Prolonged nerve blockade in a patient treated with lithium

Amit Lehavi
Boris Shenderey
Yeshayahu (Shai) Katz
Department of Anesthesiology,
Rambam Health Care Campus,
Haifa, Israel

Abstract: We report a case of a patient, chronically treated with oral lithium, who presented with an extremely prolonged (42-hour) duration of sensory and motor paralysis following an uneventful infraclavicular block for hand surgery that was performed under ultrasound guidance using bupivacaine and lidocaine. Due to its direct effect on nerve conduction of action potential, we propose that lithium may have had a role in the unusually prolonged duration of a peripheral nerve block.

Keywords: nerve blockade, lithium, duration, anesthesia

Introduction
Peripheral nerve blocks are of great importance in anesthesia and may provide painless, safe, and inexpensive anesthesia with long-lasting analgesia. Numerous systemic and local effecting medications, many of which are still in daily clinical use, may alter the onset, analgesic effect, and duration of peripheral nerve blocks. Here, we describe the case of a patient, chronically treated with oral lithium, who had an extremely prolonged (42-hour) duration of sensory and motor paralysis following an uneventful infraclavicular block for hand surgery that was performed under ultrasound guidance using lidocaine and bupivacaine.

Case report
A 46-year-old woman was scheduled for elective hand surgery. Her medical history was significant for bipolar disorder, chronically treated with oral lithium carbonate 750 mg/day during the 4 years prior to the surgery. Blood lithium levels 2 days prior to the surgery were 0.45 mEq/L (therapeutic values usually considered are between 0.6 and 1.2 mEq/L). She had had no previous surgery, except minor dental procedures under local anesthesia, and no known allergies.

Due to patient preference for regional anesthesia, an infraclavicular block was performed under ultrasound guidance using a 22 G stimulating needle (Polymedic®; telescope SAS, Carrières-sur-Seine, France). Each one of the three cords of the brachial plexus was separately visualized using an in-plane short axis approach and concomitantly electrically stimulated by nerve stimulator, after which a local anesthetic “cuff” was injected individually around each cord, using 10 mL of plain bupivacaine 0.25% (Kamada, Beit-Kama, Israel) and lidocaine 1.5% (Rafa Laboratories Ltd, Jerusalem, Israel) solution (0.1 mg/kg and 0.075 mg/kg, respectively, totaling 30 mL). Neither paresthesia nor pain was elicited during the injection. Sensory block was evaluated...
centrations of Na+ channel TTX-S INa in the presence of physiologic con-
of lidocaine-induced block on the voltage-gated sodium
in an in vitro rat model. In this study, the effective dose
local anesthetics conduction block increases concomitantly
if the concentration of lithium ions increases, the potency of
gated sodium channel blockade. Gold and Thut5 showed that
anesthetics is reliant upon the reversibility of the voltage-
alter the conduction of action potentials.

The period of arrested action potentials induced by local
anesthetics is dictated by the intra- and extracellular concentrations of
ions, as well as being a result of the adequate function of the ion channels within the cell membrane. Based on the
Goldman–Hodgkin–Katz voltage equation, a permanent
presence of the lithium ion in the extracellular fluid alters the
membrane resting potential4 and, hence, might significantly
alter the conduction of action potentials.

The authors report no conflicts of interest in this work.

Using pinprick and was satisfactory 12 minutes following
the injection. No adverse effects were observed.

In the ward, the patient complained of residual intense
block, both motor and sensory, which persisted for approxi-
mately 20 hours and wore off slowly until it was absent
42 hours following the injection of the local anesthetic
solution.

Follow-up at 1 week and 1 month revealed no motor
or sensory deficit, no paresthesia, and no sign of nerve
damage.

No ethical issues arose from the medical management
of this case.

Discussion

Lithium is an alkali metal with a long history of clinical use
for bipolar disorders1 and has been utilized as an adjuvant
for neuropathic pain2 and fibromyalgia.3

The conduction of action potentials through nerve fibers is
ddictated by the intra- and extracellular concentrations of
ions, as well as being a result of the adequate function of the ion channels within the cell membrane. Based on the
Goldman–Hodgkin–Katz voltage equation, a permanent
presence of the lithium ion in the extracellular fluid alters the
membrane resting potential4 and, hence, might significantly
alter the conduction of action potentials.

The period of arrested action potentials induced by local
anesthetics is reliant upon the reversibility of the voltage-
gated sodium channel blockade. Gold and Thut5 showed that
if the concentration of lithium ions increases, the potency of
local anesthetics conduction block increases concomitantly
in an in vitro rat model. In this study, the effective dose
of lidocaine-induced block on the voltage-gated sodium
channel TTX-S INa in the presence of physiologic concentra-
tions of Na+ (35 mM) was lowered by approximately
80% with the presence of Li+ ions. Lilley and Robbins6
demonstrated an increased potency of local anesthetics
(procaine, lidocaine, and benzocaine) in an isolated frog
sciatic nerve with the presence of Li+ compared with Na+.

In the present case, the motor and sensory block lasted
42 hours, although the literature and our experience show
that using this dose of local anesthetic usually provides an
effect that lasts 10–16 hours8 or less.8 We suggest that lithium
could have elicited the prolonged duration of the peripheral
nerve block. This relation may exist, despite subtherapeutic
levels of lithium, due to different effects of the ion on the
central and peripheral nervous systems.

Since the length of analgesia is of great significance when
a single-injection nerve block is applied, further studies are
needed to evaluate the effects of lithium on the duration of
motor and sensory nerve block in humans.

Disclosure

The authors report no conflicts of interest in this work.

References

evidence-based approach. Part II: Clinical pharmacology and therapeu-
2. Shimizu T, Shibata M, Wakisaka S, Inoue T, Mashimo T, Yoshiya I.
Intrathecal lithium reduces neuropathic pain responses in a rat model of
3. Tyber MA. Lithium carbonate augmentation therapy in fibromyalgia.
CMAJ. 1990;143(9):902–904.
4. Thiruvengadam A. Effect of lithium and sodium valproate ions on rest-
ing membrane potentials in neurons: an hypothesis. J Affect Disord.
5. Gold MS, Thut PD. Lithium increases potency of lidocaine-induced block
of voltage-gated Na+ currents in rat sensory neurons in vitro. J Pharmacol
6. Lilley SJ, Robbins J. The action of local anaesthetics on the compound
action potential is altered by the nature of the permeant ion in frog nerve.
7. Cucchiaro G, Ganesh A. The effects of clonidine on postoperative
2007;104(3):532–537.
to conventional nerve stimulation for coracoid infraclavicular brachial