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Background: We previously developed a bladder cancer-specific ligand (PLZ4) that can 

specifically bind to both human and dog bladder cancer cells in vitro and in vivo. We have 

also developed a micelle nanocarrier drug-delivery system. Here, we assessed whether the 

targeting micelles decorated with PLZ4 on the surface could specifically target dog bladder 

cancer cells.

Materials and methods: Micelle-building monomers (ie, telodendrimers) were synthesized 

through conjugation of polyethylene glycol with a cholic acid cluster at one end and PLZ4 at the 

other, which then self-assembled in an aqueous solution to form micelles. Dog bladder cancer 

cell lines were used for in vitro and in vivo drug delivery studies.

Results: Compared to nontargeting micelles, targeting PLZ4 micelles (23.2 ± 8.1 nm in diameter) 

loaded with the imaging agent DiD and the chemotherapeutic drug paclitaxel or daunorubicin 

were more efficient in targeted drug delivery and more effective in cell killing in vitro. PLZ4 

facilitated the uptake of micelles together with the cargo load into the target cells. We also 

developed an orthotopic invasive dog bladder cancer xenograft model in mice. In vivo studies 

with this model showed the targeting micelles were more efficient in targeted drug delivery than 

the free dye (14.3×; P , 0.01) and nontargeting micelles (1.5×; P , 0.05).

Conclusion: Targeting micelles decorated with PLZ4 can selectively target dog bladder can-

cer cells and potentially be developed as imaging and therapeutic agents in a clinical setting. 

Preclinical studies of targeting micelles can be performed in dogs with spontaneous bladder 

cancer before proceeding with studies using human patients.

Keywords: bladder urothelial carcinoma, nanoparticle, bladder cancer-specific peptide, targeted 

therapy, diagnostic imaging

Introduction
The prognosis and treatment of bladder cancer has not changed significantly over the 

last 30 years. Nanomedicine has recently been explored as a potential platform for 

developing anticancer strategies, ranging from prevention to early detection, imag-

ing/diagnosis, and therapy.1,2 Several nanotherapeutic agents such as Abraxane and 

Doxil have been approved, but their penetration ability is limited due to their rela-

tively large particle size (130 nm and 150 nm in diameter, respectively).3 To overcome 

the shortcomings of existing nanoformulations, Lou et al developed a novel micelle 

drug-delivery system.4,5 Telodendrimers, which are micelle-forming polymers, are 

composed of linear polyethylene glycol (PEG) conjugated with dendritic oligocholic 

acid (Figure 1A). Telodendrimers can self-assemble in an aqueous solution to form 

micelles that are characterized by their small size, long shelf life, and high efficiency 
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Figure 1 Characterization of targeting micelles. (A) The chemical structure of the telodendrimer. Dendritic oligomers of cholic acid are conjugated to the right ends of 
polyethylene glycol (PEG) while PLZ4 is at the left. The facial amphiphilic structure of cholic acid with the hydrophilic hydroxyl groups (red) at one side and hydrophobic 
methyl groups (blue) at the other side allows the formation of spheric micelles with PLZ4 displayed on the surface. (B) The spherical micelle structure with PLZ4 on the 
surface for targeting and the central space for loading of imaging and/or therapeutic agents. (C) Dynamic light scattering showing the size of targeting micelles (23.2 ± 8.1 nm) 
with narrow distribution. (D) Transmission electron microscopy imaging.
Note: Bar length is 50 nm.

in drug loading. PEG is biocompatible in that it has been 

extensively used in clinical settings, and cholic acid exists 

naturally in humans. Furthermore, these micelles are multi-

functional. Multiple imaging and therapeutic agents can be 

loaded and/or conjugated on the same micelles for various 

purposes. Smaller micelles (17–60 nm) also have better drug 

delivery to tumor sites compared to larger (.150 nm) ones.4 

Finally, cancer-targeting ligands can be conjugated to the 

distal end of PEG so they will be displayed on the surface of 

micelles to enhance drug delivery into the cancer cells.

We recently reported the development of PLZ4, a blad-

der cancer-targeting ligand from high throughput screening 

of combinatorial cyclic peptide libraries.6 It is the first such 

ligand that has high affinity and selectivity toward both 

human and dog urothelial cancer cell lines as well as cancer 

cells from clinical specimens.6,7 It does not bind to normal 

human or dog urothelial cells, blood cells, fibroblasts, 

human vascular endothelial cells, or other cell types. In 

vivo targeting/homing studies have shown that the binding 

of PLZ4 to bladder cancer xenografts is specific. In this 

study, we determined if PLZ4 enhances the tumor targeting 

of micelles to dog bladder cancer cells. If so, preclinical 

studies (including efficacy, pharmacology, and toxicology 

studies) can be performed in companion dog patients with 

spontaneous bladder cancer instead of the traditional but less 

 pathophysiologically-relevant mouse xenograft models.

Materials and methods
Synthesis and characterization of micelles
Both PLZ4 (amino acid sequence: cQDGRMGFc; upper-

case letters represent L-amino acids and lowercase letters 

represent unnatural D-cysteines used to cyclize and stabilize 

PLZ4) and telodendrimers were synthesized and character-

ized, including the chemical structure, purity, and cholic acid 

conjugation, as previously described (Figure 1A).4–6 In brief, 

the dendritic octamer of cholic acid was conjugated onto 

linear PEG via solution-phase condensation reactions. To 

synthesize targeting micelles in which 50% of the teloden-

drimers were conjugated to PLZ4, an aqueous-phase ‘click’ 

chemistry catalyzed by cuprous ions was used to couple 

the alkyne group on PLZ4 peptides to the azide group at 

the end of the PEG on the telodendrimer at a molar ratio 

of 1:2 (PLZ4:PEG).8 After conjugation, no free PLZ4 was 

detected, suggesting PLZ4 has been successfully conjugated 
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to the telodendrimer. The conjugation was further confirmed 

using proton nuclear magnetic resonance.1

To load daunorubicin (DNR), paclitaxel (PTX), or fluo-

rescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodica

rbocyanine (DiD) dye (Invitrogen, Carlsbad, CA), into the 

micelle, DNR/PTX/DiD (single reagent or a combination) 

and the telodendrimer (20 mg) were dissolved in chloroform 

(5 mL) in a 10-mL flask. The chloroform was removed using 

a rota-evaporator under vacuum. One mL of USP (United 

States Pharmacopeia) saline was then added into the flask. The 

mixture was vortexed and sonicated for 30 minutes at room 

temperature. The final product was analyzed for drug-loading 

capacity using high-performance liquid chromatography, 

micelle size and dispersion with a dynamic light scattering 

particle sizer, and transmission electron microscopy imag-

ing. It was filtered through a filter (0.22 µm) for sterilization 

and stored at 4°C for further studies. The maximal loading 

capacity was 5 mg/mL for DNR and 5–10 mg/mL for PTX in 

20 mg/mL of the telodendrimer. For the experiments presented 

here, the final concentration of DiD was 0.5 mg/mL, and the 

final concentrations of DNR and PTX were 1 mg/mL, with 

a telodendrimer concentration of 20 mg/mL. To synthesize 

targeting micelles, PLZ4-conjugated telodendrimers were 

used. After self-assembly, the more hydrophilic PLZ4 was 

displayed on the surface of the micelles for targeting.

Cell lines and culture condition
Three established and well-characterized dog invasive blad-

der urothelial cancer cell lines, including K9TCC, K9TCC-

Pu-In, and K9TCC-Pu-Axc, were used for this study.9 These 

cell lines were originally developed and directly provided by 

Dr Deborah Knapp of Purdue University in July, 2009. Cells 

were maintained in Dulbecco’s modified Eagle’s medium/

F12 (1:1) (Invitrogen) supplied with 10% fetal bovine serum 

and antibiotics. Normal primary dog urothelial cells were 

harvested from dogs euthanized for other unrelated reasons. 

A very thin layer of urothelial cells was scraped and washed 

with phosphate-buffered solution. The cells were then 

directly cultured on eight-chamber slides in the complete 

medium for 1–2 days before the experiment.

Fluorescence microscopy
To visualize the distribution of micelles in the cells, K9TCC-

Pu-In cells and normal dog urothelial cells were cultured in the 

eight-well chamber slides (BD Falcon, Franklin Lakes, NJ).  

The cells were then incubated with nontargeting micelles or 

targeting micelles with PLZ4 at 0.5 mg/mL telodendrimers 

in the complete medium. After incubation, the cells were 

washed to remove unbound micelles and covered with 

4′,6-diamidino-2-phenylindole (DAPI)-containing solution 

for nuclear staining (Sigma-Aldrich, St Louis, MO). The 

slides were then examined under an inverted fluorescence 

microscope. For high resolution cell imaging, K9TCC-Pu-

Axc cells were cultured on a glass-bottom culture dish (Mat-

Tek Corp, Ashland, MA) overnight. Micelles were diluted 

to 0.5 mg/mL telodendrimers in the complete medium and 

were incubated with micelles for 1 hour. After being lightly 

washed three times and fixed with 10% formalin for 20 min-

utes, the cells were stained with DAPI and examined. High-

resolution three-dimensional microscopy was performed 

using the DeltaVision system (Applied Precision, Issaquah, 

WA). Tomography images were taken and then deconvolved 

to determine the subcellular location of micelles with red 

fluorescence from DiD using a known optical transfer 

function and DeltaVision software algorithms, according to 

the manufacturer’s protocol.

Cell viability assay
K9TCC-Pu-In cells were seeded into 96-well plates at the 

final concentration of 10,000 cells per well in 100 µL of 

complete medium. The cells were incubated with various 

concentrations of nontargeting or targeting micelles loaded 

with DNR for 2 hours before being washed three times with 

phosphate-buffered solution and cultured with 100 µL of 

fresh complete medium for 72 hours at 37°C. The 2-hour 

incubation was used to mimic the in vivo clearance of 

micelles. Based on our pilot study, dog urothelial cancer 

cell lines appeared to be more resistant to PTX compared to 

human bladder cancer cell line 5637. Therefore, this study 

was performed with micelles loaded with DNR instead of 

PTX. Cell viability was assessed using the WST-8 prolifera-

tion assay (Cayman Chemical, Ann Arbor, MI) according to 

the manufacturer’s protocol.

Generation and characterization  
of an orthotopic mouse model  
of dog bladder cancer
All animal experiments were performed in compliance with 

institutional guidelines and according to protocols (No. 12988 

and No. 16065) approved by the Animal Use and Care 

 Administrative Advisory Committee of the University of 

California (Davis, CA). Thirteen 8-week-old male nonobese 

diabetic severe combined immunodeficient gamma mice were 

purchased from Jackson Laboratory (Indianapolis, IN) and 

used to generate the orthotopic model. The mice were anes-

thetized using an intraperitoneal injection of pentobarbital or 
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by isoflurane inhalation. The lower abdomen was prepared for 

surgery by proper scrubbing with an ethanol wipe. A small 

incision was performed at the bladder region and the bladder 

was isolated. K9TCC-Pu-In (105 cells in 10 µL phosphate-

buffered solution) was injected into the bladder wall with a 26 

G needle. A white focal spot stood for a successful injection 

procedure. After the injection, the abdomen was closed with 

the appropriate number of interrupted sutures, and the mice 

were monitored daily for wound healing, potential complica-

tions, body weight change, and tumor growth.

For histologic examination, the mice were sacrificed at 

days 1, 7, and 20 after injection. Whole bladders were har-

vested and fixed with 10% formalin. Tissue embedding and 

hematoxylin and eosin staining were done at the Veterinary 

Teaching Animal Hospital. Regarding the cytological evalua-

tion, the urine sediment smears and touch preparation smears 

were made and slides were stained with Hema3 (Fisher, 

Houston, TX). Imaging was performed using Metamorph 

microscopy automation and imaging analysis software 

(version 2.0; Molecular Devices, Silicon Valley, CA).

In vivo and ex vivo imaging of orthotopic 
xenograft dog bladder cancer in mice
The mice were injected with 100 µL of free DiD (0.5 mg/mL), 

nontargeting, or targeting micelles with PLZ4 on the surface, 

both loaded with DiD at 0.5 mg per 10 mg telodendrimer per 

mL with a total of 0.05 mg DiD per mouse. Three mice for 

each group in two independent experiments were used. The 

mice were put under anesthesia and the bladders were isolated 

outside the abdomen for in vivo imaging. Whole-body imag-

ing was performed and analyzed at 0, 2, 4, 8, and 24 hours 

using a Kodak multimodal-imaging system IS2000MM 

(Kodak, Rochester, NY). After the imaging, the mice were 

immediately euthanized. Whole bladders with tumors and 

other organs were harvested for ex vivo imaging. Imagines 

were further analyzed using IS2000MM software (Kodak).

Statistics
The experiments were repeated at least in triplicate. The mean 

values and standard deviations were determined for each set 

of experiments. For the determination of micelle delivery 

to tumor sites, we calculated mean fluorescence intensities 

of the tumor area and of the normal tissue area by means of 

the region-of-interest function using Kodak Image Analysis 

Software (Kodak). We then plotted a pseudocolored scale 

based on the semiquantitative information from near-infrared 

fluorescence images by integrating fluorescence intensities 

from equal areas within tumor and normal tissue regions. 

Student’s t-tests were used for statistics. A P value of less 

than 0.05 was considered significant.

Results
Characterization of drug-loaded targeting 
micelles decorated with PLZ4
We synthesized two types of micelles: the nontargeting 

micelles that did not have PLZ4 on the surface and target-

ing micelles that were decorated with PLZ4 on the surface 

( Figure 1B). Both types of micelles were loaded with 

the near-infrared imaging agent DiD and the therapeutic 

agent PTX or DNR. The median diameter of the micelles, 

with or without PLZ4 on the surface, was approximately 

23.2 ± 8.1 nm when loaded with PTX and DiD (Figure 1C). 

The spherical morphology and size of the micelles were con-

firmed by electronic microscopy (Figure 1D). The maximal 

drug loading capacity was 5 mg/mL for DNR and 10 mg/mL 

for PTX in 20 mg/mL of telodendrimer. Considering the 

doses of DNR and PTX at 45–60 mg/m2 and 175 mg/m2 in 

human patients, respectively, the anticipated blood level 

of the telodendrimer will be well below the toxic level of 

1 mg/mL observed in cell culture.5

Targeting micelles effectively delivered  
the cargo load into dog bladder  
cancer cells
To evaluate delivery efficiency, K9TCC-Pu-In (Figure 2A), 

K9TCC (Figure 2B), and K9TCC-Pu-Axc (Figure 2C) cells 

were incubated with micelles for 1 hour before washing. 

Both nontargeting and targeting micelles were able to deliver 

DiD to all these three cell lines in a dose-dependent manner. 

However, targeting micelles coated with PLZ4 exhibited 

significantly higher DiD. To further validate this finding, 

these cells were examined under a fluorescence microscope. 

K9TCC-Pu-In cells were treated with both nontargeting 

or targeting micelles loaded with DiD (50 µg/mL DiD in 

2 mg/mL telodendrimer). K9TCC-Pu-In took up more target-

ing micelles than nontargeting micelles. The uptake could 

be observed as early as 15 minutes after incubation (data not 

shown). No significant uptake of micelles by normal primary 

dog bladder urothelial cells was observed (Figure 3A). This 

data indicated the ability of dog bladder cancer cells to take 

up micelles even after a short period of incubation, and PLZ4 

on the micelle surface further improved the targeting and 

cell uptake of micelles. Furthermore, the targeting micelles 

could specifically deliver the drug load to cancer cells, but 

not to normal urothelial cells.
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Figure 2 More efficient delivery of targeting micelles into bladder cancer cell lines. (A) K9TCC-Pu-In, (B) K9TCC, and (C) K9TCC-Pu-Axc cells were incubated with various 
concentrations of nontargeting (NM) or targeting (PLZ4-NM) micelles, both loaded with DiD, for 1 hour before washing and analysis using an enzyme-linked immunosorbent 
assay reader.
Note: Targeting micelles were more efficient in drug delivery than nontargeting micelles in a dose-dependent pattern (*P , 0.05).
Abbreviation: DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine.

To further determine whether PLZ4 functioned to 

attach micelles to the target cells or to induce the uptake of 

micelles, high-resolution tomography was performed using 

the DeltaVision system (Applied Precision) after cells were 

incubated with nontargeting or targeting micelles, both 

simultaneously loaded with DiD and PTX. After incuba-

tion for 1 hour, K9TCC-Pu-In cells were washed, fixed, 

and covered with DAPI-containing mounting medium for 

nuclear staining. As shown in Figure 3B, little uptake of DiD 

was observed when cells were incubated with nontargeting 

micelles. In contrast, when targeting micelles were incubated 

with cells, large amounts of red fluorescence were observed 

not only on cell surface and perinuclear areas, but also inside 

the nucleus as it overlapped with the DAPI (blue) nuclear 

s taining (Figure 3B, upper panel). These results were con-

sistent with several other reports showing preferential drug 

delivery with targeting nanoparticles.10,11 These results also 

support the notion that PLZ4 enhances nanoparticle attach-

ment to the cell surface and subsequent cell uptake.

PLZ4 enhanced the anticancer  
efficacy of drug-loaded micelles
To determine if the drug-loaded micelle formulation further 

increased antitumor efficacy, K9TCC-Pu-In cells were exposed 

to different concentrations of DNR-loaded nontargeting or 

targeting micelles. Consistent with our previous findings, empty 

micelles did not affect cell viability at any concentrations tested. 

DNR killed cancer cells in a dose-dependent manner, regardless 

of whether in the free form, nontargeting, or targeting micelle 

formulation. However, the targeting micelle formulation of 

DNR was more effective in cell killing than the free DNR or 

DNR loaded in the nontargeting micelles (Figure 4).

Establishment and characterization  
of an orthotopic dog bladder cancer  
xenograft model in mice
An orthotopic xenograft model would be essential to validate 

our micelle drug delivery system, as the location provides a 
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blood vessel system and supporting tissues that mirror the 

native cancer microenvironment. Here, we developed the 

orthotopic dog invasive bladder cancer xenograft model in 

mice through direct injection of K9TCC-Pu-In cells into the 

bladder wall. The mice tolerated the procedure well, with 

no significant complications. The tumor mass in the bladder 

became palpable approximately 2–3 weeks after injection. 

To further evaluate the growth of the orthotopic xenografts in 

the mouse bladder in detail, whole bladders were harvested 

at days 1, 7, and 20 after injection. Overall, the tumor uptake 

rate was 100% (13/13) based on pathological e xamination 

and tumor size ranged around 0.3–0.6 cm in diameter 

on day 20. Based on the histopathologic examination, tumor 

cells were mainly accumulated and limited in the lamina 

propria of the bladder on day 1 (Figure 5A and D). The 

cells were loosely clumped without organization or archi-

tecture. Rare cells were undergoing apoptosis ( Figure 5D). 

On day 7, the mass continuously expanded in the lamina 

propria and invaded the superficial layer of the muscularis 

propria.  Several nests of epithelial cancer cells with trabe-

cular  patterns s upported by abundant fibrovascular con-

nective tissues were seen (Figure 5B). The urothelial layer 

remained intact, and  inflammatory cells infiltrated the mass, 

especially in the peripheral areas (Figure 5E). On day 20 

(Figure 5C and F), the mass expanded in the lamina propria 

and extended into the bladder cavity, resulting in extreme 

limitation of urine storage ability. Tumor cells also further 

invaded through the full layer of the muscularis propria 

and into the surrounding fat tissues. The mitotic index was 

high. Rare areas of urothelium cells were necrotic and focal 

hemorrhage was noted.

Once the tumor cells penetrated through the urothelial 

layer, hematuria, and an increased number of nucleated 

cells in the urine were noted after a urine sediment smear 

evaluation. Figure 5G shows a small cluster of epithelial cells 

in the urine in a bloody background on day 20. Those atypi-

cal cells exhibited moderate anisocytosis and anisokaryosis, 

with round to irregular nuclei, stippled chromatin, multiple 
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Figure 3 Cell uptake of nontargeting and targeting micelles by dog bladder cancer cells. K9TCC-Pu-In cells were incubated with nontargeting (NM-DiD) or targeting 
micelles (PLZ4-NM-DiD), both loaded with DiD/PTX, for 1 hour before washing and imaging. (A) Comparison of cell uptake between nontargeting and targeting micelles 
with K9TCC-Pu-In (left) and normal dog primary urothelial cells (right) showing little retention of micelles with normal urothelial cells. The experiments were repeated three 
times with the cell line and twice with primary urothelial cells (100×). (B) High-resolution tomography showed the difference in the cell uptake of targeting (PLZ4-NM-DiD, 
upper panel) and nontargeting (NM-DiD, lower panel) micelles in K9TCC-Pu-Axc cells. 4′,6-diamidino-2-phenylindole (blue, nuclear staining) and white light phase images 
were presented to show nucleus and cell morphology, respectively.
Notes: The white arrow points to the attachment of targeting micelles to the cell membrane. Bar = 15 µm.
Abbreviations: DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine; PTX, paclitaxel.
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nucleoli, and dark basophilic cytoplasm. Rare binucleated 

and multinucleated cells were seen. These cells resembled 

cells found on the bladder mass touch preparation slides and 

were diagnosed as cancer cells (Figure 5I). Rare cells con-

tained magenta amorphous materials in the cytoplasm and 

were interpreted as a secretory product (a common feature 

of urothelial cancer cytology in dogs).

In vivo micelle delivery to orthotopic  
dog bladder cancer xenografts in mice
After successful establishment of the orthotopic xenograft 

model, we determined if nontargeting and targeting micelles, 

both loaded with DiD and PTX, could have accumulated 

within the cancer xenografts. Both micelles were able to 

efficiently accumulate at the tumor site compared to the 

free DiD control group in vivo and ex vivo, suggesting 

that the so-called enhanced permeability and retention 

(EPR) mechanism played an important role in the delivery 

of micelles (Figure 6A–C). The targeting micelle group 

showed notably higher fluorescence signals at tumor sites 

compared to the free dye (14.3×; P , 0.01) or nontargeting 

group (1.5×; P , 0.05; Figure 6A–C). After normalizing 

tumor fluorescence with fluorescence in the liver, lungs, 

and muscles (Figure 6D), the results were generally consis-

tent with the in vivo imaging findings. In mice that did not 

undergo  orthotopic bladder cancer xenografting, no signal in 

the bladder was seen (data not shown), suggesting that only 

a limited number of DiD-loaded nontargeting or targeting 

micelles accumulated within normal bladder mucosa.

To further evaluate the distribution of micelles, fresh 

frozen slides were prepared and stained for CD31, a marker 

for vascular endothelial cells (Supplementary material 1). 

No signals were observed in the group treated with DiD. In 

contrast, both groups treated with nontargeting or targeting 

micelles exhibited patches of fluorescence signals with vari-

able sizes. Xenografts from the mice treated with targeting 

micelles appeared to have higher signals than the nontarget-

ing group. This finding was consistent with the in vivo and 

ex vivo imaging results stated above. In addition, blood ves-

sels (CD31 positive) were scattered throughout the tumors, 

mainly in the fibrovascular-supporting tissues in all three 

groups, indicating that the difference was not from the vari-

ance in blood vessel distribution. The distribution of DiD 

was not homogenous inside the tumor, as evidenced by the 

variably sized signal patches, suggesting that delivery of 

DiD to tumor sites was not secondary to blood circulation 

and simple diffusion.

Discussion
This is the first report on the development of bladder cancer-

targeting nanoparticles that can potentially improve the 

imaging detection and treatment of bladder cancer. This 

project combined a bladder cancer-targeting ligand, PLZ4, 

with a novel micelle drug delivery system. When decorated 

with PLZ4 on the surface, targeting micelles could not only 

adhere to the dog bladder cancer cell surface, but were also 

taken up into the target cancer cells. In vivo studies showed 

that the targeting micelles were more efficient in delivering 

the therapeutic and imaging agents into the orthotopic blad-

der cancer xenografts. Given the great similarities between 

human and dog bladder cancers, this will allow all of the 

preclinical studies (to human patients) to be performed in 

dogs with spontaneous bladder cancer before clinical trials 

in human patients.

The unique advantage of the micelle system is that 

 multiple imaging and therapeutic agents can be conjugated to 

telodendrimers or loaded in micelles (Figure 1A). When dec-

orated with PLZ4, these imaging agents can be specifically 

delivered to the cancer sites. Targeted delivery of imaging 

agents has already been used in clinical settings. For example, 

an octreoscan combines the diethylene triamene penta-acetate 

conjugate of octreotide with the imaging agent radioisotope 

Indium-111, and has been used for imaging detection of 
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Figure 4 Cell cytotoxicity assay of drug-loaded micelles on dog bladder cancer. 
K9TCC-Pu-In cells were seeded and cultured overnight before being treated 
with various concentrations of nontargeting or targeting micelles loaded with 
daunorubicin (DNR) for two hours at 37°C. Cells treated with empty micelles and 
free DNR under the same conditions served as controls. Cells were then washed 
and cultured with complete culture medium for 72 hours and the cell viability was 
evaluated using the WST-8 assay according to the manufacturer’s protocol. The 
absorbance was detected using an enzyme-linked immunosorbent assay reader. This 
experiment was performed in triplicate and repeated three times.
Notes: *P = 0.02 for free DNR versus PLZ4 micelles and 0.04 for free DNR versus 
nontargeting micelles. **P = 0.001 for free DNR versus PLZ4 micelles; 0.01 for 
free DNR versus nontargeting micelles; and 0.04 for nontargeting versus targeting 
micelles.
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neuroendocrine tumors bearing somatostatin receptors.12 We 

have previously shown that PLZ4 directly conjugated to a 

near-infrared fluorescent dye Cy5.5 concentrated in the tumor 

xenograft sites in mouse models developed from human clini-

cal bladder cancer specimens and from dog bladder cancer 

cell lines.6,7 No significant accumulation in other organs, 

including the native bladder, was observed except that both 

PLZ4-Cy5.5 and the control dye Cy5.5 also concentrated in 

the kidneys, possibly secondary to nonspecific renal trapping. 

Here, we showed that targeting PLZ4 micelles loaded with 

the imaging agent DiD also concentrated in the bladder in 

the tumor xenografts (Figure 6). However, we did see some 

uptake of micelles in the liver and lungs. However, the fluo-

rescence in the tumor xenografts was much stronger. It has 

also been shown that the nonspecific uptake of micelles by 

normal organs could be significantly reduced using micelles 

with a slight negative charge on the surface.13 Together, 

these data suggest that targeting micelles can potentially be 

developed as a more efficient, noninvasive, real-time imag-

ing diagnostic tool.

The targeting micelle decorated with PLZ4 can also be 

used for therapeutic purposes. Both nontargeting and targeting 

micelles concentrated within tumor xenografts, suggesting 

the enhanced EPR of nanoparticles.14 However, conjugation 

of PLZ4 on the surface of micelles not only contributed to 

the attachment of micelles to target cancer cell surfaces, but 

also induced the uptake of micelles by cancer cells (Figure 3). 

Furthermore, PLZ4 enhanced targeted delivery of micelles to 

the orthotopic bladder cancer xenografts (Figure 6).

This micelle drug delivery system can potentially 

improve the treatment outcomes of bladder cancer through 

four possible mechanisms. First, micelles can enhance drug 

delivery to the tumor sites through the EPR effect.14 EPR 

is achieved at the “leaky” neovasculature secondary to the 

disorganized and poorly aligned vascular endothelial cells 

at the tumor sites.15 We have shown that the EPR effect was 

size- dependent. More EPR effects were observed with small 

micelles (20–60 nm) compared to nanoparticles of approxi-

mately 150 nm.4 Compared to the FDA-approved Abraxane 

and Doxil (130 nm and 150 nm in diameter, respectively), 

our drug-loaded micelles are typically small (23.2 ± 8.1 nm, 

in this case. See Figure 1).

Second, tumor-targeting ligands can further enhance 

the antitumor activity of nanoparticles.16 To enhance the 

Day 1 Day 7

A B C

D E

G H

F

Day 20

Figure 5 Establishment of dog orthotopic bladder cancer xenograft model in mice. Whole bladders were harvested on days 1 (A and D), 7 (B and E), and 20 (C and F) 
after injection of cancer cells for hematoxylin and eosin staining and examination. Blue arrows show an intact normal urothelial layer lining the bladder cavity on day 1 and 
replacement of the normal urothelial layer and bladder cavity by xenograft on day 20. Blue stars show the injection (day 1) and expansion of cancer cells (day 7) at the lamina 
propria and invasion into the muscle layer on day 20. (A, B and C: 4×; D, E, and F: 40×). (G) urine sediment cytology evaluation on day 20 (40×). (H) The touch preparation 
smear from the solid tumor in the bladder at day 20 (40×).
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antitumor activity of the nanoformulation, various targeting 

ligands have been studied, such as arginine-glycine-aspartic 

acid-containing peptides,17 transferrin,18,19 antibody or single-

chain variable fragments,20 and several others. These cancer-

targeting ligands could potentially enhance the antitumor 

efficacy of the nanoparticles by actively seeking and deliv-

ering nanoparticles to the cancer sites,21,22 or by introducing 

the nanoparticles into cancer cells.23–25 Here, we showed that 

PLZ4-decorated micelles possess both features of targeting 

nanoparticles (Figures 3 and 6).

Third, a synergistic effect can be achieved by load-

ing multiple anticancer agents in the same micelles. 

Furthermore, a radioisotope can be conjugated to achieve 

concurrent chemoradiation, and imaging probes can be loaded 

for the in vivo real-time monitoring of drug delivery. To date, 

more than a dozen drugs have been successfully loaded into 

micelles. In this project, we loaded the micelles with both thera-

peutic PTX and optical imaging DiD. In addition, other bio-

logic compounds, such as DNA and RNA, can potentially be 

loaded. We found that small noncoding regulatory microRNA 

might be involved in the chemoresistance of bladder cancer.26 

Therefore, the simultaneous delivery of therapeutic agents 

and chemotherapy sensitizers into cancer cells may be able to 

improve the treatment outcomes of bladder cancer.
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Figure 6 In vivo and ex vivo imaging on an orthotopic dog invasive bladder cancer model in mice. (A) In vivo imaging of mice 24 hours after receiving free DiD dye or 
nontargeting (NM-DiD) or targeting (PLZ4-NM-DiD) micelles loaded with PTX/DiD. Mice were covered to protect bladder xenografts and to prevent evaporation of vital 
organs. (B) Ex vivo imaging of the tumor/bladder and other major organs 24 hours after injection. The color bar represents the relative fluorescence strength. (C) The 
average fluorescence strength of whole tumor/bladder for free DiD, NM-DiD, and PLZ4-NM-DiD was calculated from three different mice (*P , 0.05). (D) To eliminate 
other variations, the fluorescence signals of xenografts were normalized with the signals of the liver, lungs, and muscles of the same mice (*P , 0.05).
Abbreviations: DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicar bocyanine; PTX, paclitaxel.
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Fourth, the formulation of chemotherapeutic drugs in 

micelles can decrease toxicity. This is especially true with 

PTX as it is not very water soluble and needs a special solvent 

composed of Cremophor® EL (polyoxyethylated castor oil) 

and dehydrated alcohol. This solvent can cause severe aller-

gic reactions and requires corticosteroid and antihistamine 

premedications. We have previously found that PTX in the 

micelle formulation at three times the therapeutic dose had 

a similar toxicity to the parental PTX in mouse models, but 

with vastly superior therapeutic effects.4

The dog orthotopic xenograft model developed for this 

study closely resembles human invasive bladder cancer 

stage T2 (invading the muscularis propria) and stage T3 

(extending to tissue outside the bladder) and thus serves as a 

great model for both diagnostic imaging and targeted therapy 

for this disease. Several other bladder cancer models have 

been developed. However, those models resemble superficial 

bladder cancer.27,28

Our findings suggest that PLZ4 micelles can potentially 

be developed for diagnostic and therapeutic applications in 

dog bladder urothelial carcinoma. Dog bladder cancer is a 

clinical challenge in terms of early diagnosis and treatment. 

It is the most common bladder cancer in dogs and accounts 

for over 85% of urinary tract neoplasms.29 Current treat-

ment has not been very successful due to the nature of 

cancer invasiveness, high metastasis rates (37%–50% at 

diagnosis), and poor responses to chemotherapy.30,31 Even 

with a multimodal combination of chemotherapy, surgery, 

and radiotherapy, the prognosis is poor. Therefore, a better 

and more specific targeting carrier system may be helpful 

for disease management.

In summary, we have presented a novel multifunctional 

targeting micelle delivery system that can potentially be 

developed for imaging and therapeutic applications in dog 

bladder cancer. Considering the great similarity between 

dog and human bladder cancer, and that PLZ4 also binds to 

human bladder cancer cells, the PLZ4 micelle system has 

the potential for human applications. Based on this study, a 

Phase I clinical trial is currently being developed to deter-

mine the efficacy and toxicity of paclitaxel-loaded targeting 

micelles in dog patients with spontaneous bladder cancer.

Acknowledgments
We would like to thank Dr Deborah Knapp at Purdue University 

for providing the dog bladder cancer cell lines for this study, 

and Dr Lane and Dr Yao for their kindness in sharing the 

microscopic digital imaging system for the in vitro study and 

the cryosection that was performed at the UC Davis Children’s 

Hospital. Special thanks go to Dr Kai Xiao and Dr Yen-Ju 

Wang for their comments about and technical assistance with 

the experiments. This study was supported by the VA Career 

Development Award 2 (PI: Pan) NIH/NCI (R01CA115483 and 

R01CA140449) and NIH/NIBIB (R01EB012569) (PI: Lam).

Disclosure
The authors report no conflicts of interest in this work.

References
 1. He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent 

nanoprobes for cancer molecular imaging: status and challenges. Trends 
Mol Med. 2010;16:574–583.

 2. Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer 
detection and improved treatment: current perspective and future 
promise. Pharmacol Ther. 2010;128:324–335.

 3. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling 
factors. Crit Rev Ther Drug Carrier Syst. 1987;3:123–193.

 4. Luo J, Xiao K, Li Y, et al. Well-defined, size-tunable, multifunctional 
micelles for efficient paclitaxel delivery for cancer treatment. Bioconjug 
Chem. 2010;21:1216–1224.

 5. Xiao K, Luo J, Fowler WL, et al. A self-assembling nanoparticle for  
paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30:6006–6016.

 6. Zhang H, Aina OH, Lam KS, et al. Identification of a bladder cancer-
specific ligand using a combinatorial chemistry approach. Urol Oncol. 
September 29, 2012. [Epub ahead of print.]

 7. Lin TY, Zhang H, Wang S, et al. Targeting canine bladder transitional 
cell carcinoma with a human bladder cancer-specific ligand. Mol 
 Cancer. 2011;10:9.

 8. Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on 
solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 
1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 
2002;67:3057–3064.

 9. Dhawan D, Ramos-Vara JA, Stewart JC, Zheng R, Knapp DW. 
Canine invasive transitional cell carcinoma cell lines: in vitro tools to 
complement a relevant animal model of invasive urinary bladder cancer. 
Urol Oncol. 2009;27:284–292.

 10. Schiller JH, Harrington D, Belani CP, et al. Comparison of four 
chemotherapy regimens for advanced non-small-cell lung cancer. 
N Engl J Med. 2002;346:92–98.

 11. Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv 
Rev. 2004;56:1127–1141.

 12. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging 
and therapy. J Nucl Med. 2000;41:1704–1713.

 13. Xiao K, Li Y, Luo J, et al. The effect of surface charge on in vivo 
biodistribution of PEG-oligocholic acid based micellar nanoparticles. 
Biomaterials. 2011;32:3435–3446.

 14. Matsumura Y, Maeda H. A new concept for macromolecular 
therapeutics in cancer chemotherapy: mechanism of tumoritropic 
accumulation of proteins and the antitumor agent smancs. Cancer Res. 
1986;46:6387–6392.

 15. Modi S, Prakash Jain J, Domb AJ, Kumar N. Exploiting EPR in 
polymer drug conjugate delivery for tumor targeting. Curr Pharm Des. 
2006;12:4785–4796.

 16. Kim K, Kim JH, Park H, et al. Tumor-homing multifunctional 
nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug deliv-
ery, and therapeutic monitoring. J Control Release. 2010;146:219–227.

 17. Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide 
ligands-design of new molecular conjugates for imaging and therapy 
of cancers. Anticancer Agents Med Chem. 2007;7:552–558.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2802

Lin et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

 18. Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-liposome-
mediated systemic p53 gene therapy in combination with radiation 
results in regression of human head and neck cancer xenografts. Hum 
Gene Ther. 1999;10:2941–2952.

 19. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The 
transferrin receptor part I: Biology and targeting with cytotoxic antibodies 
for the treatment of cancer. Clin Immunol. 2006;121:144–158.

 20. Xu L, Tang WH, Huang CC, et al. Systemic p53 gene therapy of cancer 
with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol 
Med. 2001;7:723–734.

 21. Wu AM, Yazaki PJ, Tsai S, et al. High-resolution microPET imaging 
of carcinoembryonic antigen-positive xenografts by using a copper-
64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A. 
2000;97:8495–8500.

 22. Yang L, Peng XH, Wang YA, et al. Receptor-targeted nanoparticles 
for in vivo imaging of breast cancer. Clin Cancer Res. 2009;15: 
4722–4732.

 23. Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U. Antitumor 
activity of an epithelial cell adhesion molecule targeted nanovesicular 
drug delivery system. Mol Cancer Ther. 2007;6:3019–3027.

 24. Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-
circulating lipidic nanoparticles does not increase tumor localization 
but does increase internalization in animal models. Cancer Res. 
2006;66:6732–6740.

 25. Pun SH, Tack F, Bellocq NC, et al. Targeted delivery of RNA-cleaving 
DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, 
cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–650.

 26. Vinall RL, Zripoll A, Wang S, Pan CX, Devere White RW. MiR-34a 
chemo-sensitizes bladder cancer cells to cisplatin treatment regardless 
of P53-Rb pathway status. Int J Cancer. June 23, 2011. [Epub ahead 
of print.]

 27. Tanaka M, Gee JR, De La Cerda J, et al. Noninvasive detection of 
bladder cancer in an orthotopic murine model with green fluorescence 
protein cytology. J Urol. 2003;170:975–978.

 28. Watanabe T, Shinohara N, Sazawa A, et al. An improved intravesical 
model using human bladder cancer cell lines to optimize gene and other 
therapies. Cancer Gene Ther. 2000;7:1575–1580.

 29. Norris AM, Laing EJ, Valli VE, et al. Canine bladder and urethral 
tumors: a retrospective study of 115 cases (1980–1985). J Vet Intern 
Med. 1992;6:145–153.

 30. Mutsaers AJ, Widmer WR, Knapp DW. Canine transitional cell 
carcinoma. J Vet Intern Med. 2003;17:136–144.

 31. Deborah WK, Nita WG, Dennis BD, Patty LB, Tsang LL, Lawrence TG.  
Naturally-occurring canine transitional cell carcinoma of the urinary 
bladder A relevant model of human invasive bladder cancer. Urol 
Oncol. 2000;5:47–59.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2803

Targeting nanotherapeutics against bladder cancer

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2012:7

P
L

Z
4-

N
M

-D
iD

N
M

-D
iD

D
iD

DiD DAPI CD31 Merge
 

Figure S1 Intratumoral distribution of micelles. After ex vivo imaging of tumor xenografts, cryosections (10 µm thick) were obtained and the samples were fixed with 
10% formalin for 10 minutes at room temperature. After 30 minutes of blocking in 1% BSA/PBS, samples were incubated with 1:100 antiCD31 (blood vessel endothelium 
cell marker) antibody (Millipore, Billerica, MA) for 1 hour at room temperature. Goat antimouse IgG conjugated Cy3 was used as a secondary antibody for another 1 hour 
at room temperature. Before observing using the microscope, slides were mounted using DAPI-containing antifading mounting medium. The imaging was acquired using 
Metamorph Microscopy Automation and Imaging analysis software (Molecular Devices). The distribution of DiD/micelles is shown as red, while the vascular endothelial 
marker CD31 is shown as yellow and the nucleus/DAPI as blue in the xenografts from mice treated with free DiD (upper panel), nontargeting micelles (NM-DiD, middle 
panel), and PLZ4-targeting micelles (PLZ4-NM-DiD, lower panel). The very right panel shows the merged imaging.
Abbreviations: BSA/PBS, bovine serum albumin/phosphate-buffered solution; DAPI, 4′,6-diamidino-2-phenylindole; DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicar 
bocyanine.
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