
ORMDL3 ORM1-like 3 (S cerevisiae) 17 25
PTGES3 Prostaglandin E synthase 3 (cytosolic) 12 12
RARRES2 Retinoic acid receptor responder (tazarotene induced) 2 7 1
SCGB1A1  
(CC16)

Secretoglobin, family 1A, member 1 (uteroglobin) 11 26

SOD1 Superoxide dismutase 1, soluble 21 18,27
TBX21 T-box 21 17 28
THSD4 Thrombospondin, type I, domain containing 4 15 2
TLR2 Toll-like receptor 2 4 29,30
TLR6 Toll-like receptor 6 4 31
TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A 12 32
TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B 1 32
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