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Abstract: Pathogenic agents can lead to severe clinical outcomes such as food poisoning, 

infection of open wounds, particularly in burn injuries and sepsis. Rapid detection of these 

pathogens can monitor these infections in a timely manner improving clinical outcomes. 

Conventional bacterial detection methods, such as agar plate culture or polymerase chain 

reaction, are time-consuming and dependent on complex and expensive instruments, which are 

not suitable for point-of-care (POC) settings. Therefore, there is an unmet need to develop a 

simple, rapid method for detection of pathogens such as Escherichia coli. Here, we present an 

immunobased microchip technology that can rapidly detect and quantify bacterial presence in 

various sources including physiologically relevant buffer solution (phosphate buffered saline 

[PBS]), blood, milk, and spinach. The microchip showed reliable capture of E. coli in PBS with 

an efficiency of 71.8% ± 5% at concentrations ranging from 50 to 4,000 CFUs/mL via lipopoly-

saccharide binding protein. The limits of detection of the microchip for PBS, blood, milk, and 

spinach samples were 50, 50, 50, and 500 CFUs/mL, respectively. The presented technology 

can be broadly applied to other pathogens at the POC, enabling various applications including 

surveillance of food supply and monitoring of bacteriology in patients with burn wounds.
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Introduction
Sepsis is a significant, life-threatening problem for military personnel and civilians 

alike. Clinicians typically make an initial diagnosis of infection with an intermittent 

examination observing changes in temperature, blood pressure, smell, and sight. 

Depending on the severity of the inflicted wound and infectious agent, this may cause 

multiple organ dysfunction, hypoperfusion, failure of body systems (including the 

kidneys, liver, lungs, and central nervous system), and ultimately death. For sepsis 

diagnosis, daily culture and/or molecular analysis is performed using a small volume 

of the patient’s blood; usually less than 0.1% of entire blood volume (ie, approximately 

5 mL). These detection methods are time-consuming and unreliable for identification of 

pathogens in up to 50% of septic patients. Following pathogen detection, the patient is 

treated with broad-spectrum antibiotics; this is not an ideal solution, because frequent use 

of  broad-spectrum antibiotics also stimulates development of antibiotic-resistant bacteria. 

Antibiotic-resistant bacteria are a significant problem for injured military personnel and 

military treatment facilities. Currently, the sepsis mortality rate is 30%–50% among 

civilians and is higher in patients with military conditions including burns, trauma, and 

surgery.1 Although sepsis biomarkers, inflammatory modulators, and new antibiotics 

have been identified in past sepsis research, improved identification of various targets has 
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had minimal impact on sepsis related morbidity and mortality. 

Therefore, there is a significant clinical need for new detection 

and identification technologies in this area. According to 

the Centers for Disease Control and Prevention, food-borne 

diseases cause approximately 76 million illnesses, 325,000 

hospitalizations, and 5,000 deaths in US alone each year.2 

The US Department of Agriculture showed that medical costs, 

productivity losses, and costs of premature deaths caused by 

food-borne diseases are approximately $6.9 billion per year.3 

In 2011, pathogen-based produce contamination triggered 

a global concern with the outbreak of the foodborne toxin 

‘Shiga’, which is produced by Escherichia coli (E. coli).4 

On the other hand, sepsis is the tenth leading cause of death 

in the US,5 amounting to 24,179 cases in 49 US hospitals 

over a period of 7 years.6 As reported, E. coli can contaminate 

food source7 and cause sepsis in burn patients.8,9 Thus, effective 

E. coli detection would have a positive impact.

Currently, the gold standard detection method for bacteria 

is agar plate culture. However, this method is limited by the 

culturing time and volume of sample required to determine 

the presence of pathogens (Figure 1). Due to the challenge 

of obtaining enough sample volume, agar plate cultures give 

false negative results at rates ranging from 7.2% to 21.2%.10,11 

In addition, the process is complicated by the fact that clini-

cal samples need to go through multiple post-cultural steps 

for analysis, including Giemsa staining and differentiation 

on MacConkey plates.12 The whole process takes 48 to 

72 hours.13 Although polymerase chain reaction (PCR) has 

high sensitivity and specificity,14 the need for a thermal cycler 

makes it unsuitable for point-of-care (POC) testing.15 Therein 

lies the niche for which microfluidic technologies are ideal; 

they have been employed to develop POC testing devices 

because of low manufacturing cost, reduced consumption of 

samples and reagents, and shortened assay time.15–20 However, 

existing microfluidic devices for bacterial detection, either 

based on PCR21 or enzyme-linked immunosorbent assay 

(ELISA), require multiple sample processing steps prior to 

detection.22,23 All of these methods suffer from challenges 

A

B

(1) Cell culture in an automated
blood culture system

(1) Injection of E. coli
spiked blood

(2) PBS wash

(2) Gram-staining

(3) MacConkey
agar plate

If positive

(3) Fluorescence imaging
analysis (after wash)

30 minutes

Clinical
treatment

48–72 hours

LBP-antibody coated
microfluidic device

Figure 1 Comparison of the conventional culture method and the microchip based E. coli detection. (A) Conventional procedure for bacteria detection in clinical facilities. 
Blood sample collection. (1) Blood samples are incubated in an automated blood culture system. (2) Pathogen or bacteria grown on agar plate are subject to Gram-staining for 
differentiation between Gram-positive and negative strains. (3) The sample is sub-cultured into a nutrient-rich agar plate for the identification of the species and to determine 
the bacterial concentration. (B) POC testing approach for rapid detection. Blood sample collection (spiked with GFP-expressing E. coli BL21stock as a model microorganism). 
(1) The blood sample is analyzed in microchannels functionalized with E. coli antibodies. E. coli were specifically captured by antibodies on the microchannel surface.  
(2) Unbound E. coli are washed away with PBS using a syringe micropump. (3) GFP-expressing E. coli are imaged/counted under a fluorescence microscope. 
Abbreviations: E. coli, Escherichia coli; GFP, green fluorescent protein; LBP, lipopolysaccharide binding protein; PBS, phosphate buffered saline; POC, point-of-care.
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including culture time, need of high sample volumes and 

reagents, the requirement for preprocessing of samples, low 

accuracy of the pathogen detection, and high cost. Further, for 

the detection of rare bacteria, PCR and ELISA based methods 

require large initial sample volumes, and preprocessing of 

samples, and sample amplification. Thus, there is an unmet 

need to develop POC devices that can address these issues, 

and capture, isolate and detect bacteria from biologically 

complex samples such as blood and produce.

To address this unmet need, we developed a POC 

microchip for capture, isolation, and detection of E. coli 

in various samples such as physiological buffer solution 

(phosphate buffered saline [PBS]), blood, milk, and spinach in 

a simple and rapid manner. This microchip technology could 

be broadly used as a POC device for multiple applications to 

rapidly screen for bacteria contamination in blood and food 

samples, thus improving healthcare and food safety.

Materials and methods
Device fabrication
The microfluidic device was fabricated as previously 

reported.18,24,25 The device was designed with dimensions 

of 22 mm × 60 mm with three parallel microchannels. To 

assemble this device, poly(methyl methacrylate) (PMMA) 

(1.5 mm thick; McMaster Carr, Atlanta, GA) and double-

sided adhesive film (DSA) (50 µm thick; iTapestore, Scotch 

Plains, NJ) were cut using a laser cutter (Versa Laser™, 

Scottsdale, AZ). The PMMA base and a glass cover slip 

were then assembled via the DSA. In the assembled E. coli 

detection device, three microchannels (with dimensions of 

50 mm × 4 mm × 50 µm in the DSA layer) were formed with 

an inlet and outlet (0.565 mm in diameter) at each end of 

the channels in the DSA layer. Before assembling the chip, 

glass cover was cleaned with ethanol using sonication. Then, 

it was washed with distilled water and dried under nitrogen 

gas. After cleaning steps, the glass cover was plasma treated 

for 60 seconds. Then, PMMA, DSA, and glass cover were 

assembled to form the complete microchip (Figure 2A).

Strains used in studies: genetically 
modified E. coli
To validate the surface chemistry, a genetically modified 

E. coli strain expressing emerald green fluorescent protein 

(EmGFP) was used. The E. coli strain BL21 Star™, and 

Poly methyl methacrylate (PMMA)

Double sided adhesive (DSA)

Glass cover slip

A

B
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NeutrAvidin
surface chemistry

Protein G
surface chemistry

NeutrAvidin  is linked to N-(gamma-
maleimidob utyryloxy) succinimide ester (GMBS)
on the surface of microfluidic channel

Coating of Protein G on the channel surface
CD14 is linked to Protein G

Anti-LBP antibody is attached to NeutrAvidin LBP is attached to anti-LBP antibody and 
E.coli is captured on the surface

LBP is attached to CD14 and E.coli is 
captured on the surface

(i)

Scale bar: 100 µm Scale bar: 100 µm Scale bar: 10 µm Scale bar: 2 µm

(ii) (iii) (iv)

Figure 2 Evaluation of two different surface chemistry methods for E. coli detection on chip. (A) Assembly of the microfluidic chip consisting of PMMA, DSA, and glass 
cover. Actual image of the assembled microchip containing food dye for visualization. (B) Two antibody immobilization mechanisms were employed, ie, Protein G and 
NeutrAvidin based surface chemistry. In the first method, biotinylated anti-LBP antibody was immobilized on the microchannel surface via NeutrAvidin. Then, LBP was 
immobilized on anti-LBP antibody. In the second method, CD14, anti-LPS, or anti-flagellin antibodies was immobilized on the microchannel surface via Protein G. Only 
CD14 immobilization was illustrated and similar steps were followed for anti-flagellin and anti-LPS. (C) Detection of GFP-tagged E. coli on-chip. To validate the E. coli 
capture process, and quantify the on-chip concentration and capture efficiency of E. coli, these cells were identified under brightfield (100× magnification) and fluorescence 
microscopy. (i) Image of the control experiment without E. coli at 10× magnification under a fluorescence microscope. (ii) Image of the capture of GFP-tagged E. coli at 
10× magnification under a fluorescence microscope. (iii) Image of the capture of GFP-tagged E. coli at 100× magnification under a fluorescence microscope. (iv) Image of 
the captured GFP-tagged E. coli at 100× magnification under bright field. 
Abbreviations: DSA, double-sided adhesive film; E. coli, Escherichia coli; GFP, green fluorescent protein; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide;  
PBS, phosphate buffered saline; PMMA, poly(methyl methacrylate); POC, point-of-care; GMBS, N-(gamma-maleimidobutyryloxy) succinimide.
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EmGFP-expressing plasmid were purchased from Invitrogen 

(Carlsbad, CA). According to the manufacturer’s instructions, 

the pRSET/EmGFP plasmid, which confers ampicillin 

resistance and green fluorescence, (Invitrogen, catalog 

number V353-20) was transferred into BL21 Star™ by 

incubating at 41°C for 30 seconds and transferring onto ice. 

The transformed BL21 Star™ was then incubated at 37°C 

by shaking at 250 rpm for an hour in Super Optimal broth 

with catabolite repression medium. Following this step, BL21 

Star™ was streaked onto Luria–Bertani (LB) agar plates 

containing 100 mg/mL of ampicillin, and then incubated at 

37°C for 16 hours. An isolated E. coli colony was picked and 

inoculated in 5 mL of LB medium on another LB agar plate, 

with 100 mg/mL of ampicillin added. The E. coli culture 

was then incubated at 37°C with shaking at 250 rpm for 

16 hours. The E. coli culture was then aliquoted, and used 

as a standard stock for all experiments. The E. coli stock 

was diluted ten-fold in PBS and spread on LB-ampicillin 

plates. After overnight incubation at 37°C, single colonies 

of E. coli were counted and the number was used to calculate 

the original concentration of the E. coli stock.

Surface chemistry
Two different surface chemistry methods were evaluated to 

immobilize antibodies for the highest capture efficiency of 

E. coli on chip (Figure 2B). Protein G is an immunoglobulin-

binding protein and has the ability to immobilize the fragment 

crystallization (Fc) region of antibodies. NeutrAvidin has 

strong affinity for biotin-conjugated biomolecules (eg, 

biotinylated antibodies). In the first method, a biotinylated 

antibody was immobilized via NeutrAvidin-based surface 

chemistry.18 Briefly, a glass slide was first plasma treated 

to make the surface more hydrophilic. 200  mM of 

3-mercaptopropyl-trimethoxysilane (100 µL) dissolved in 

ethanol was then injected through the channels and incubated 

for 30 minutes at room temperature. 2 mM of N-(gamma-

maleimidobutyryloxy) succinimide ester (GMBS; 100 µL) 

in ethanol, a cross linker of proteins to antibodies, was 

then incubated in microchannels for 35 minutes at ambient 

temperature. An ethanol wash of 300 µL was performed to 

remove the excess of untreated reagents after each incubation 

step. Before NeutrAvidin binding on the microchannels, 

300 µL of PBS was used to wash out ethanol from the chip 

surface. 30 µL of NeutrAvidin solution (1 mg/mL in PBS) 

was incubated for 1 hour at room temperature before capture 

antibody immobilization. Three different experimental 

designs were performed for the NeutrAvidin studies. In 

the first design, 30 µL of biotinylated lipopolysaccharide 

(LPS) binding protein (LBP) Ab solution (5 µg/mL), (goat 

immunoglobulin G antibody, R&D Systems, Minneapolis, 

MN) was subsequently immobilized on the microchannel 

surface. Then, 30 µL of carrier-free recombinant human LBP 

(R&D Systems) at a concentration of 10 µg/mL was coated 

on the top of biotinylated anti-LBP antibody (anti-LBP-

LBP). In the second design, the same process as performed 

in the first design was followed by the addition of 30 µL 

of bovine serum albumin (BSA) to block any remaining 

reactive spaces on the surface (anti-LBP-LBP-BSA). In the 

third design, first LBP was directly bound to GMBS to test 

the effect of protein orientation on E. coli capture, and then 

the BSA blocking step was performed after LBP binding 

(LBP-BSA). LBP was incubated in microchannels for 1 hour 

at room temperature.

In the second surface chemistry method, three 

nonbiotinylated antibodies (ie, anti-LPS antibody, cluster 

of differentiation 14 protein (CD14) of human monocyte and 

antiflagellin antibody) were immobilized onto microchannels 

via Protein G.26 In this method, processing steps were same 

as the first method except for the use of Protein G instead 

of NeutrAvidin. The Protein G concentration used in the 

immobilization of alternate antibodies onto the surface 

was 1 mg/mL. Then 30 µL of 5 µg/mL anti-LPS antibody 

(Abcam, Cambridge, MA) was immobilized on the surface 

via Protein G. 30 µL of CD14 (Abcam, Cambridge, MA) 

was used at 5 µg/mL to capture E. coli by binding to LPS 

on E. coli surface. Movement of LPS monomers to a binding 

site on CD14 was catalyzed by LBP.27,28 Finally, 30 µL of 

antiflagellin antibody (BioLegend, San Diego, CA) was used 

at a concentration of 5 µg/mL to capture E. coli via the surface 

protein flagellin (part of flagellum).29 These three capture 

agents were simultaneously incubated in microchannels for 

1 hour at room temperature.

Sample preparation
EmGFP-expressing E. coli was spiked into 1 × PBS, blood, 

milk, and spinach samples with the final concentrations 

ranging from 50 to 4,000 colony forming units (CFUs) per 

milliliter for analysis on chip. Discarded de-identified whole 

blood (purchased from Research Blood Components, LLC, 

Cambridge, MA) was used in this study. Whole blood was 

spiked with E. coli and then inverted gently for 1  hour to 

enable homogenous distribution of E. coli. Spinach and 

milk samples were obtained from a local grocery store. 

Spinach leaves were washed and then spiked with E. coli 

before thorough mixing in a blender with 100 mL of sterile 

deionized H
2
O. The resultant mixture containing E. coli was 
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filtered through a cell strainer (70 µM) to remove the residues  

of spinach leaves prior to microchip testing. Milk was spiked 

with E. coli and vortexed for 1 minute before testing.

Device operation and on-chip detection
To optimize the capture efficiency, 75  µL of EmGFP-

expressing E. coli sample was pipetted into the functionalized 

microchannels, and then incubated at ambient temperature 

for 30  minutes. Following the incubation, microchannels 

were washed with 300  µL of PBS at a flow rate of 

2  µL/minute using a syringe pump (Harvard Apparatus, 

Holliston, MA) for 150 minutes. For further optimization of 

processing time 2, 5, and 10 µL/minute wash was performed. 

After washing, captured E. coli was imaged using an inverted 

fluorescence microscope (Carl Zeiss, Thornwood, NY) 

through a GFP fluorescence filter (excitation wavelength 

470  nm). For comparison, bright field and fluorescence 

images of E. coli taken under 10× and 100× magnification 

were merged (Figure 2C). The number of E. coli detected 

under 10×  magnification using a GFP filter was counted 

manually.

Statistical analysis
To evaluate the effect of the capture agent on capture 

efficiency, we analyzed the experimental results (n = 2–6) 

using analysis of variance with Tukey’s post-hoc test for 

multiple comparisons with statistical significance threshold 

set at 0.05 (P , 0.05). To evaluate the effect of flow rate 

on capture efficiency, we analyzed the experimental results 

(n = 3–8) using nonparametric Kruskal–Wallis test followed 

by pair-wise comparisons with nonparametric upper-tailed 

Mann–Whitney U test, with statistical significance threshold 

set at 0.05 (P  ,  0.05). When nonparametric pair-wise 

tests were performed, Bonferroni correction was used for 

multiple comparisons. The agreement between chip counts 

and the E. coli stock concentrations in different media 

(PBS, blood, milk, spinach) was evaluated by calculating 

Pearson product-moment correlation coefficient (r) with 

statistical significance threshold set at 0.05 (P , 0.05). The 

Bland–Altman comparison analysis was used to evaluate the 

repeatability of the chip counts using residual analysis in 

comparison to E. coli stock concentrations. The coefficient 

of repeatability was calculated as 1.96 times the standard 

deviations of the differences between chip measurements 

and E. coli stock concentrations. In the Bland–Altman 

analysis, a mean difference of zero indicates that the chip 

measurement is unbiased with respect to the standard. 

A clinically acceptable range indicates the interval within 

which the difference would fall approximately 95% of 

the time. If the mean difference and the limit of agreement 

are within the clinically acceptable range, then the developed 

measurement method is deemed comparable to the standard. 

Statistical analyses were performed with Minitab (Release 

14; Minitab Inc, State College, PA).

Results and discussion
We engineered the surface chemistry using immobilized 

antibodies, where the performance of the chip relies on 

nanoscale reactions on the microchannel surface. We evaluated 

antibodies specific to E. coli surface proteins using commonly 

reported antibody immobilization methods that provide a 

uniform distribution of antibodies on the capture surface in 

microfluidic channels, ie, Protein G and NeutrAvidin based 

methods. To develop a rapid microchip method for E. coli 

detection, four different capturing agents were immobilized 

in microchannels via these two surface chemistry methods. 

As shown in Figure 2B, anti-LPS, antiflagellin, and CD14 

were immobilized on the microchannel surface via Protein G 

and anti-LBP antibody was immobilized on the microchannel 

surface via NeutrAvidin. To investigate the binding of 

anti-LBP antibody, and to observe the effect of antibody 

orientation on E. coli capture. Three different experimental 

designs were performed. In NeutrAvidin experiments, capture 

efficiencies of anti-LBP-LBP, anti-LBP-LBP-BSA, and LBP-

BSA were observed to be 71.8% ± 5%, 60.7% ± 2%, and 

44.5% ± 5%, respectively (Figure 3A). In comparison, E. 

coli capture efficiencies of antiflagellin, anti-LPS and CD14 

obtained by using Protein G based surface chemistry, were 

46.9% ± 3%, 41.5% ± 5%, and 41.0% ± 2%, respectively 

(Figure  3A). The capture efficiency via anti-LBP-LBP 

was observed to be significantly greater (P  ,  0.05) than 

the other capture agents that were used with Protein G 

based surface chemistry (Figure  3A). In our prior study, 

Protein G and NeutrAvidin exhibited similar efficiency 

to immobilize capture agents on microchannel surfaces.26 

Thus, the difference in capture efficiency of E. coli was 

mainly due to the affinity of capture agents, ie, anti-LPS, 

antiflagellin, CD14, and LBP. The highest capture efficiency 

(71.8% ± 5%) was observed in microchannels immobilized 

with anti-LBP in the presence of LBP. This observation is in 

accordance with a previous report, in which LBP was shown 

to bind E. coli with high affinity; anti-LBP antibody helped 

the protein to take favorable orientation for E. coli capture.27 

BSA blocking was used to prevent nonspecific binding 

in microchannels in addition to preventing the binding of 

anti-LBP antibodies and LBP onto the succinimide group 
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of GMBS. The use of BSA as a blocking agent did not result in 

a  statistically significant difference in capture efficiency with 

both anti-LBP-LBP and anti-LBP-LBP-BSA. The LBP-BSA 

experiment showed that the orientation of the LBP protein is 

critical to capture of E. coli, which was supported by statistical 

analysis of experimental results as shown in Figure 3A. As an 

overall result, NeutrAvidin-mediated anti-LBP antibody-LBP 

immobilization performed on the microchannel surface to 

attain high capture efficiency of E. coli.

By investigating the effects of washing flow rate on 

E. coli capture efficiency, anti-LBP antibody based surface 

chemistry was further optimized. At the flow rates of 2, 

5, and 10 µL/min, capture efficiencies were 70.7% ± 4%, 

60.5% ±  3%, and 53.9% ±  8%, respectively (Figure 3B). 

Statistical analysis on experimental results indicated that 

flow rate had a significant effect on capture efficiency 

(nonparametric Kruskal–Wallis test), where 2  µL/min 

resulted in significantly greater (P , 0.05) capture efficiency 

compared to 10 µL/min. The lower efficiency observed at 

higher flow rates may be related to the correspondingly 

higher shear stress within the microchannels. Additionally, 

we used food dyes to visualize and qualitatively analyze the 

wash steps in microchannels. We observed that the selected 

flow rate (2 µL/min) achieved effective removal of food dye 

solution from microchannels (Figure 4).

To determine the microchip’s limit of detection for E. coli 

capture, we used LB agar plate culture as the gold standard 

for E. coli detection. We correlated agar plate results for a 

Figure 4 (A) Three different food dye solutions were injected into microchannels before performing wash steps. (B) Images of channels before and after wash steps indicated 
that food dye was removed from microchannels at a flow rate of 2 µL/minute.
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Figure 3 Comparison of the capture efficiency of E. coli by two different surface chemistries and different capturing agents. E. coli were incubated at room temperature for 
1 hour. (A) Three different experimental designs (anti-LBP-LBP, anti-LBP-LBP-BSA, and LBP-BSA) were performed on NeutrAvidin based surface chemistry. Three different 
capture agents were immobilized via Protein G based surface chemistry. The wash flow rate was 2 µL/min. Brackets connecting individual groups indicate statistically significant 
difference (analysis of Variance with Tukey’s post-hoc test for multiple comparisons, n = 2–6, P , 0.05). (B) Effect of channel flow rate on capture efficiency of E. coli on chip. 
75 µL of E. coli was flowed into microchannels. After sample incubation for 15 min at ambient temperature, three different wash flow rates (2, 5, and 10 µL/min) were used to 
optimize the capture efficiency of E. coli on chip. Statistical analysis indicated that flow rate had a significant effect on capture efficiency (nonparametric Kruskal–Wallis test), 
where 2 µL/min resulted in significantly greater (P , 0.05) capture efficiency compared to 10 µL/min flow rate. Brackets connecting individual groups indicate statistically 
significant difference. Data are presented as average ± SEM. Non-parametric upper-tailed Mann–Whitney U test for pair-wise comparisons, n = 3–8, P , 0.05. 
Abbreviations: BSA, bovine serum albumin; E. coli, Escherichia coli; LBP, lipopolysaccharide binding protein; SEM, standard error of the mean. 
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Figure 5 Correlation of E. coli quantification by microchip and LB plating. This experiment was performed to establish the correlation between bacteria cell 
counts obtained by colony count from LB agar plates and cell count after capture on a microfluidic device (A, C, E and G). Bland–Altman analysis between 
the microchip count and E. coli stock concentrations did not display an evidence for a systematic bias for chip counts. (A) 75 µL of varying concentrations 
(up to 500 CFUs/mL) of E. coli spiked in PBS was injected into microchannels functionalized with anti-LBP antibody. For comparison, 75 µL of each concentration 
of E. coli was plated out on ampicillin containing LB agar plates and incubated overnight. The number of E. coli colonies was counted the next day and compared to 
the E. coli counted on chip. The detection limit of microchip was found as 50 CFUs/mL. Data are presented as average ± SEM (n = 3) (r = 0.960, P = 0.009).  
(B) The mean bias for E. coli spiked in PBS was −70 CFUs/mL sample in microchip counts compared to E. coli stock concentrations. (C) Varying concentrations (up to 
400 CFUs/mL) of E. coli spiked in blood were injected into microchannels functionalized with anti-LBP antibody and the detection limit of microchip was found as 50 CFUs/mL 
(r = 0.989, P = 0.011). (D) The mean bias was −165 CFUs/mL of blood in microchip counts compared to E. coli stock concentrations. (E) Varying concentrations (up to 
400 CFUs/mL) of E. coli spiked in milk were injected into microchannels functionalized with anti-LBP antibody and the detection limit of microchip was found as 50 CFUs/mL  
(r = 0.962, P = 0.038). (F) The mean bias was −163 CFUs/mL of milk in microchip counts compared to E. coli stock concentrations. (G) Varying concentrations (up to 4,000 
CFUs/mL) of E. coli spiked in spinach were injected into microchannels functionalized with anti-LBP antibody and the detection limit of microchip was found as 500 CFUs/mL  
(r = 0.977, P = 0.023). (H) The mean bias was −1869 CFUs/mL of spinach sample in microchip counts compared to E. coli stock concentrations. (“r” indicates Pearson product-
moment correlation coefficient, “P” indicates the statistical significance of correlation).
Abbreviations: CFU, colony forming unit; E. coli, Escherichia coli; LB, Luria–Bertani; LBP, lipopolysaccharide binding protein; SD, standard deviation; SEM, standard error of 
the mean.
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series of known concentrations of E. coli with the microchip 

capture results. E. coli concentration and microchip-based 

E. coli detection showed a positive correlation for E. 

coli concentrations ranging from 50 to 4,000 CFUs/mL 

(Figure  5). The linearity of the correlation indicates that 

microchip-based E. coli detection can be used as an alterna-

tive to agar plate culture.

Figure 5A shows a sensitivity of 50 CFUs/mL that was 

obtained by the microchip count in PBS. Various sample 

types including blood, milk, and spinach, were used for 

rapid on-chip detection of E. coli (Figure 5C, E, and G). 

The detection limits of E. coli in blood, milk, and spinach 

samples were observed to be 50, 50, and 500 CFUs/mL as 

compared to E. coli dilution count, respectively. According 

to Bland–Altman analysis, the mean biases were –70 CFUs/

mL, –165 CFUs/mL, –163 CFUs/mL, and –1869 CFUs/

mL for PBS (50 to 500 CFUs/mL), blood (50 to 500 CFUs/

mL), milk (50 to 500 CFUs/mL), and spinach (500 to 4,000 

CFUs/mL) samples, respectively (Figure 5B, D, F, and H). 

Compared to E. coli spiked in PBS, the capture efficiency 

and limit of detection slightly decreased in other samples 

due to the immunological and enzymatic components in 

blood, milk, and spinach. For instance, there is a significant 

amount of albumin present in blood; this is commonly 

used as a blocking agent in immunoassays, and as such 

may have had a similar effect on our experiment. Milk also 

tends to have excessive albumin, casein, and other proteins, 

which may cause further blocking of the antigen-antibody 

binding. As the data show, these blocking and enzymatic 

agents can affect the capture efficiency. E. coli detection in 

spinach samples showed higher limit-of-detection than milk 

and blood experiments, potentially due to this experiment 

requiring preprocessing steps to remove the residuals of 

spinach leaves prior to microchip testing. Preprocessing 

steps (eg, filtering) caused a loss in E. coli cells before 

detection. On the other hand, the presented microchip assay 

achieved a lower detection limit for similar assays than was 

previously reported by methods such as magnetic separation 

method, fluorescence staining, and electrical detection 

(104 CFUs/mL and 8 × 104 CFUs/mL, respectively).30,31 Since 

nucleic acid-based-detection methods require more extensive 

sample preprocessing, antibody based E. coli detection 

on a chip presents a simpler alternative method to nucleic 

acid-based amplification assays on a chip.32,33 The current 

culture-based systems are subject to giving false negatives 

since only a small sample can be cultured compared to the 

whole sample volume, eg, 0.1% of the total blood volume 

is cultured in sepsis patients. This leads to 7.2 to 21.2% 

of such cultures providing false negatives.10,11 With the 

microchip system, larger sample sizes can be processed by 

continuous flow, giving results much faster than a culture 

system. The sample can also be reprocessed within either 

the same or new microchannels; this would be expected to 

increase the number of pathogens captured from a single 

sample. However, for detection purposes, this would be not 

necessary granted that accurate detection results are provided 

by the chip. Capturing larger numbers of pathogens can 

be beneficial for other applications such as culturing and 

downstream genomic analysis.

In this study, we used E. coli as a model pathogen 

because E. coli have been extensively characterized, 

and as such it provides simple comparison to existing 

systems. We transformed BL21 Star™ with EmGFP-

expressing plasmid and developed a microfluidic device 

to rapidly capture and quantify E. coli from various 

biological samples. The GFP-expressing E. coli was used 

to facilitate the quantification steps. The bacteria can be 

visualized either under a microscope in a laboratory setting, 

or for rapid counts in POC settings, with wide field of 

view lensless imaging systems for rapid counts for POC 

settings.20,24,25,34 Also, for characterization of E. coli capture 

from various biological samples, we employed a GFP-

expressing strain for ease of detection under a fluorescence 

microscope. The extension from a GFP-expressing strain 

to wild-type strains can be simply achieved using an 

ELISA-based detection method, as previously reported.35 

The characterized microchip can be coupled with 

POC detection technologies such as surface plasmon 

resonance,36–38 on-chip ELISA,39 and lensless imaging20,24 

to achieve POC testing without reference to laboratory 

equipment. Additionally, the presented microfluidic 

approach can be adapted to detect other microorganisms 

that cause sepsis such as Gram-negative bacteria (E. coli, 

Klebsiella, Pseudomonas, Enterobacter, and Hemophilus 

species) and Gram-positive bacteria (Staphylococcus, 

Streptococcus, and Enterococcus species).40 Also, the 

current material cost, without the labor and other costs of 

the microchip, includes 10¢ of glass, 1¢ of PMMA, and 

70¢ of antibodies. The antibody cost could be lowered with 

large-scale production and ordering.

In conclusion, we presented a microfluidic immunoassay 

to capture E. coli from blood, milk and spinach samples. 

This microchip enables rapid detection of bacteria in blood 

samples and food supply. The technology can be potentially 

adapted for on-site real-time food quality monitoring and 

for diagnosis of sepsis at the POC.
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