
© 2012 Smith et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

International Journal of Nanomedicine 2012:7 2045–2055

International Journal of Nanomedicine

Cellular entry of nanoparticles via serum  
sensitive clathrin-mediated endocytosis,  
and plasma membrane permeabilization

Philip J Smith1

Maude Giroud2

Helen L Wiggins2

Florence Gower2

Jennifer A Thorley2

Bjorn Stolpe3

Julie Mazzolini2

Rosemary J Dyson4

Joshua Z Rappoport2

1Physical Sciences of Imaging for the 
Biomedical Sciences (PSIBS) Doctoral 
Training Center, School of Chemistry, 
2School of Biosciences, 3School of 
Geography, Earth, and Environmental 
Sciences, 4School of Mathematics, 
University of Birmingham, Edgbaston, 
Birmingham, United Kingdom

Correspondence: Joshua Z Rappoport 
School of Biosciences, University  
of Birmingham, Edgbaston,  
Birmingham B15 2TT, United Kingdom 
Tel +44 121 414 9019 
Email j.rappoport@bham.ac.uk

Abstract: Increasing production and application of nanomaterials raises significant questions 

regarding the potential for cellular entry and toxicity of nanoparticles. It was observed that the 

presence of serum reduces the cellular association of 20 nm carboxylate-modified fluorescent 

polystyrene beads up to 20-fold, relative to cells incubated in serum-free media. Analysis by 

confocal microscopy demonstrated that the presence of serum greatly reduces the cell surface 

association of nanoparticles, as well as the potential for internalization. However, both in the 

presence and absence of serum, nanoparticle entry depends upon clathrin-mediated endocytosis. 

Finally, experiments performed with cells cooled to 4°C suggest that a proportion of the 

accumulation of nanoparticles in cells was likely due to direct permeabilization of the plasma 

membrane.

Keywords: nanoparticles, polystyrene beads, serum, endocytosis, dynamin, clathrin, 

permeabilization

Introduction
Nanoparticles are defined as structures with at least one dimension smaller than 

100 nm.1 Although humans have always come into contact with naturally occurring 

nanoparticles, the ever increasing production and application of manufactured nanopar-

ticles in industry, research, and medicine has led to greater potential for incidental envi-

ronmental contact, as well as deliberate exposure through products and therapeutics.2,3 

However, the potential for cellular entry and toxicity of manufactured nanoparticles has 

only recently begun to be investigated. The extent of potential cellular effects follow-

ing nanoparticle exposure can depend upon target cell type, environmental conditions, 

nanoparticle composition, size, shape, surface chemistry, and dosage.4

Given the potential for heterogeneity, when comparing different nanoparticles, cells, 

and experimental conditions, each particular system of interest must be empirically 

analyzed. Therefore, model nanoparticles with well-defined characteristics have been 

serving as a valuable tool in understanding the potential for intracellular exposure and 

cellular toxicity.5–9 Polystyrene nanoparticles can be generated (eg, FluoSpheres® from 

Invitrogen Life Technologies, Carlsbad, CA) within accurate size ranges, to a nearly 

uniform shape, and with a variety of surface coatings and fluorescent labels useful for 

tracking in biological systems. Already, numerous studies have been published analyz-

ing the entry of polystyrene nanoparticles into different types of cells; however, these 

reports have not been entirely consistent in the observations reported.5–9 In particular, 

size and surface characteristics have emerged as potentially important characteristics 

regulating the potential for cellular entry and the specific mechanisms involved.4–10
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One further factor which could affect the potential 

for cellular entry of nanoparticles is the generation of a 

“protein corona.”4 It has been determined that carboxylate 

modification of polystyrene nanoparticles can promote 

interactions with proteins,11 and reduced cell surface binding 

was observed for larger polystyrene particles (eg, ∼200 nm) 

incubated in the presence of serum.12 Therefore, studies were 

performed to assess potential serum-dependent effects on 

nanoparticle interactions with cells, and potential mecha-

nisms for nanoparticle internalization. Taken together, the 

results demonstrate a striking serum dependence for plasma 

membrane binding and subsequent nanoparticle entry into 

cells via clathrin-mediated endocytosis. Finally, these studies 

suggest that plasma membrane permeabilization is another 

potential mode of nanoparticle entry into cells. This is 

significant when considering other nanomaterials that are 

used for humans as this effect was seen both in the presence 

and absence of serum, suggesting this effect may be size 

dependent only.

Material and methods
Cell culture
HeLa and MDCK cell lines (Health Protection Agency 

Culture Collections, Salisbury, United Kingdom) were grown 

at 37°C in the presence of 5% carbon dioxide with Gibco® 

Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) 

supplemented with 10% fetal calf serum (Invitrogen), and 

1% penicillin/streptomycin (Invitrogen). Cells were detached 

with trypsin (Invitrogen) following Gibco phosphate buffered 

saline (PBS) wash (Invitrogen). Detached cells were trans-

ferred at appropriate dilutions into new flasks or plated onto 

24 mm glass coverslips in six-well plates for fixation. They 

were incubated in a CO
2
 ncubator (MCO-17AIC; SANYO, 

Osaka, Japan) at 37°C in the presence of 5% carbon dioxide 

for ∼24 hours prior to transfection (see below) or incubation 

in nanoparticles (see below).

Nanoparticle uptake experiments:  
plate reader
Cells were grown in µClear® black 96-well glass bottom 

plates (Greiner Bio-One GmbH, Frickenhausen, Germany). 

Yellow/green and red 20 nm carboxylate-modified polystyrene 

FluoSpheres (Invitrogen) (stock 0.02 g/mL ≡ 4.54 × 1015 nano-

particles/mL) were at a 1% dilution in either serum-containing 

or serum-free media and added to cells for 0, 5, 15, 30, 60, and 

120 minutes. After the allotted time, cells were rinsed twice 

with 100 µL PBS and incubated for 5 minutes in 100 µL of 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, 

PA) in PBS. They were then rinsed twice more with 100 µL 

PBS. The fluorescence was observed with PBS solution inside 

the wells with a FLUOStar Omega fluorescence plate reader 

(BMG LABTECH GmbH, Ortenberg, Germany).

Determination of size and zeta potential 
by dynamic and electrophoretic light 
scattering
Size (hydrodynamic diameter) and zeta potential measure-

ments of nanoparticle dispersion were done using a Zetasizer® 

Nano ZS ZEN3600 (Malvern Instruments Ltd, Malvern, 

United Kingdom) to investigate possible aggregation of 

nanoparticles. Nanoparticles were at 0.5% dilution from 

stock in each experimental variation and sonicated in 

ultrasonic bath (XUB18; Grant Instruments, Shepreth, UK) 

for 20 minutes before measurement.

Nanoparticle cytotoxicity experiments
Cells were grown on MatTek glass bottom plates (MatTek 

Corporation, Ashland, MA) for 24 hours in 2 mL serum-

containing media. The media was exchanged for one of 

the following: serum-containing media; serum-free media; 

serum-containing media with 1% nanoparticles from stock 

solution; or serum free media with 1% nanoparticles from 

stock solution for 15  minutes at 37°C. These were then 

replaced with serum-containing media and returned to the 

incubator for a further 24 or 72  hours. For counting, the 

cells were rinsed twice with 2 mL PBS and incubated in 

1 mL trypsin for 4 minutes. Cells were put into a Hawksley 

counting chamber (AS1000 Improved Neubauer Double 

Cell Standard; Hawksley, Sussex, United Kingdom) and 

counted.

Nanoparticle uptake experiments: 
microscopy
Cells were attached onto glass coverslips and incubated 

overnight. For the 4°C experiment, cells were put on ice for 

5 minutes in either serum-containing or serum-free media. 

Chilled green nanoparticles diluted to 1% in either serum-

containing or serum-free media were introduced to the 

cells for 15 minutes. For fixation, cells were rinsed in 2 mL 

chilled PBS twice and fixed with 1 mL 4% paraformaldehyde 

in PBS for 5 minutes. At this time the chilled cells were 

brought back to room temperature. They were then rinsed 

twice more with 2 mL PBS and then placed cells down on 

a coverslip with a small drop of Vectashield® containing 

4′,6-diamidino-2-phenylindole (Vector Laboratories Ltd, 

Peterborough, United Kingdom). They were then held in 
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place using a small coat of nail varnish around the edge and 

stored in a refrigerator.

Dynasore inhibition of nanoparticle 
uptake
The following day after attachment to glass coverslips, 

cells were rinsed twice with warm DMEM and incubated 

with 2  mL per well of DMEM and a 0.1% dilution of 

dynasore (Sigma-Aldrich Corporation, St, Louis, MO) 

from 80 mM stock or 0.1% dilution of dimethyl sulfoxide 

(Sigma-Aldrich) from 5  µg/mL stock. After 15  minutes 

the media was removed and replaced with: 1 mL of either 

DMEM or DMEM with 10% fetal calf serum; 0.1% 

dilution of dynasore or dimethyl sulfoxide; and 1% red 

FluoSpheres, which were then incubated for 15  minutes. 

Cells were then rinsed with PBS, fixed, and imaged as  

below.

Nanoparticle uptake studies in dominant 
negative transfected cells
Cells were transfected with 4  µg of either green fluores-

cent protein (GFP; Clontech Laboratories Inc, Mountain 

View, CA), EH29-GFP (provided by Alexandre Benmerah, 

Institut Cochin, Paris, France), or Caveolin1(Y14F)-GFP 

(provided by Mark McNiven, Mayo Clinic, Rochester, MN) 

using Lipofectamine™ 2000 (Invitrogen) according to the 

manufacturer’s protocol. Nanoparticle uptake assays were 

conducted the following day with two 2  mL PBS rinses 

followed by a 15-minute incubation with DMEM, which 

was then removed. Cells were incubated with a 1% dilution 

(from stock 0.2  mg/mL) of 20  nm carboxylate-modified 

polystyrene red FluoSpheres in either 1 mL of DMEM or 

DMEM with 10% fetal calf serum media for 15  minutes 

and washed twice in 2 mL PBS. Coverslips were fixed as  

above.

Transferrin uptake experiments
Cells were attached onto glass coverslips and incubated 

overnight. For the 4°C experiment, cells were put on ice for 

10 minutes in either serum-containing or serum-free media. 

Chilled transferrin (Alexa Fluor 488-labeled; Invitrogen) 

diluted to 0.2% in serum-free media were introduced to the 

cells for 15 minutes. For fixation, cells were rinsed in 2 mL 

chilled PBS twice and fixed with 2 mL 4% paraformalde-

hyde for 5 minutes. Chilled cells were then brought back to 

room temperature. They were then rinsed twice more with 

2 mL PBS and then placed cells down on a coverslip with 

a small drop of Vectashield containing 4′,6-diamidino-2-

phenylindole. They were then held in place using a small 

coat of nail varnish around the edge and stored in a  

refrigerator.

Sytox® Green (Invitrogen)
The Sytox Green for the nanoparticle and control conditions 

was in serum-free or serum-containing media during incu-

bation at a concentration of 0.02%. Alternatively, the fixed 

cells were incubated for 5 minutes in 0.1% Triton X100 solu-

tion (Sigma–Aldrich Corporation, St Louis, MO) and then 

incubated for 5 minutes in a 0.02% Sytox Green solution 

(Invitrogen, Grand Island, NY) before mounting.

Imaging and image analysis
Images for the comparison of nanoparticle effects at 4°C and 

37°C were taken on an A1R inverted confocal microscope 

(Nikon Corporation, Tokyo, Japan) using a 60 × oil immersed 

objective. All other images were taken using an LSM 710 

confocal microscope (Carl Zeiss Microscopy GmbH, 

Oberkochen, Germany) using 488 nm and 543 nm lasers with 

a 40 × or 60 × oil objective lens. All analyses were conducted 

using NIS-Elements 3.2 imaging software (Nikon). A cell that 

wasn’t in contact with any others was selected, and an image 

from the center of the confocal Z-stack was chosen. Total 

intensity of fluorescence per nanoparticle spot (defined as 

the visible intracellular accumulations of nanoparticles) was 

calculated by drawing around each spot and taking intensity 

values for it. The intracellular background fluorescence was 

subtracted (calculated from an area adjacent to the spot, of 

equal size). The number of nanoparticle spots per cell area 

was calculated by counting the number of visible nanoparticle 

spots in the slice chosen, and dividing it by the area of the cell 

in that slice. Any spots that lay on the cell membrane were 

not counted. Each experiment was performed three times, 

and from each experiment ten cells were analyzed.

Results
Serum effects
Previous studies have demonstrated a role for endocytosis 

pathways in the cellular entry of polystyrene nanoparticles.5–9 

Cells are conventionally cultured in the presence of 10% 

fetal calf serum; however, most assays for receptor-mediated 

endocytosis are performed in serum-free conditions.13–15 

Furthermore, it has been previously suggested that the 

formation of a protein corona around nanoparticles might 

reduce membrane adsorption,10,16 and that interaction with the 

membrane may be important in permitting cellular entry.12,17 

Therefore, the potential for serum-dependent cellular 
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Figure 1 The addition of serum to cells incubated with nanoparticles results in up to a 20-fold decrease in associated cellular fluorescence and a three-fold decrease in zeta 
potential, without affecting nanoparticle accumulation size compared to those incubated without serum. (A and B) Nanoparticle fluorescence signal associated with HeLa 
cells incubated with nanoparticles in either serum-free or serum-containing media over the course of 120 minutes. (C) Nanoparticle fluorescence signal associated with 
MDCK cells incubated with nanoparticles in either serum-free or serum-containing media after 60 minutes. (D) Zeta potential associated with nanoparticles in either serum-
free or serum-containing media. (E) Average nanoparticle hydrodynamic diameter (Z-average size) in either serum-free or serum-containing media. 
Abbreviation: SFM, serum-free media.

interactions of a well-characterized type of nanoparticle 

(20 nm carboxylate-modified polystyrene beads), which are 

commercially available with a variety of fluorescent tags, 

was evaluated.

HeLa human carcinoma cells were incubated with nano-

particles in the presence or absence of serum. As depicted in 

Figure 1, analysis of cellular-associated nanoparticle signal 

in a fluorescence plate reader demonstrated striking serum 

dependence. In both the presence and absence of serum, a 

time-dependent cellular nanoparticle signal was observed. 

However, at each time point evaluated the addition of serum 

resulted in an up to 20-fold decrease in cellular-associated 

nanoparticle signal. Similar effects were observed with 

MDCK canine epithelial cells (Figure 1C), suggesting that 

this effect is neither cell type nor species dependent.

One possible explanation for the observed serum depen-

dence in cellular association of nanoparticles would be that 

the serum proteins are causing the nanoparticles to aggregate, 

which might prevent cellular binding and/or entry. However, 

previously published dynamic light scattering data demon-

strate that serum does not cause aggregation of carboxylate-

modified polystyrene nanoparticles.18 Furthermore, this was 

verified in the dynamic light scattering measurements of the 

current study (Figure 1E). Another possible explanation for 

the observed effects could be due to serum directly reducing 

the fluorescence of the nanoparticles. However, time-lapse 

confocal microscopy demonstrates that the addition of serum 

to nanoparticles incubated in the absence of cells did not 

affect nanoparticle fluorescence (Figure  2). The particles 

depicted within a single field were individually quanti-

fied over time and no overall decrease in fluorescence was 

observed. Thus, it can be concluded that serum is directly 

reducing the potential of nanoparticles to interact with cells, 

rather than the fluorescence of the nanoparticles. One pos-

sible explanation for this can be the serum effects on the 

zeta potential of the nanoparticles (Figure 1D). The reduced 

negative charge may be a major contributing factor in the 

ability of nanoparticles to bind to the cell membrane.

One limitation of assays performed in a fluorescence plate 

reader is that it cannot readily distinguish between fluores-

cence associated with the cell surface and intracellular signal. 

Therefore, to further analyze the effects of serum upon the 

interactions of nanoparticles with cells, confocal microscopy 

studies were performed. As depicted in Figure 3, when imaged 

with identical laser power and gain settings, both the cell sur-

face binding and the intracellular accumulation of nanoparticles 

was clearly higher in cells incubated in serum-free media when 

compared to cells exposed to nanoparticles in the presence 
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of 10% serum. Quantification of the brightness of numerous 

intracellular nanoparticle accumulations reveals significantly 

higher fluorescence in the serum-free group compared to the 

serum group (Figure 3C). The higher fluorescence seen on the 

cell membrane can also be seen (Figure 3E). It should be noted 

that the blue 4′,6-diamidino-2-phenylindole channel gain and 

exposure times were adjusted to facilitate the identification of 

cells, hence the discrepancy in appearance.

Although the precise intracellular compartment(s) within 

which the nanoparticles are present is not currently known, 

the apparent size and brightness is potentially consistent with 

endosomal localization. Furthermore, when compared with 

the nanoparticles imaged in vitro (Figure 2), it is clear that the 

intracellular nanoparticle accumulations are much larger than 

the potentially monodisperse population adhered to the cover-

slip. Interestingly, it can also be seen from these images that 

accumulation of nanoparticles in the nucleus was not observed. 

Finally, the number of intracellular nanoparticle accumulations 

per unit area was no different between the two conditions 

(Figure 3D), suggesting that although the total amount of nano-

particles able to enter cells is lower in the presence of serum, 

in both the presence and absence of serum the nanoparticles 

might be entering cells via the same pathway(s).

A cytotoxicity assay was performed to evaluate whether 

increased cell surface binding of nanoparticles has more 

of a detrimental effect on cells. As seen in Figure 4, cells 

exposed to these polystyrene nanoparticles display a moder-

ate degree of cytotoxicity. An approximately 30% decrease in 

cell numbers was observed relative to control at both 24 and 

72 hours following nanoparticle treatment, both when serum 

was present and absent at the time of exposure. However, due 

to internal variance and the modest effect observed, this was 

only statistically significant in the 24-hour serum-free and 

72-hour serum-containing conditions.

Endocytosis studies
Different pathways have been implicated in the cellular 

entry of nanoparticles depending upon the particular cell 

line used and/or the physiochemical characteristics of the 

specific particles being tested (eg, size, composition, or sur-
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face characteristics).4–8 Therefore, the aim was to empirically 

determine which endocytosis pathway(s) might be involved 

in entry of 20 nm carboxylate-modified polystyrene beads 

in HeLa cells. Dynamin is a large guanosine triphosphatase 

which regulates several endocytosis pathways and is potently 

and specifically inhibited by the small molecule dynasore.19,20 

As depicted in Figure 5, in the absence of serum, dynasore 

treatment results in a clear inhibition of nanoparticle entry. 

Results from studies in the presence of serum have been 

omitted as previous studies have shown that serum inhibits 

dynasore function.21

Two main endocytosis pathways regulated by 

dynamin are clathrin-mediated endocytosis and caveolar 

endocytosis.19 Therefore, one intention of this work was 

to determine whether each of these might be involved in 

nanoparticle entry. Importantly, the authors have extensive 

experience with these inhibitors in endocytosis assays, and 

have previously shown positive controls for each.13–15,22–24 

As observed in Figure  6, expression of the inhibitor of 

clathrin-mediated endocytosis eps15(EH29),25 but not 

dominant negative caveolin1,26 signif icantly reduced 

nanoparticle uptake. In cells exposed to nanoparticles in 

serum free media following transfection with either GFP, 

as control, EH29, to inhibit clathrin-mediated endocytosis, 

or caveolin1(Y14F), to inhibit caveolar endocytosis, only 

EH29 inhibited nanoparticle entry. Quantification revealed 

that both the brightness and density of intracellular nano-

particle accumulations were significantly inhibited by 

expression of EH29.

Similar observations were obtained in cells expressing 

these constructs and incubated with nanoparticles in the 

presence of serum (Figure 7). Interestingly though, although 

the expression of EH29 significantly reduced the number of 

nanoparticle accumulations per cell, relative to the control, 

while decreased quantitatively, the nanoparticle spot fluores-

cence was not significantly different (P value = 0.058). How-

ever, expression of caveolin1(Y14F) actually increased the 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2050

Smith et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

A     GFP (control)

S
er

u
m

 f
re

e 
m

ed
iu

m
5 µm

D

0 0

0.01

0.02

0.03

0.04

0.05

GFP EH29 CAV1(Y14F) GFP EH29 CAV1(Y14F)

200

400

600

800

1000

1200 E
A

ve
ra

g
e 

N
P

 s
p

o
t

fl
u

o
re

sc
en

ce

A
ve

ra
g

e 
N

P
 s

p
o

t
p

er
 m

m
2  

p
er

 c
el

l

5 µm 5 µm

B          EH29 C        Cav1(Y14F)

P-value > 0.05

P-value > 0.05

P-value > 0.05

P-value > 0.05

Figure 6 Expression of an inhibitor of clathrin-mediated endocytosis greatly reduces nanoparticle intake whereas inhibiting caveolar endocytosis has no effect compared 
to a control in serum-free media. Representative images of a HeLa cell expressing (A) green fluorescent protein, (B) EH29, and (C) Y14F incubated with nanoparticles in 
serum-free media. (D) Average nanoparticle spot fluorescence and (E) average spot density for HeLa cells expressing green fluorescent protein, EH29, and Y14F incubated 
with nanoparticles in serum-free media. 
Abbreviations: GFP, green fluorescent protein; NP, nanoparticle.
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Figure 7 Expression of an inhibitor of clathrin-mediated endocytosis reduces nanoparticle intake, whereas inhibiting caveolar endocytosis does not. Representative images 
of a HeLa cell expressing (A) green fluorescent protein, (B) EH29, and (C) Y14F incubated with nanoparticles in serum-containing media. (D) Average nanoparticle spot 
fluorescence and (E) average spot density for HeLa cells expressing green fluorescent protein, EH29, and Y14F incubated with nanoparticles in serum-containing media.
Abbreviations: GFP, green fluorescent protein; NP, nanoparticle.

fluorescence of the intracellular nanoparticle accumulations 

relative to the control in this study. Therefore, it is possible 

that inhibiting caveolar endocytosis increases nanoparticle 

entry, possibly through a similar mechanism as was recently 

observed in cells taking up fluorescent dextran.27 In this study, 

expression of this same mutant increased uptake of 70 kDa 

dextran in ARPE-19 cells. Thus, taken together, these results 

demonstrate that both in the presence and absence of serum, 

nanoparticles can enter cells through dynamin-dependent/

clathrin-mediated endocytosis, and that in this system caveolar 

endocytosis does not seem to be directly involved in nano-

particle entry.

Nanoparticle-mediated cellular 
permeabilization
As depicted in Figures 5–7, inhibition of dynamin-dependent/

clathrin-mediated endocytosis signif icantly, but not 

completely, inhibited nanoparticle entry into cells. The 
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proportion of nanoparticle internalization resistant to inhibi-

tion of endocytosis could be due to an incomplete inhibition 

of endocytosis, or it could be that nanoparticles are entering 

cells through another mechanism. An alternative method for 

inhibiting endocytosis is to cool cells to 4°C,28 and, as can be 

seen in Figure 8, at 4°C nanoparticles are still able to gain 

entry into the cytosol. Importantly, these same conditions 

resulted in a nearly complete inhibition of the internalization 
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Figure 8 Nanoparticles are able to gain entry to the cytosol via an endocytosis-independent method both in the presence and absence of serum. Representative images 
of a HeLa cell incubated with nanoparticles in (A) serum-free media and (B) serum-containing media at 4°C. (C) Average nanoparticle spot fluorescence and (D) average 
nanoparticle spot density for HeLa cells incubated with nanoparticles in serum-free media at 4°C. 
Abbreviations: NP, nanoparticle; SFM, serum-free media.
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of transferrin, a cargo molecule known to be internalized 

through clathrin-mediated endocytosis13–15 (Figure 9). This 

might suggest that an endocytosis-independent route for 

nanoparticle entry exists, particularly when considering 

that the presence of serum during nanoparticle incuba-

tion at 4°C does not inhibit entry; in fact, the intracellular 

density of nanoparticle accumulations was slightly higher 

compared to cells kept in serum-free media. Given the size 

and negative charge of the nanoparticles being studied, it 

is not likely that nanoparticles are able to freely diffuse 

across the plasma membrane. However, it might be that 

nanoparticles are entering through discontinuities in the 

plasma membrane, either preexisting or induced by the 

nanoparticles through direct permeabilization of the cell  

surface.

Sytox Green is a commercially available reagent that is 

membrane impermeant and brightly fluorescent only fol-

lowing binding to nucleic acids.29 Therefore, Sytox Green 

can be used to measure the potential for plasma membrane 

permeabilization. As depicted in Figure 10, incubation of 

cells in the presence of nanoparticles at 4°C in serum-free 

and serum-containing media resulted in significantly higher 

Sytox Green fluorescence than control cells. Strikingly, the 

extent of Sytox Green fluorescence was roughly equivalent 

to that observed in cells incubated in the presence of 0.1% 

Triton X100, a detergent which is commonly employed to 

permeabilize the plasma membrane. Thus, these results 

demonstrate that incubation of cells with 20 nm carboxylate-

modified polystyrene nanoparticles can result in disruption 
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of the plasma membrane, and suggest that this might be 

responsible for a significant proportion of nanoparticle 

entry in cells.

Discussion
The increased potential for human exposure to manufac-

tured nanomaterials emphasizes the need for a greater 

understanding of cellular nanotoxicology. In many cases, 

particular nanoparticles and target cell types will need to be 

empirically investigated as varying cell types react in distinct 

ways to the introduction of nanoparticles,9 which themselves 

display unique behaviors in biological fluid.30 However, the 

use of well-characterized model nanoparticles with known 

properties is necessary to provide insight into potentially 

biomedically relevant phenomena. In this study, a detailed 

analysis of the route of entry for 20 nm carboxylate-modified 

polystyrene nanoparticles was performed. The results of the 

analyses provide exciting new observations which open up 

new perspectives in the field of cellular nanotoxicology, and 

suggest several mechanisms relevant to nanoparticle entry 

that should be considered in future studies.

The first series of experiments consider the potential 

effects of serum on nanoparticle entry into cultured cells. 

With a fluorescence plate reader, a striking reduction in 

cellular-associated nanoparticle signal was observed when 

cells were incubated with nanoparticles in serum-containing, 

versus serum-free, conditions. Furthermore, this was observed 

with cells from different organisms, and in both epithelial 

and transformed cells. A more detailed analysis through 

confocal microscopy revealed that the presence of serum 

both reduced nanoparticle signal at the plasma membrane 

and intracellular accumulation. Therefore, serum appears to 

be able to reduce the ability of nanoparticles to bind to and 

enter cells, observations previously alluded to with the use of 

larger (eg, ∼64 nm) positively-charged nanoparticles.10

Next, several potential mechanisms for nanoparticle 

internalization into cells were evaluated. In both serum-free 

and serum-containing studies, it was demonstrated that these 

nanoparticles can enter cells through dynamin-dependent/

clathrin-mediated endocytosis, and not caveolar endocytosis. 

However, the presence of endocytosis-independent nanopar-

ticle uptake was also able to be demonstrated. The analyses 

demonstrate that 20 nm carboxylate-modified polystyrene 

nanoparticles have the capacity to induce plasma membrane 

permeabilization. Therefore, this may reflect an alternative means 

by which nanoparticles are able to gain entry to the intracellular 

space, and potentially cause cellular damage.

In the current study, it was demonstrated that nano-

particle interaction with, and subsequent entry into cells, 

is significantly inhibited by the presence of serum. It has 

been noted that a highly fluidic protein corona with a rapid 

exchange rate is less likely to adsorb to the plasma mem-

brane,16 possibly due to the resulting reduced zeta potential. 

Furthermore, carboxy functionalization of nanoparticles has 

been proposed to be more amiable to nanoparticle–protein 

interactions than amino modifications.11 Finally, the relation-

ship between decreased membrane adsorption and reduced 

uptake of nanoparticles has been previously suggested.10,17 
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Taken together, this suggests that the addition of serum gen-

erates a highly fluidic protein corona with a rapid exchange 

rate which prevents absorption to the plasma membrane and 

subsequent internalization.

In order to quantitatively assess the relative potential for 

nanoparticle entry through the fluid phase, dispersed in the 

lumen of a vesicle, as opposed to through receptor-mediated 

means, adhered to the inner membrane of the vesicle, a series 

of calculations was performed to estimate the number of 

nanoparticles that could enter a vesicle under the incubation 

conditions described above (Figure 11). This analysis assumed 

a total vesicle diameter of 150 nm,31 and that the entire cell 

surface has the capacity to be coated in nanoparticles. Even 

though the latter might be an overestimation, the current 

analyses suggest that under these conditions nanoparticles are 

nearly 25,000 times more likely to enter cells bound to the inner 

membrane of a vesicle than through the fluid phase. Thus, when 

taken together, the data suggest that cellular entry of 20 nm 

carboxylate-modified polystyrene nanoparticles is reduced 

in the presence of serum primarily through inhibition of cell 

surface binding, that clathrin-mediated endocytosis represents 

a significant route for nanoparticle uptake, and that these nano-

particles potentially have the capacity to enter the cell directly 

through permeabilization of the plasma membrane.

Conclusion
In summary, the current report analyzes the cellular inter-

nalization of model nanoparticles, focusing on factors which 

might affect the association of nanoparticles with cells and 

possible routes of entry into cells. It has been established that 

the presence of serum in media greatly decreases cellular 

nanoparticle fluorescence intensity. This was shown to be 

neither cell type nor species dependent. Furthermore, it was 

shown that nanoparticle entry into cells was greatly reduced 

when inhibiting the dynamin-dependent/clathrin-mediated 

endocytosis pathway. Finally, using a membrane impermeant 

nucleic acid stain, it was shown that the presence of nano-

particles permeabilizes the plasma membrane to a similar 

extent as a detergent, Triton X100. This would suggest that 

permeabilization of the plasma membrane may be responsible 

for a proportion of nanoparticle entry into cells.

Executive summary
•	 Cells were incubated with 20 nm carboxylate-modified 

polystyrene nanoparticles in the presence of serum-

containing and serum-free media.

•	 Serum-containing media was found to decrease intra-

cellular nanoparticle accumulation, primarily through 

inhibition of cell surface binding.

•	 Clathrin-mediated endocytosis represents a significant 

route for nanoparticle uptake.

•	 These nanoparticles potentially have the capacity to 

enter the cell directly through permeabilization of the 

cell membrane.
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