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Abstract: Chemoprevention that impedes one or more steps in carcinogenesis, via long-term 

administration of naturally occurring or synthetic compounds, is widely considered to be a crucial 

strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is 

limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to 

Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural 

compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due 

to its preventive effects on many types of cancer in various animal models, EGCG has been 

regarded as a prime example of a promising chemopreventive agent without major toxicity 

concerns. However, very recently, evidence has accumulated showing that efficacious doses of 

EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and 

EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy 

and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this 

hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-

EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this 

article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma 

and remarkably superior chemopreventive effects, with more than tenfold dose advantages in 

inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle 

size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has 

significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at 

nutritional levels and induce phase II enzymes at supranutritional levels.
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Chemoprevention
Chemoprevention is defined as the use of compounds to inhibit the development 

of cancer, either by blocking the DNA damage that initiates carcinogenesis or by 

arresting or reversing the progression of premalignant cells in which such damage has 

already occurred.1 The expanded definition of chemoprevention is: through the use 

of natural or synthetic substances, to reverse, suppress, and prevent either the initial 

phase of carcinogenesis or the progression of neoplastic cells to cancer.2 Among many 

diverse chemopreventive agents, epigallocatechin-3-gallate (EGCG) and various forms 

of selenium (Se) have been extensively investigated.3,4

EGCG
Tea is one of the most widely consumed beverages worldwide. Green tea contains 

large quantities of biologically active catechins, which have been identified as 
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important dietary factors for health promotion over the past 

two decades.5 Among the six kinds of catechins in green 

tea, EGCG accounts for half or more of total catechin in 

green tea.6

Efficacious and toxic doses of EGCG
The chemopreventive effects of EGCG have been confirmed 

in at least 13 human or animal organs, including the 

esophagus, stomach, lung, small intestine, large intestine, 

colon, skin, liver, bladder, prostate, pancreas, mammary 

glands, and oral cavity.7 Most of the studies used the regimen 

of adding EGCG or green tea extract with EGCG as the 

major component to drinking water.8–13 As a prominent 

chemopreventive agent, EGCG must be amenable to 

prolonged ingestion at levels in excess of normal dietary 

intake without inducing adverse effects. Because the potential 

toxicity related to such a regimen has not been investigated, 

it remains uncertain whether the efficacious doses for 

chemoprevention are really as far away from the toxic doses 

as have been superficially inferred.

However, EGCG administration via diet or intraperitoneal 

(IP) injection has been reported to be associated with 

various adverse effects. Mice consuming a diet with 1% 

EGCG for 6 weeks exhibited elevated splenocyte and 

macrophage proinflammatory markers such as tumor 

necrosis factor-α, interleukin-6, interleukin-1β, and 

prostaglandin E
2
 and disturbed immune cell populations.14 

A single IP administration of 100 mg/kg EGCG to mice 

can generate hepatotoxicity, whereas 150 mg/kg results in 

100% mortality within 24 hours.15 Furthermore, a causal 

association between the consumption of green tea extract 

and liver damage has recently been established in humans.16 

Thirty-four cases of hepatitis following the consumption 

of green tea extract for the purpose of obesity control have 

been documented.16 Upon liver histological examination, 

inflammatory reactions, cholestasis, steatosis, and necrosis 

were noted. A positive dechallenge was reported in 29 cases, 

and a positive rechallenge occurred in seven cases.16 The 

mechanism of EGCG toxicity has been ascribed to its 

pro-oxidant action, because oxidative stress-associated 

biomarkers, including hepatic malonyldialdehyde, 

4-hydroxynonenal, metallothionein, and phosphorylated 

histone 2AX, substantially increase in EGCG-intoxicated 

mice.17 Tea can contain pesticide residues that might 

cause adverse effects, including hepatotoxicity. Therefore, 

some cases of tea-related hepatotoxicity may be ascribed 

to the presence of pesticide residues in tea. However, the 

published data showing that EGCG is able to cause adverse 

effects in experimental animals were obtained by using 

purified EGCG.

In addition to its cancer-preventive effect, EGCG has 

potential in the prevention of obesity, diabetes, and neurode-

generative diseases. Herein we listed some literature-reported 

beneficial doses administered through diet or the IP route 

to obtain a window concept of efficacious doses and toxic 

doses (Table 1). In the studies involving cancer, 0.5%–1% 

EGCG in the diet was used for 7–24 weeks;18,19 50–60 mg/kg 

EGCG was IP administered for 2–23 weeks.20,21 In the studies 

involving type 2 diabetes mellitus and obesity, 0.32%–1% 

EGCG in the diet was used for 4–16 weeks.22–25 In the studies 

involving liver and brain protection, 50–75 mg/kg EGCG was 

IP administered for 1–56 days.14,26,27 Based on the evidence 

that both 1% EGCG in the diet for 6 weeks of administration 

and a single IP injection of 100 mg/kg EGCG have adverse 

effects on mice, it seems obvious that the efficacious doses 

of EGCG including chemopreventive doses are not far from 

Table 1 Efficacious doses and toxic doses of epigallocatechin-3-gallate in mice

Delivery route Times of administration Outcomes References

0.32% in diet 16 weeks Inhibiting obesity and fatty liver 23,24
0.5% in diet 7 weeks Inhibiting tumor development 18
1% in diet 24 weeks Not inhibiting B(α)P-promoted tumorigenesis 19
1% in diet 7 weeks Alleviating type 2 diabetes mellitus 25
1% in diet 4 weeks Inhibiting obesity 22,24
1% in diet 6 weeks Proinflammatory responses 14
IP 50 mg/kg 2 weeks Reducing angiogenesis 20
IP 50 mg/kg 1 day Reducing brain damage 26
IP 50 mg/kg 8 weeks Reducing liver fibrosis 27
IP 60 mg/kg 23 weeks Inhibiting 1,2-DMH-promoted tumorigenesis 21
IP 50–75 mg/kg 3 days Preventing acute hepatotoxicity 14
IP 100 mg/kg 1 day Hepatotoxicity 15
IP 150 mg/kg 1 day Died within 24 hours 15

Abbreviations: 1,2-DMH, 1,2-dimethylhydrazine; B(α)P, benzo(α)pyrne; IP, intraperitoneal.
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its toxic dose levels; furthermore, some efficacious doses 

actually overlap with the toxic doses.

Intervention time of EGCG  
in chemoprevention
In addition to the aforementioned dose concerns, results 

obtained regarding the optimal intervention time for EGCG 

chemoprevention are not particularly promising either. In a 

transgenic adenocarcinoma of the mouse prostate (TRAMP) 

model, which closely emulates human disease, it was found 

that an intervention starting at the age of 8 weeks by adding 

green tea polyphenol (GTP), with EGCG as the major 

component to drinking water at a concentration of 0.1% 

(w/v), generated pronounced chemopreventive efficacy.28 

Specifically, the GTP treatment reduced the cancer incidence 

in TRAMP mice from 100% to 35% and the cancer metastasis 

to lymph and liver to null from 95% and 65%, respectively. 

Without the GTP treatment, the TRAMP mice had enlarged 

prostate and genitourinary weight (4.6- and 8.3-fold compared 

with the nontransgenic mice, respectively), whereas the GTP 

treatment decreased prostate and genitourinary hyperplasia 

by 64% and 72%, respectively. The GTP treatment 

significantly increased median life expectancy of TRAMP 

mice from 42 weeks to 68 weeks. In the serum of TRAMP 

mice, elevated insulin-like growth factor-1 and vascular 

endothelial growth factor were significantly reversed by 

the GTP treatment. In the prostate tissue of TRAMP mice, 

several key proliferation-associated signaling proteins and 

metastasis-related proteins were substantially suppressed 

by the GTP treatment.28,29 These impressive experimental 

results suggest that GTP or EGCG has tremendous potential 

for prostate cancer prevention.

The impact of GTP intervention time on prostate cancer 

prevention in TRAMP mice was further investigated by 

the same team. Significantly, unlike the promising results 

obtained when GTP was initiated at the age of 8 weeks, when 

treatment started at 18 weeks the preventive effect was largely 

compromised, whereas when begun at the age of 28 weeks 

the preventive effect disappeared almost completely.30 The 

median life span of TRAMP mice is 42 weeks. Given that the 

human median life span is 70 years, accordingly (if the effect 

in humans was analogous), someone starting to drink green 

tea at 13 years old (equivalent to the 8th week of TRAMP 

mice) might gain a pronounced chemopreventive effect, 

whereas starting at 30 years old (equivalent to the 18th week 

of TRAMP mice) might have only a weak effect on cancer 

development. Thus, the promising chemopreventive effects 

of GTP might be largely limited to earlier intervention for 

adolescents, who nowadays prefer carbonated drinks rather 

than tea in many parts of the world. For adults who are willing 

to accept chemopreventive practices, the chemopreventive 

efficacy of EGCG needs to be enhanced.

Encapsulated nano-EGCG  
for chemoprevention
Typically, but not exclusively, nanoscience investigates objects 

in the range of 1–100 nm.31 As applied to biology, this field 

has led to the advent of nanomedicine, which has many facets, 

one of the most important of which is the nanofabrication 

of drugs in nanoparticle-based drug-delivery systems.32–34 

One advantage of this technology is that drugs included in 

nanoformulations can be protected from the destructive action 

of external media.35 In addition, it is now well established 

that drugs encapsulated in nanoparticles exhibit distinct 

pharmacokinetic and pharmacodynamic profiles as compared 

with the nonencapsulated free drugs.36,37

“Nanochemoprevention”, a term coined by Siddiqui 

and Mukhtar38 very recently, involves the utilization of 

nanotechnology to improve the pharmacokinetic and 

pharmacodynamic profiles of chemopreventive agents. For 

example, curcumin is a widely studied phytochemical with 

chemopreventive potential. Encapsulated nanocurcumin 

manifests enhanced cellular uptake and cytotoxicity in vitro, 

as well as superior bioavailability and anticancer activity 

in vivo over nonencapsulated free curcumin.39–41 EGCG 

encapsulated in lipid nanocapsules exhibited a stable status 

without degradation in the aqueous phase over 4 weeks, 

whereas free EGCG totally degraded within 4 hours.42 

When EGCG is encapsulated in chitosan, its bioavailability 

significantly increases compared with nonencapsulated 

free EGCG. Specifically, oral administration of chitosan-

encapsulated nano-EGCG enhanced intestinal absorption 

by a factor of 1.8 relative to free EGCG and enhanced the 

plasma exposure of total EGCG by a factor of 1.5 relative to 

free EGCG.43,44 Polylactic acid (PLA) and polyethylene glycol 

(PEG) are biologically inert and completely biocompatible 

without toxicity or antigenic reactions.45 EGCG can be 

encapsulated in PLA–PEG nanoparticles46 whose average 

size is 260 nm, as shown in supplementary figure S1–2 

in Siddiqui et al.46 The biological activities of PLA–PEG-

encapsulated nano-EGCG versus nonencapsulated free 

EGCG have been compared in term of apoptosis induction, 

inhibition of angiogenesis and tumor growth, and EGCG 

retention in blood after IP administration, as summarized 

in Table 2.46 Overall, PLA–PEG-encapsulated nano-EGCG, 

compared with the nonencapsulated free EGCG, is resistant 
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to degradation in blood and produces remarkably superior 

chemopreventive effects, with an over tenfold dose advantage 

in inducing apoptosis and inhibiting angiogenesis and tumor 

growth. Together, these studies reveal that nanoparticle-

mediated delivery of EGCG could serve as a basis for 

enhancing the bioavailability of EGCG.

Selenium
Although phytochemicals including EGCG have received 

considerable attention for their cancer-preventive effects, the 

most extensively investigated chemopreventive agent is Se, 

as indicated in Figure 1, which depicts the search results for 

the number of papers in PubMed using the keywords “cancer 

prevention” or “chemoprevention” along with the specific 

chemopreventive agent.

Se-dependent selenoproteins  
and cancer prevention
Se is capable of exerting multiple actions on the physiological 

system by modifying the expression of 25 human 

selenoproteins, whose synthesis is dependent upon the 

incorporation of the 21st genetically encoded protein amino 

acid, selenocysteine.47–49 Most of the selenoproteins, such 

as selenoenzymes of glutathione peroxidases (GPx) and 

thioredoxin reductases (TrxR), take part in antioxidant 

defense.50–52 Activities of seleoenzymes are affected by 

Se at nutritional levels; therefore, Se deficiency leads to 

reduced activities of seleoenzymes.53,54 Transgenic mice 

whose selenoprotein synthesis is disrupted are predisposed 

to precancerous changes.55,56 Human epidemiological studies 

have found an inverse relationship between Se status and 

cancer risk.4,57 In SELECT (the Selenium and Vitamin E 

Cancer Prevention Trial), the participants had optimal Se 

status; thus, Se supplementation at nutritional level had no 

effect on cancer risk, whereas the participants with low Se 

status showed reduced cancer risk after Se supplementation 

at nutritional levels.58,59 These results suggest that Se at 

nutritional levels has a cancer-prevention effect via enhancing 

the expression of selenoproteins in those subjects with 

suboptimal Se status.

Se-induced phase II enzymes  
in cancer prevention
Phase II enzymes such as quinone reductase and glutathione 

S-transferase (GST) are a class of inducible enzymes that are 

upregulated in response to toxic insults.60 Upregulation of 

phase II enzymes has been implicated in the detoxification 

Table 2 Comparison of biological activities between encapsulated nanoepigallocatechin-3-gallate (EGCG) and nonencapsulated 
free EGCG

Biomarkers Encapsulated nano-EGCG Nonencapsulated free EGCG

IC50 of PCa PC3 cells 3.74 μmol/L 43.6 μmol/L
Doses needed to generate 72% apoptosis in PCa PC3 cells 2.7 μmol/L 40 μmol/L
Inhibiting colonies formation of PCa PC3 cells 5.5 μmol/L inhibited 90% 20 μmol/L inhibited 10%
Bax/Bcl-2 ratio of PCa PC3 cells 2 at 1.4 μmol/L 0.5 at 20 μmol/L
Inhibition of FGF-promoted angiogenesis in vitro 3 μg/CAM generated 57% inhibition 30 μg/CAM generated 35% 

inhibition
Suppressing tumor growth in mice inoculated with androgen- 
responsive 22Rν1 cells after 7 weeks of EGCG administration

IP 0.1 mg/mouse inhibited 50% as compared  
with tumor control

IP 1 mg/mouse inhibited 50% as 
compared with tumor control

Serum PSA of mice inoculated with androgen-responsive  
22Rν cells after 7 weeks of EGCG administration

10% of tumor control/IP 0.1 mg/mouse 75% of tumor control/ 
IP 1 mg/mouse

EGCG degradation in plasma of mice EGCG existed in plasma after 4 hours/ 
IP 0.1 mg/mouse

EGCG disappeared from plasma 
after 4 hours/IP 1 mg/mouse

Abbreviations: CAM, chick chorioallantoic membrane; FGF, fibroblast growth factor; IC50, the half maximal inhibitory concentration; IP, intraperitoneal; PCa, prostate cancer; 
PSA, prostate-specific antigen.
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of numerous oxidative and electrophilic species during 

xenobiotic metabolism.61 The cancer-preventive effect 

of many chemopreventive agents, including EGCG, 

sulforaphane, curcumin, and resveratrol, is associated 

with the upregulation of phase II enzymes.62–66 Among 

various phase II enzymes, GST plays an important role 

in cellular protection against carcinogens by conjugating 

their electrophilic metabolites with GSH.67,68 Evidence 

suggests that the level of GST expression is a crucial 

factor in determining the sensitivity of cells to a broad 

spectrum of toxic chemicals; hence, the induction of GST 

by chemopreventive agents enables experimental animals to 

tolerate exposure to carcinogens.69 Enhanced GST expression 

can limit tumor development.70 Many Se compounds can 

oxidize thiols, consequently producing superoxide and other 

reactive oxygen species (ROS).71,72 Modest amounts of ROS 

promote the translocation of the transcription factor Nrf2 into 

the nucleus, where Nrf2 binds to the antioxidant response 

element in phase II enzyme genes to activate the transcription 

of phase II enzyme mRNAs.73 Xiao and Parkin74 found that 

16 Se compounds were able to increase quinone reductase 

activity, and seven of them also increased GST activity in 

murine hepatoma cells. Se at supranutritional levels, which 

are roughly ten- to 30-fold higher than nutritional levels, is 

capable of inducing phase II enzymes and exhibits powerful 

chemopreventive effects.75–79 Thus, the chemopreventive 

effects of Se at supranutritional levels are associated with 

the induction of phase II enzymes.

Se-mediated cytotoxicity  
and cancer prevention
The ROS that originate from Se-promoted thiol  oxidation, if in 

sufficient quantity, will result in intracellular and extracellular 

oxidative stress, leading to cytotoxicity.80,81 The cytotoxic 

effects of Se may partially account for their chemopreventive 

activity.82–84 However, the general therapeutic utility of this 

mechanism is questionable and should be approached with 

caution. It is known that inhibition of TrxR results in enhanced 

selenite cytotoxicity and that cells overexpressing TrxR1 

are significantly more resistant to selenite cytotoxicity than 

control cells.85,86 TrxR1 has been shown to be upregulated in 

various cancer cells; thus, cancer cells are likely to be more 

resistant than normal cells to Se cytotoxicity. Drug-resistant 

tumor cells with high intracellular GSH exhibit a high degree 

of sensitivity to selenite cytotoxicity, whereas normal cells 

with high intracellular GSH would be more sensitive to 

Se cytotoxicity than some types of cancer cells with low 

intracellular GSH.87,88 Normal cells possess functional p53, 

which is mutated in most cancer cells. It has been shown 

that p53 can enhance the cytotoxicity of Se, suggesting that 

normal cells may be more sensitive to Se cytotoxicity than 

p53-mutated cancer cells.89–92 Indeed, the cytotoxic effects of 

both inorganic and organic Se compounds were more potent 

in normal hepatocytes as compared with hepatic carcinoma 

cells, and nontumorigenic prostate cells are highly sensitive 

to Se toxicity as compared with prostate cancer cells at 

physiologically relevant concentrations.93,94 For Se-induced 

cytotoxicity to be able to operate as a chemopreventive 

mechanism, Se toxicity would appear to be unavoidable. 

Therefore, Se-dependent selenoproteins and Se-induced 

phase II enzyme mechanisms, which are not associated with 

evoked toxicity, become more attractive to explain the cancer-

preventive effects of Se, whereas the “enhanced cytotoxicity” 

mechanism ought to be limited to Se-sensitive cancer cells 

whose proliferation can be effectively suppressed by Se at 

safe doses.

Preparation of elemental  
Se nanoparticles
A decade ago, elemental Se in the redox state of zero was 

considered to be biologically inert.95 Indeed, red elemental Se, 

formed in the redox system of selenite and GSH, is unstable 

and can further aggregate into gray or black elemental Se if 

there are no controlling factors in the redox system, leading 

to the disappearance of bioactivities.96 We reported in 2001 

that the presence of proteins such as bovine serum albumin 

(BSA) in the redox system at a tenfold excess by mass relative 

to Se can control the aggregation of elemental Se atoms; the 

resultant Se particles, referred to as Nano-Se, fall into a size 

distribution of 20–60 nm, with an average size of 36 nm.96 

Consistent with this finding, Mishra et al97 demonstrated 

the formation of BSA-dispersed Se nanoparticles when 

selenourea was oxidized into elemental Se. Dobias et al98 

recently showed that some particular proteins, such as alcohol 

dehydrogenase, can specifically bind to Se nanoparticles, 

resulting in a narrower size distribution. In addition to protein, 

polysaccharides have been revealed to be effective dispersants 

for controlling the formation of Se nanoparticles.99,100 The 

formation of Se nanoparticles is not limited to in vitro 

conditions, as some strains of micro-organisms have the 

capacity of reducing selenite into Se nanoparticles.101–103

The bioactivities and toxicities of inorganic sodium sel-

enite, organic selenomethionine (SeMet), and Se-methylsele-

nocysteine (SeMSC) have been extensively investigated. 
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Based on the preceding review, the optimal form of Se for 

nutritional supplementation and cancer  prevention would 

be expected to have distinctly low toxicity and to possess 

good bioactivities in terms of upregulating selenoenzymes 

at nutritional levels and inducing phase II enzymes at supra-

nutritional levels.

Comparison of bioactivities and toxicities 
between inorganic Se and Nano-Se
Sodium selenite has been used in livestock and humans 

to prevent Se-deficiency disorders. Usually, it is used as a 

reference Se compound in the studies of Se bioavailability and 

toxicity. In HepG2 cells, although selenite dose-dependently 

increased GPx and PHGPx activities (R2 = 0.9881 and 

0.9956, respectively), there were no significant differences 

in elevating these selenoenzyme activities between selenite 

and Nano-Se at the same doses, based on total Se content.96 

When Nano-Se and selenite were added to a Se-deficient 

diet at a level of 0.1 ppm Se for Se supplementation in rats, 

selenite significantly increased hepatic Se by 8.8-fold and 

hepatic GPx activity by 48.8-fold. There were no significant 

differences in these biomarkers between selenite and 

Nano-Se.96 These in vitro and in vivo results demonstrate that 

the bioavailability of the two Se sources is equal.

Selenite toxicity is associated with the interaction of 

selenite with GSH to form reactive selenotrisulfides, leading 

to the production of ROS.80 Selenite is one order of magnitude 

more effective than Nano-Se in oxidizing GSH, suggesting 

that the cytotoxic effect of selenite but not Nano-Se may 

be enhanced by extracellular GSH.96 Indeed, exposure of 

HepG2 cells to the cotreatment of nontoxic Nano-Se and GSH 

reveals no cytotoxicity, whereas exposure of HepG2 cells to 

the cotreatment of an otherwise nontoxic dose of selenite, but 

in the presence of GSH, produced significant cytotoxicity.96 

According to this evidence, it is anticipated that in tissues 

where extracellular GSH is elevated, enhanced cytotoxicity will 

be much more likely to occur for selenite than for Nano-Se. 

Consequently, selenite would be more toxic than Nano-Se 

in vivo. Indeed, the oral acute toxicity of selenite was 7.2-fold 

that of Nano-Se, according to the medium lethal dose (LD
50

) 

values obtained from mice.96 The US National Research 

Council recommends growth inhibition as the best indicator of 

Se toxicity.104 The major target of Se toxicity is liver tissue.105 

In a short-term toxicity study, mice were orally administered 

saline as control, Nano-Se, and selenite at 4 mg Se/kg for 

4 weeks. Body weight in the selenite group was significantly 

suppressed by 30%, whereas body weight in the Nano-Se 

group remained not significantly different from the control.106 

At the end of the experiments, selenite caused prominent liver 

injury, whereas the hepatic architecture in the Nano-Se group 

remained unaltered.106 Furthermore, in a subchronic toxicity 

study in which rats were fed with diets containing 0 ppm, 

2 ppm, 3 ppm, 4 ppm, and 5 ppm Se for 13 weeks, Nano-Se 

unequivocally manifested lower toxicity compared with either 

inorganic selenite or naturally occurring Se-enriched soy 

protein (high-Se protein) in all observed biomarkers, including 

growth inhibition, hematology, clinical chemistry, relative 

organ weights, and histopathology parameters (Table 3).107

Table 3 Subchronic toxicity of selenium (Se) compounds in rats

Biomarkers Se (ppm)  
in diet

Nano-Se Selenite High-Se 
protein

NOAEL (ppm) 3 2 2
Growth retardation 3 Nano-Se , selenite and high-Se protein
BWL 3 Nano-Se , selenite and high-Se protein

4 Nano-Se , selenite and high-Se protein
Reduction of erythrocyte, hemoglobin, platelet counts 4 Not significantly Significantly Significantly
Spleen enlargement and liver atrophy 3 Not significantly Not significantly Significantly

4 Not significantly Significantly Significantly
Mottled liver surface 4 Nano-Se , selenite and high-Se protein

5 Nano-Se , selenite and high-Se protein
Degeneration of liver cells 3 None Existence Existence
Patchy necrosis 5 None Existence Existence
Increase of ALT activity 4 Not significantly Significantly Not significantly
Increase of AST activity 4 Not significantly Significantly Not significantly

5 Not significantly Significantly Significantly
Increase of TP activity 5 Not significantly Significantly Significantly
Increase of ALB activity 5 Not significantly Significantly Significantly

Abbreviations: ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BWL, body weight loss; NOAEL, the no-observed-adverse-effect level; 
TP, total protein.
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Comparison of bioactivities and toxicities 
between organic Se and Nano-Se
SeMet is the predominant chemical form of Se in foodstuffs. 

Numerous experimental studies have suggested that SeMet 

has excellent bioavailability and lower toxicity, as compared 

with selenite.108 Because Nano-Se has lower toxicity profiles 

compared with the high-Se protein whose Se constitution 

would be largely taken up by SeMet, it is warranted to make 

direct and comprehensive comparisons between Nano-Se 

and SeMet in terms of bioactivities and toxicity.107 SeMet 

and Nano-Se were orally administered to Se-deficient 

mice daily for 7 days at two nutritional doses to compare 

bioavailability, and at a supranutritional dose to evaluate phase 

II enzyme induction. Although SeMet has been considered 

as a good Se source with excellent bioavailability, at the 

two tested nutritional doses, SeMet and Nano-Se equally 

increased tissue Se levels and the activities of GPx and TrxR.109 

 Significant differences between the two Se sources were found 

at the supranutritional dose; SeMet increased Se levels more 

efficiently than Nano-Se in all measured  tissues, including the 

liver, kidney, and blood.109 However, the high retention of Se in 

the liver subjected to SeMet did not  guarantee that SeMet could 

increase hepatic GST activity; in contrast, Nano-Se, which 

provided less Se to the liver compared with SeMet, generated 

a significant induction of hepatic GST compared with either 

the control group or the SeMet group.109 Se sequestration 

in protein via the nonspecific replacement of methionine 

using SeMet can readily explain such a paradoxical result.110 

Excess substitution of methionine residues by SeMet may 

alter physiochemical properties of some structural proteins 

and reduce the accumulation of active Se species that exert 

anticancer actions.110

Thus, the high Se accumulation deposited by SeMet at 

supranutritional levels cannot necessarily be considered as a 

merit; in contrast, it reduces the chemopreventive potential 

of SeMet, as evidenced by the GST induction, and increases 

the risk of SeMet toxicity. This interpretation is supported 

by the following results: (1) the acute oral toxicity of SeMet 

was 3.6-fold that of Nano-Se according to the LD
50

 values 

obtained from mice;109 (2) following administration of a single 

oral dose of 10 mg Se/kg to mice, after 12 hours, Nano-Se 

did not significantly elevate serum liver enzymes, but SeMet 

significantly increased serum alanine aminotransferase, aspar-

tate aminotransferase, and lactate dehydrogenase activities by 

fourfold to 25-fold relative to the control;109 and (3) following 

repetitive daily oral administration of 5 mg Se/kg/day to mice 

for 7 days, SeMet exhibited significantly higher toxicity than 

Nano-Se in terms of growth suppression and liver injury.109

SeMSC is considered to be one of the most effective 

Se compounds for chemoprevention, but unfortunately its 

systemic toxicities are high as well.112–114 Zhang et al111 

have demonstrated that SeMSC and Nano-Se have equal 

bioavailability at nutritional doses. Although the GST 

induction efficacy of the two Se sources was similar at 

supranutritional doses, SeMSC had a greater tendency toward 

Se toxicity.111 This is evidenced by: (1) the acute oral toxicity 

of SeMSC was 6.3-fold that of Nano-Se according to the LD
50

 

values obtained from mice;111 (2) following administration of a 

single oral dose of 10 mg Se/kg to mice, after 12 hours, serum 

alanine aminotransferase, aspartate aminotransferase, and 

lactate dehydrogenase activities were all significantly higher 

in SeMSC-treated mice than in Nano-Se-treated mice;111 and 

(3) following repetitive daily oral administration of 10 mg Se/

kg/day to mice for 7 days, SeMSC resulted in 80% mortality, 

whereas Nano-Se resulted in only 10% mortality.111

At supranutritional levels, Wang et al109 and Zhang et al111 

found that SeMSC, as with SeMet, increased Se levels more 

efficiently than Nano-Se in all measured tissues. High Se 

accumulation in SeMet-treated mice can be attributed to 

Se sequestration via nonspecific substitution of SeMet for 

methionine in proteins. Obviously, such a mechanism cannot 

apply in the case of high Se accumulation produced by 

supranutritional SeMSC; however, the significant differences 

in tissue Se retention between SeMSC and Nano-Se may be 

affected by the pore size of vessels. The pore sizes of normal 

vessels are 2–6 nm, so the entry of SeMSC molecules at 

approximately 1 nm appears not to be limited, whereas the 

entry of Se nanoparticles with an average size of 36 nm 

(20–60 nm) should be affected by vessel pore sizes. To 

support this hypothesis, ie, to observe the impact of size on Se 

accumulation, we prepared two kinds of Nano-Se with different 

size distributions, based on the principle that, during their 

preparation, a higher BSA concentration generates smaller Se 

nanoparticles.115,116 As expected, we found that Se accumulation 

at supranutritional levels was size dependent, such that small 

size led to high Se retention.116 It is worth noting that size-

dependent Se accumulation has an important implication in 

explaining the low toxicity of Nano-Se. Cells may change 

to passive absorption of Se at near-toxic supranutritional 

levels after the most fundamental physiological needs of a 

cell for selenoenzyme synthesis have been fully met. Under 

such conditions, large size would constitute a barrier for Se 

nanoparticles to enter into cells.117

Therefore, the significantly reduced Se accumulation in 

tissues subjected to Nano-Se at supranutritional levels as 

compared with SeMet or SeMSC may effectively prevent 
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Se toxicity.109,111 In addition, although Se nanoparticles show 

reduced Se retention in normal tissues as compared with 

SeMet and SeMSC, Se nanoparticles may show enhanced 

Se permeation and retention in tumor tissues, because tumor 

blood vessels possess large pores with a size distribution 

ranging from 100 nm to 800 nm, in stark contrast to small 

pores of 2–6 nm in the vessels of healthy tissues.118 This 

would confer a unique “targeting” advantage to Nano-Se, 

unavailable with other forms of Se. Recently, Sommer et al119 

demonstrated that pulsed red laser light can force cancer 

cells to take up cytotoxic drugs, including EGCG, via nano-

scopic interfacial water layers in cells, thereby resulting in 

enhanced cytotoxicity. Because nanoparticles have inherent 

characteristics of enhanced permeation and retention in tumor 

tissues,118 with the auxiliary effect of pulsed red laser light, 

the targeting advantage of Nano-Se and nano-EGCG would 

likely be further enhanced.

Conclusions and future prospectives
EGCG is a naturally occurring chemopreventive agent. 

PLA–PEG-encapsulated nano-EGCG, compared with 

nonencapsulated free EGCG, is resistant to degradation in blood 

and produces remarkably superior chemopreventive effects, 

with over a tenfold dose advantage in inducing apoptosis, 

inhibiting angiogenesis and tumor growth. So Nano-EGCG 

provides a paradigm for the use of nanoparticle-mediated 

delivery to enhance bioavailability. Se is a chemopreventive 

agent with a narrow margin between toxic amounts and the 

amounts needed for dietary requirements or therapeutic effects, 

ie, a low therapeutic ratio. Compared with selenite, SeMet, 

and SeMSC, Nano-Se has significantly lower toxicity, without 

compromising the important therapeutic capacities of increasing 

the activities of selenoenzymes and phase II enzymes. The 

safety margin and potential toxic effects of Se are important 

considerations for its role in supplementation. Therefore, 

Nano-Se can be considered as a novel chemoprevention agent 

with reduced risk of Se toxicity. Nanotechnology holds promise 

for chemoprevention, because anticancer nutrients fabricated 

at the nanometer scale exhibit drastically altered bioactivities 

and toxicity. Sustained exploration of the nanochemoprevention 

concept may lead to exciting new horizons in the discovery 

of novel chemopreventive agents, with an expanded window 

between efficacious doses and toxic doses.
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