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Abstract: Hundreds of million people worldwide have been infected with severe acute 

 respiratory syndrome (SARS), and the rate of global death from SARS has remarkably 

increased. Hence, the development of efficient drug treatments for the biological effects of 

SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA 

oligonucleotide is  sensitive to the specific recognition of the SARS-associated coronavirus 

(SARS-CoV)  nucleocapsid (N) protein. In this study, we found that a designed biochip could 

analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. 

Among the polyphenolic  compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate 

demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and 

(-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by 

QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 µg mL–1, 

(-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on 

a nanoparticle-based RNA oligonucleotide biochip system.
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Introduction
Severe acute respiratory syndrome (SARS) is an infectious disease that began in 

 Guandong, China in November 2002. It has caused serious infections in many nations, 

such as Asia, Europe and Canada.1–6 According to the World Health Organization 

(WHO), the mortality of patients afflicted with SARS is 15% on average and 50% or 

higher in patients aged 65 years and over.7 SARS-associated coronavirus (SARS-CoV) 

is an enveloped and positively single-stranded RNA virus with a typical genome size of 

29.7 kb. It encodes RNA-directed RNA polymerase and structural proteins, including the 

spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins.8–11 The N protein 

is a 422 amino acids alkaline protein with a short lysine-rich region suggested as the 

nuclear localization signal. It plays an important role in the process of virus particle 

assembly by enveloping the entire genomic RNA.12 The SARS-CoV N protein is a major 

pathological determinant in the host and might cause host cell apoptosis, upregulate the 

proinflammatory cytokine production, and block innate immune responses. Moreover, 

the N protein of the SARS-CoV is an important antigen for both the early diagnosis 

of SARS and the detection of diseases.13 Since SARS broke out in 2003, researchers 

have made great efforts to develop fast and accurate analytical methods for its early 

diagnosis.14–18 In addition, due to its essential role in SARS replication, the SARS-CoV N 

protein is mainly regarded as a prime target for anti-SARS therapy. For this reason, 
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the SARS-CoV N protein is an attractive and crucial target 

for anti-SARS therapeutic drug discovery.

Polyphenolic compounds are phytochemicals found in 

numerous plants and fruits.19–21 They have been reported to 

act as antioxidants, free radical scavengers, metal chelators, 

and to be antiallergic, anticancer, antioxidant, anti-inflam-

matory, antifungal, and antiviral and antibacterial agents. In 

general, these polyphenolic compounds are known to have 

medicinal and chemopreventive activity in human health.22–25 

In particular, (-)-catechin gallate and (-)- gallocatechin gal-

late are known as a type of catechin. (-)-Catechin gallate and 

(-)-gallocatechin gallate are the most abundant catechins, 

particularly in tea and other plants, and they are a potent 

antioxidants26 with possible therapeutic properties for many 

disorders, including cancer.27,28 Researchers reported the 

benefit of catechin gallate from green tea in the treatment 

of human immunodeficiency virus (HIV) infection, where 

(-)-catechin gallate has been shown to reduce plaques 

related to acquired immunodeficiency syndrome-related 

dementia.29,30 There have also been reports showing that cat-

echin gallate can be beneficial in treating brain,31 prostate,32 

and other types of cancers.33

In this study, we report a novel approach for the inhibi-

tor screening of SARS-CoV N protein using a quantum 

dots (QDs)-conjugated oligonucleotide system with wide 

applicability for facile and sensitive imaging analysis on a 

biochip. We elucidated the inhibitor on SARS-CoV N protein 

identified through a high-throughput screening strategy using 

an optical nanoparticle-based RNA oligonucleotide. To the 

best of our knowledge, this is the first report on the inhibition 

effects of (-)-catechin gallate and (-)-gallocatechin gallate on 

SARS-CoV N protein using an optical nanoparticle-based 

RNA oligonucleotide platform.

Materials and methods
Chemicals
EDC (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride), bovine serum albumin (BSA), ampicillin, 

kanamycin, (-)-catechin gallate, (-)-gallocatechin gallate, and 

other molecules were purchased from Sigma-Aldrich Chemical 

Co (St Louis, MO). Quantum dots (QD605) were purchased 

from Invitrogen (Carlsbad, CA). ProlinkerTM-terminated glass 

slides from Proteogen (Seoul, Republic of Korea) were used. 

All other chemicals were of the highest grade.

Preparation of RNA oligonucleotide
The production of designed RNA oligonucleotide and 

primer with T7 promoter sequence were synthesized by 

Bioneer Co Ltd (Seoul, Republic of Korea) and amplified 

by  polymerase chain reaction (PCR). Template RNA was 

prepared by in vitro transcription using T7 RNA polymerase 

(Promega, Madison, WI). All RNA transcript products were 

separated by 8 M Urea 6% polyacrylamide gel electrophoresis 

(PAGE) after phenol extraction and ethanol precipitation pro-

cedures. The produced RNA oligonucleotide was solved in 

0.1% diethylpyrocarbonate (DEPC) solution and stored at 

-70°C for further experiments.

Subcloning, expression, and purification  
of SARS-CoV N protein
The gene was amplified by a PCR with the primer set in the direc-

tion of sense at 5′-agtggatccatgtctgataatggacccca-3′ and in the 

direction of antisense at 5′-gccgtcgacttatgcctgagttgaatcagc-3′, 
containing restriction enzyme sites of BamHI/SalI. PCR 

was run with the following conditions on a thermal cycler: 

denaturation at 94°C for 1 minute; annealing at 60°C for 

30 seconds; and an extension step at 72°C for 2.5 min-

utes. The sequence was repeated 35 times and  followed 

by a 7 minute final extension step at 72°C. The PCR 

product was digested with BamHI/SalI, and then ligated into 

BamHI/SalI digested expression vector pET 24a+ (Novagen, 

Madison, WI), and transformed into Escherichia coli DH5α 

(Stratagene, La Jolla, CA). The colony with insert gene 

was transformed into E. coli BL21 (DE3) (Stratagene). It 

was then plated on Luria–Bertani (LB) agar containing 

50 µg mL–1 kanamycin. GroES/EL expressing plasmid 

from E. coli and SARS-CoV N-expressing plasmid, which 

possessed ampicillin- and kanamycin-resistant markers, 

were cotransformed into E. coli BL21 (DE3) according 

to biotransformation procedures. The transformant was 

grown in a 250 mL flask containing 50 mL LB medium 

supplemented by 50 µg mL–1 of kanamycin and ampicillin 

at 37°C until the cell concentration reached OD
600 nm

 of 0.6 

and isopropyl-thio-β-D-galactopyranoside (IPTG) of a final 

concentration of 0.1 mM. It then was left to grow overnight 

at 25°C with shaking. The cells were harvested by centrifu-

gation at 4000 rpm for 30 minutes at 4°C and resuspended 

in 100 mM potassium phosphate-buffered saline (pH 7.5) 

containing 1 mM phenylmethylsulfonyl fluoride (PMSF). 

The cells were lysed by Sonicator® (F60 Sonic Dismembra-

tor; Fisher Scientific, Fair Lawn, NJ). The cell debris was 

removed by centrifugation at 13,000 rpm for 30 minutes. The 

supernatant was collected and the recombinant SARS-CoV N 

protein was purified with Ni-nitrilotriacetic acid (Ni-NTA) 

affinity  chromatography column (Qiagen, Germany). The 

supernatant was equilibrated with buffer A (10 mM Tri-HCl, 
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Immobilization of
SARS-CoV N protein

on chip with
ProLinkerTM-coated

glass chip

Binding of
QDs-conjugated

RNA oligonucleotide
on immobilized

protein chip

Treatment of
inhibitor

on designed biochip

Washing
and unspecific

binding removal

Imaging analysis
for binding assay

Inhibitor

ProLinkerTM-coated glass chip

A

B

SARS-CoV N protein

QDs-conjugated
RNA oligonucleotide

Figure 1 A representative scheme for the inhibitor screening of SARS-CoV N protein using QDs-conjugated RNA oligonucleotide on biochip.
Abbreviations: N, nucleocapsid; SARS-CoV, severe acute respiratory syndrome-associated coronavirus; QDs, quantum dots.

500 mM NaCl, 50 mM imidazole, 1 mM PMSF, pH 8.0). The 

bound protein was eluted with buffer B (10 mM  Tris-HCl, 

500 mM NaCl, 250 mM imidazole, 1 mM PMSF, pH 8.0) 

at 4°C. The purity of the purified protein was estimated by 

sodium dodecyl sulfate (SDS)-PAGE in the eluted fractions 

using 12% polyacrylamide running gels.34 The purity of the 

enzyme was estimated by SDS-PAGE. The protein concentra-

tion was determined as described by the Bradford method.35 

The purified sample was supplemented with 50% glycerol 

and stored at -20°C until use.

Conjugation of QDs and RNA 
oligonucleotide
The amine group of RNA oligonucleotide was first covalently 

conjugated onto the surface of the carboxyl terminated QD605 

(10 pM). That is, 10 pM of QD605 were conjugated with 

400 pM of RNA oligonucleotide with the coupling reagent 

EDC (N-(3-dimethylaminopropyl)-N-ethyl-carbodiimide 

hydrochloride, 40 nM), which was used to activate an 

amide bond formation to produce QDs-conjugated RNA 

 oligonucleotide (QDs-based SARS-CoV N RNA oligonucle-

otide) at a QDs:RNA oligonucleotide molar ratio of 1:40 

for 1 hour at room temperature. QDs-RNA oligonucleotide 

conjugate was then collected using centrifugal filtration at 

15 000 rpm for 30 minutes followed by several washing 

steps with a Tris buffer (50 mM Tris-HCl [pH 7.4], 5 mM 

KCl, 100 mM NaCl, 1 mM MgCl
2
, and 0.1% NaN

3
). After 

centrifugal filtration and washing, the pellet of QDs-RNA 

oligonucleotide was dispersed by brief sonication (22 kHz, 

amplitude 12 µm, and sonication time 120 seconds) using a 

sonic dismembrator model F60 (Fisher Scientific).

Fluorescent assay in a confocal  
laser-scanning microscope
The recombinant SARS-CoV N protein was directly immo-

bilized onto the functional ProLinkerTM-terminated surface. 

For the binding of the specific RNA oligonucleotide, the 

conjugated QDs-conjugated RNA oligonucleotide was facili-

tated by spotting on an immobilized SARS-CoV N protein 

chip. Subsequently, the polyphenolic compound used as 

inhibitor was spotted on the conjugated RNA  oligonucleotide 

and the SARS-CoV N protein. After incubation for 1 hour 

at 25°C, the chip was then washed three times with 

 phosphate-buffered saline (pH 7.2) for 1 minute. The chip 

was analyzed by a confocal laser scanning microscope LSM 

510 META (Carl Zeiss, Jena, Germany). The signal intensity 

was  determined by software for the LSM 510 (LSM Image 

Browser; Carl Zeiss). A histogram of the intensity was 

achieved from the region of the spotted chip. The value of 

signal intensity was achieved by calculating and expressing 

it as the mean intensity.

Results and discussion
Scheme for inhibitor screening  
of SARS-CoV N protein on chip
For the inhibitor screening of the SARS-CoV N protein, 

we designed the QDs-conjugated specific RNA oligonucle-

otide for specific SARS-CoV N protein targeting: first, the 
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Table 1 The effects of polyphenolic compounds on the inhibition 
of SARS-CoV N protein used in this study

Compounds Inhibition activity

Quercetin –
Acacetin –
Apigenin –
Baicalein –
hesperidin –
Morin –
Rutin –
Naringin –
Naringenin –
(-)-Catechin –
(-)-Catechin gallate +
(-)-gallocatechin gallate +
Diosmin –
Daidzein –
genistein –
glycitein –
Kaempferol –
Luteolin –
Myricetin –
Silibinin –
Silymarin –
Orientin –
Oroxylin A –

Notes: + indicates inhibition activity on SARS-CoV N protein; – indicates no 
inhibition activity on SARS-CoV N protein.
Abbreviations: N, nucleocapsid; SARS-CoV, severe acute respiratory syndrome-
associated coronavirus.

SARS-CoV N protein (1 µL) was immobilized on a glass 

chip; second, QDs-conjugated RNA oligonucleotide con-

jugates (1 µL) were bound on an immobilized chip; third, 

inhibitor treatment was performed on the conjugated RNA 

oligonucleotide and SARS-CoV N protein; fourth, washing 

and unspecific binding removal was done; fifth, detection 

was achieved to show directly the specific recognition of 

the inhibition effect of SARS-CoV N protein on the biochip. 

The schematic design of the inhibitor screening for effective 

monitoring of SARS-CoV N protein is illustrated in Figure 1. 

To accomplish the feasibility of targeting and imaging, we 

used QD605 conjugates having an RNA oligonucleotide for 

SARS-CoV N protein with an emission wavelength as the 

optical imaging probe.

Secondary structure of RNA 
oligonucleotide and expression  
and purification of SARS-CoV N protein
Figure 2A presents the secondary structure of RNA oligonu-

cleotide that binds to SARS-CoV N protein. The RNA second-

ary structure of the used RNA oligonucleotide was analyzed 

using the Mfold program.36 In order to improve the solubility 

of the overexpressed recombinant SARS-CoV N protein, the 

coexpression of N protein with E. coli molecular chaperone 

GroES/EL was performed. The SARS-CoV N protein was 

purified by a single chromatography step on a Ni2+ affinity 

column. The C-terminal his-tagged SARS-CoV N protein was 

visualized with a molecular mass of approximately 48 kDa 

on a SDS-PAGE (Figure 2B). The sequence is 5′-gggagagcg-

gaagcgugcugggccugucgguucgcugucuugcuacguuacguuacacg-

guuggcauaacccagaggucgauggaucccccc-3′.

Quantum dots (QDs)-conjugated  
RNA oligonucleotide
The QDs-supported RNA oligonucleotide was conjugated 

in the reaction for the amide formation from the coupling of 

5′-end-amine-modified RNA oligonucleotide at the  surface of 

QDs displaying carboxyl groups via standard EDC coupling. 

60

40

M 1 2 3 4
A B

Figure 2 (A) Sequence and secondary structure of RNA oligonucleotide that binds to N protein. (B) Purification of SARS-CoV N protein, 12% SDS-PAGE gel showing 
SARS-CoV N protein with his-tag. M, protein marker; lane 1, before induction form of SARS-CoV N protein; lane 2, total form of SARS-CoV N protein; lane 3, soluble form 
of SARS-CoV N protein; lane 4, his-tag form of SARS-CoV N protein.
Abbreviations: N, nucleocapsid; SARS-CoV, severe acute respiratory syndrome-associated coronavirus; SDS-PAgE, sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis; QDs, quantum dots.
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Figure 3 Chemical structures of (A) (-)-catechin gallate and (B) (-)-gallocatechin 
gallate.

The QDs-conjugated RNA  oligonucleotide was confirmed 

on a 2.5% agarose gel at 100 V in TAE buffer. Agarose 

gel electrophoresis showed a band with mobility having a 

different band pattern between the free QDs and the QDs-

conjugated RNA oligonucleotide, which confirmed the 

formation of QDs-conjugated RNA oligonucleotide. The 

mobility shifts were compared (data not shown). On agarose 

gel, the QDs-conjugated RNA oligonucleotide showed a 

lower mobility shift than free QDs, thus demonstrating the 

amide formation between QDs and RNA oligonucleotide 

for conjugation.

Inhibitory effect of SARS-CoV 
N protein
In Table 1, the effects of polyphenolic compounds on the 

inhibition of the SARS-CoV N protein used in this study are 

described. Among the polyphenolic compounds screened, 

(-)-catechin gallate and (-)-gallocatechin gallate showed 

high anti-SARS-CoV N protein activity. The chemical 

structures of (-)-catechin gallate and (-)-gallocatechin gal-

late are shown in Figure 3. Figure 4 shows our  elucidation 

of (-)-catechin gallate; (-)-gallocatechin gallate showed 

high inhibition activity in a concentrated manner against 

SARS-CoV N protein. (-)-catechin gallate and (-)-gallo-

catechin gallate, at 0.005 µg mL–1 or more, concentration-

dependently attenuated the binding affinity as evidenced 

by QDs-RNA oligonucleotide on the designed biochip 

(Figure 4A and B). At a concentration of 0.05 µg mL–1, 

(-)-catechin gallate and (-)-gallocatechin gallate showed 

more than 40% inhibition activity on a QDs-RNA oli-

gonucleotide biochip platform. As shown in Figure 4A 

and B, (-)-catechin gallate and (-)-gallocatechin gal-

late showed a similar pattern when comparing the 

 concentration-dependent anti-SARS activity. The 

half-maximal inhibitory concentration (IC
50

) values of 

(-)-catechin gallate and (-)-gallocatechin gallate were found 

to be approximately 0.05 µg mL–1, respectively (Figure 4A 

and B). Other polyphenolic compounds to the inhibition 

of SARS-CoV N protein on the nanoparticle-based RNA 

oligonucleotide biochip system were detected as nearly 

similar to the background signal, due to the high affinity 

with the QDs-conjugated aptamer-SARS-CoV N protein 

(data not shown). To perform high-throughput screening of 

the inhibitors, it would be efficient to be able to measure the 

anti-SARS activity from optical images of a biochip con-

taining multiple reaction compounds. To demonstrate the 

feasibility of the inhibitor assays, the latter were carried out 

on a biochip within 60 minutes at 37°C, and optical images 

were obtained from the reaction mixtures on a plate using a 

QDs-based imaging system. The inhibition of the anti-SARS 

activity from (-)-catechin gallate and (-)-gallocatechin 

gallate were clearly illustrated, and dose dependency 

was distinctly observable in the optical images.
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Figure 4 Inhibitory effect of (A) (-)-catechin gallate and (B) (-)-gallocatechin gallate to SARS-CoV N protein.
Abbreviations: N, nucleocapsid; SARS-CoV, severe acute respiratory syndrome-associated coronavirus.
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Conclusion
We demonstrated inhibitor screening on a biochip plat-

form using a QDs-conjugated RNA oligonucleotide. We 

discovered a novel function of (-)-catechin gallate and 

(-)-gallocatechin gallate as anti-SARS agents. The discov-

ery of anti-SARS agents has been of considerable interest 

in developing an efficient and effective methodology for 

high-throughput screening. Our main goal in this study is to 

demonstrate a proof-of-concept that SARS-CoV N protein 

can be inhibited and detected with remarkable simplicity 

and speed. Regarding its application, this designed platform 

for a novel inhibitor assay possesses significant potential as 

a target screening. In particular, it is a promising method 

for inhibitor screening because of its high sensitivity, low 

cost, rapid response, compatibility for miniaturization, and 

low labor-intensity. In addition, this platform is expected 

to be applicable to the inhibitor screening of other types of 

diseases.
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