The effects of magnetite (Fe₃O₄) nanoparticles on electroporation-induced inward currents in pituitary tumor (GH₃) cells and in RAW 264.7 macrophages

Yen-Chin Liu¹
Ping-Ching Wu²
Dar-Bin Shieh³–⁵
Sheng-Nan Wu³,⁶,⁷
¹Department of Anesthesiology, ²Institute of Oral Medicine and Department of Stomatology, ³Department of Physiology, National Cheng Kung University Hospital, College of Medicine, ⁴Advanced Optoelectronic Technology Center, ⁵Center for Micro/Nano Science and Technology, National Cheng Kung University, ⁶Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, ⁷Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan

Aims: Fe₃O₄ nanoparticles (NPs) have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.

Methods: We evaluated whether amine surface-modified Fe₃O₄ NPs have any effect on ion currents in pituitary tumor (GH₃) cells via voltage clamp methods.

Results: The addition of Fe₃O₄ NPs decreases the amplitude of membrane electroporation-induced currents (Iₑₑₚ) with a half-maximal inhibitory concentration at 45 µg/mL. Fe₃O₄ NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of Iₑₑₚ, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.

Conclusion: The modulation of magnetic electroporation-induced currents by Fe₃O₄ NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.

Keywords: iron oxide, ion current, free radical

Introduction

Studies of nanoscale materials have captured significant scientific and industrial interest in recent years. Magnetite (Fe₃O₄) nanoparticles (NPs) have been extensively exploited as ferrofluids in various industrial applications. They respond to electromagnetic energy by changing surface anisotropy and thus could generate heat in microenvironments for clinical therapeutics. Fe₃O₄ NPs usually present super paramagnetic properties and by altering proton relaxation in the tissue microenvironment are ideal for magnetic resonance contrast enhancement.¹,² Recent studies have described an aqueous preparation protocol for well-dispersed Fe₃O₄ NPs by coprecipitation of Fe(II) and Fe(III) in the presence of organic acid.³–⁴ The derived magnetite NPs present a stable surface amine group without a polymer coating that could nonetheless be well dispersed in the aqueous phase and in tissue fluid.

Magnetic NPs have been reported to stimulate mechanosensitive ion channels.³ The presence of superparamagnetic nanoparticles could alter the local magnetic field permeability and distribution thereby affecting local currents in the microenvironment. Other types of nanomaterials such as carbon nanotubes have been reported to influence the
amplitude of K$^+$ currents. However, to our knowledge, the mechanisms through which these magnetite NPs can interact with cells, or specifically ion channels, remain unclear.

It is recognized that membrane electroporation (MEP) exerts a considerable increase in the electrical conductivity and permeability of the plasma membrane with the aid of an externally applied electrical field. This maneuver is commonly used for transferring DNA and chemotherapeutic drugs into cells, and was recently applied to cell labeling with Fe$_3$O$_4$ NPs. In GH$_3$ pituitary tumor cells, we have identified a unique type of membrane hyperpolarization-induced inward current referred to as an MEP-induced current (I_{MEP}), that is sensitive to the inhibition of memantine and LaCl$_3$ and to the stimulation of honokiol, a dimer of allylphenol. Owing to the high conductance of MEP-induced channels, even at low probability of opening, significant currents tend to flow and may thereby alter the electrical behavior of the porated cells.

Therefore, the purpose of this work is to evaluate whether Fe$_3$O$_4$ NPs with a mean diameter of 6 nm could exert functional effects on the ion currents in pituitary tumor (GH$_3$) cells. Interestingly, findings from our study indicate that Fe$_3$O$_4$ NPs are effective in decreasing the amplitude of I_{MEP} in a concentration-dependent manner in these cells. Higher concentrations (3 mg/mL) of these particles were also noted to increase I_{MEP} amplitude.

Materials and methods

Drugs and solutions

4,4′-Dithiodipyridine, lipopolysaccharide, single-walled carbon nanotubes (0.7–1.1 nm in diameter), sodium hydroxide, and tetrodotoxin were obtained from Sigma-Aldrich (St, Louis, MO), and 2,2′-azobis(2-aminopropane) dihydrochloride (AAPH) was obtained from Wako Pure Industries (Osaka, Japan). All culture media, fetal calf serum, horse serum, L-glutamine, trypsin/ethylenediaminetetraacetic acid, and penicillin–streptomycin were obtained from Invitrogen (Carlsbad, CA). All other chemicals, including CsCl, CdCl$_2$, FeCl$_2$, FeCl$_3$, LaCl$_3$, and N-methyl-D-glucamine$, were commercially available and of reagent grade.

The composition of normal Tyrode’s solution is as follows (in mM): NaCl 136.5, KCl 5.4, CaCl$_2$ 1.8, MgCl$_2$ 0.53, glucose 5.5, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)–NaOH buffer 5.5 (pH 7.4). To record I_{MEP} or delayed rectifier K$^+$ currents (I_{KDR}), the patch pipette was filled with a solution (in mM): K-aspartate 130, KCl 20, KH$_2$PO$_4$ 1, MgCl$_2$ 1, Na$_2$ ATP 3, Na$_3$GTP 0.1, ethylene glycol tetraacetic acid 0.1, and HEPES–KOH buffer 5 (pH 7.2). To measure voltage-gated Ca$^{2+}$ currents, K$^+$ ions in the pipette solution were replaced with equimolar Cs$^+$ ions and the pH was adjusted to 7.2 with CsOH. To record erg-like K$^+$ currents ($I_{\text{K erb}}$), the bath solution was replaced with a high-K$^+$, Ca$^{2+}$-free solution (in mM): KCl 130, NaCl 10, MgCl$_2$ 3, glucose 6, and HEPES–KOH buffer 10 (pH 7.4).

Preparation of dispersed, water-soluble Fe$_3$O$_4$ NPs

Fe$_3$O$_4$ NPs with an average diameter of 6 nm were prepared without a polymer coating as described previously. Briefly, a protective agent was added in two stages followed by chemical co-precipitation. The aqueous solutions containing 2 M Fe(II) and 1 M Fe(III) were prepared by dissolving FeCl$_2$ and FeCl$_3$, respectively. To produce Fe$_3$O$_4$ NPs, 1 mL Fe(II) and 4 mL Fe(III) aqueous solutions were mixed at room temperature, followed by the addition of 0.5 g organic acid as adherent. Afterward, 0.5 M NaOH was dropwise added into the mixed solution to adjust the pH. The reaction was finished when the pH of the solution reached 11. The precipitates were then collected by a magnet and washed with 50 mL of deionized water three times, followed by addition of another 3 g of organic acid to achieve complete coating of the particle surface with the $–\text{NH}_2$ group. The excess adherents were removed by rinsing in deionized water. The size of the Fe$_3$O$_4$ NPs was determined by analytical scanning transmission electron microscopy (JEOL 3010; JEOL, Tokyo, Japan). The particle concentration was analyzed using an atomic absorption spectrometer (Solaar M6 series; Unicam Audio Visual, Leeds, UK), where iron oxides were treated with nitric or hydrochloric acid until complete dissolution.

Cell preparation

GH$_3$ pituitary tumor cells, obtained from the Bioresources Collection and Research Center ([BCRC-60015]; Hsinchu, Taiwan), were maintained in Ham’s F-12 medium supplemented with 15% horse serum, 2.5% fetal calf serum, and 2 mM L-glutamine in a humidified environment of 5% CO$_2$. The experiments were performed 5 or 6 days after the cells had been cultured (60%–80% confluence). The colorimetric method was used in examining the viable cell densities in microtiter plates with a tetrazolium salt (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-terasolio]-1,3-benzene disulfonate; WST-1) and an enzyme-linked immunosorbent assay reader (Dynatech, Chantilly, VA). In order to investigate cell viability, GH$_3$ cells were incubated at 37°C for
24 hours in the media containing different concentrations of Fe$_3$O$_4$ NPs.

The murine macrophage cell line RAW 264.7 was obtained from the American Type Culture Collection (TIB-71; ATCC, Manassas, VA). Cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. When cells were challenged with lipopolysaccharide (0.5 mg/mL), they displayed an irregular form with accelerated spreading and formation of pseudopodia.

Electrophysiological measurements

Before each experiment, GH$_3$ or RAW 264.7 cells were dissociated and an aliquot of cell suspension was transferred to a recording chamber positioned on the stage of an inverted DM-IL microscope (Leica, Wetzlar, Germany). Cells were bathed at room temperature (25°C) in normal Tyrode’s solution containing 1.8 mM CaCl$_2$. Patch electrodes were made from Kimax®-51 capillaries (Kimble Glass, Vineland, NJ) using a PP-830 puller (Narishige, Tokyo, Japan), and they had a resistance of 3–5 MΩ when filled with the different pipette solutions described above. Voltage-clamp recordings were made in whole-cell configuration using an RK-400 amplifier (Bio-Logic, Claix, France) or an Axopatch™ 200B amplifier (Molecular Devices, Sunnyvale, CA). The data were stored online in a TravelMate-6253 computer (Acer, Taipei, Taiwan) at 10 kHz through a Digidata-1322A interface (Molecular Devices). The interface device was equipped with a SlimSCSI card (Adaptec, Milpitas, CA) via a PCMCIA slot and controlled by pCLAMP 9.2 (Molecular Devices). The pCLAMP-generated voltage-step profiles were used to determine the current–voltage (I–V) relationship for I_{MEP}.

Concentration–response data for Fe$_3$O$_4$ NP-induced block of I_{MEP} in GH$_3$ cells were fitted with a modified form of the Hill equation. That is,

$$y = 1 - \frac{(1-a) \times [C]^n}{IC_{50}^n + [C]^n},$$

where y is the relative amplitude of I_{MEP}, C is the concentration of Fe$_3$O$_4$ NPs; IC_{50} and n are concentrations required for a 50% inhibition and the Hill coefficient, respectively. Maximal inhibition (ie, $1-a$) of I_{MEP} in the presence of Fe$_3$O$_4$ NPs was also estimated. Curve-fitting to data sets was commonly performed with the aid of Excel 2007 (Microsoft, Redmond, WA) or Origin 8.0 (OriginLab Corp, Northampton, MA).

Values are provided as the mean values ± standard error of the mean with the sample sizes (n) indicating the number of cells from which the data were taken. The paired or unpaired Student’s t-test and one-way analysis of variance with a least significant difference method for multiple comparisons were used for the statistical evaluation of difference among means. A P value of less than 0.05 was considered to indicate statistical difference.

Results

Effect of Fe$_3$O$_4$ NPs on I_{MEP} in pituitary GH$_3$ cells

In an initial set of experiments, whole-cell configuration was obtained to investigate the electrical properties of macroscopic I_{MEP} in these cells. Cells were bathed in Ca$^{2+}$-free Tyrode’s solution containing 10 mM CsCl. When the cell was held at −80 mV, a hyperpolarizing pulse from −80 to −200 mV with a duration of 300 msec was applied. Under this voltage profile, I_{MEP} was generated with a waxing-and-waning pattern. As shown in Figure 1B, we noted that when we exposed the cells to Fe$_3$O$_4$ NPs, the amplitude of I_{MEP} was progressively diminished. For example, at the level of −200 mV, these NPs at a concentration of 100 µg/mL significantly decreased the I_{MEP} amplitude from 865 ± 42 to 261 ± 33 pA (n = 9). After washout of the nanoparticles, the current amplitude returned to 757 ± 33 pA (n = 6).
The relationship between the concentration of Fe₃O₄ NPs and the relative amplitude of \(I_{\text{MEP}} \) was analyzed (Figure 1B). The half-maximal concentration required for the inhibitory effect of Fe₃O₄ NPs was calculated to be 45 µg/mL. Therefore, results from these observations reflect that Fe₃O₄ NPs have an inhibitory effect on \(I_{\text{MEP}} \) in GH₃ cells.

To characterize the inhibitory effect of Fe₃O₄ NPs on \(I_{\text{MEP}} \), we studied whether the nanoparticles could alter the \(I_{\text{MEP}} \) measured at the different levels of membrane potentials in these cells. Figure 2 shows the \(I-V \) relations obtained in the absence and presence of Fe₃O₄ NPs. The threshold for elicitation of these inward currents was around −70 mV and current magnitude was noted to become larger with greater hyperpolarization. The results showed that cell exposure to Fe₃O₄ NPs (100 µg/mL) presents a significant decrease in the slope of the linear fit of \(I_{\text{MEP}} \), amplitudes to voltage between −100 and −200 mV from 10.7 ± 1.1 to 3.6 ± 0.6 nS (n = 9). However, the threshold potential required for elicitation of \(I_{\text{MEP}} \) did not show Fe₃O₄ NP dependence.

Dual effect of Fe₃O₄ NPs on the amplitude of \(I_{\text{MEP}} \) in GH₃ cells

We also discovered that when the cells were exposed to high concentrations of Fe₃O₄ NPs (3 mg/mL), a biphasic response in the \(I_{\text{MEP}} \) amplitude could be recorded, i.e., an initial decrease followed by a persistent elevation. Figure 3 illustrates the dual effect of Fe₃O₄ NPs (3 mg/mL) on \(I_{\text{MEP}} \) in cells bathed in Ca²⁺-free Tyrode’s solution containing 10 mM CsCl. When the cell was hyperpolarized from −80 to −200 mV, 1 minute after the addition of Fe₃O₄ NPs (3 mg/mL), the amplitude of \(I_{\text{MEP}} \) was significantly decreased to 685 ± 45 pA from a control value of 1645 ± 115 pA (n = 6). However, 3 minutes after the addition of 3 mg/mL Fe₃O₄ NPs to the solution, the amplitude of \(I_{\text{MEP}} \) measured at the same level (i.e., −200 mV) was found to return to 1382 ± 595 pA (n = 6). Moreover, when...
In the absence of Fe3O4 NPs, there was a progressive decrease in the activity of MEP-induced channels, which occurred at the level of hyperpolarizing potentials ranging between −80 and −200 mV. The single-channel amplitude at −150 mV in the absence and presence of Fe3O4 NPs (100 μg/mL) was calculated to be 78 ± 9 pA (n = 9) and 76 ± 9 pA (n = 7), respectively. Through such a long-lasting voltage ramp pulse, a fit of the data using a linear I−V relationship obtained in the control yielded the single-channel conductance and reversal potential of 0.54 ± 0.08 nS and −27.2 ± 0.9 mV (n = 7). During cell exposure to Fe3O4 NPs, the values for these channels were not altered significantly. Therefore, it is clear from these results that the addition of Fe3O4 NPs did not modify the single-channel conductance of MEP-elicited channels induced by long-lasting ramp pulses, although it could increase the probability of channel openings.

No effect of Fe3O4 NPs on delayed rectifier K+ current (I_{K(DR)}) in GH3 cells

Carbon nanotubes have been recently described to influence different types of K currents in pheochromocytoma PC12 cells. We further examined whether magnetite NPs could exert specific effects on I_{K(DR)} in GH3 cells by direct interaction with the channel or local effects on the regional electromagnetic fields. These experiments were conducted in cells bathed in Ca2+-free Tyrode’s solution containing 1 μM tetrodotoxin and 0.5 mM CdCl2, and the recording pipette was filled with K+−containing solution. Tetrodotoxin was used to block Na+ currents, while CdCl2 could inhibit voltage-gated Ca2+ currents. Figure 5 depicts superimposed original traces of I_{K(DR)} obtained in the absence and presence of 100 μg/mL Fe3O4 NPs. For example, when the cells were depolarized from −50 to +50 mV, Fe3O4 NPs (100 mg/mL) caused no significant effect on the amplitude of I_{K(DR)} measured at the end of the depolarizing pulse (544 ± 32 pA [control] versus 540 ± 29 pA [Fe3O4 NPs]; n = 6). The results indicated that unlike I_{MEP} described above, I_{K(DR)} elicited by membrane depolarization remained unaltered in the presence of Fe3O4 NPs.

Inability of Fe3O4 NPs to block erg-like K+ current (I_{K(erg)}) in GH3 cells

We further investigated the possible effect of the synthesized NPs on I_{K(erg)} enriched in GH3 cells. As shown in Figure 6, addition of the nanoparticles did not cause any effect on I_{K(erg)} in these cells. The peak amplitude of I_{K(erg)} elicited by
membrane hyperpolarization from –10 to –90 mV was not noted to differ significantly between the absence and presence of 100 \(\mu \)g/mL Fe\(_3\)O\(_4\) NPs (1485 ± 122 pA [control] versus 1481 ± 95 pA [Fe\(_3\)O\(_4\) NPs]; \(n = 7 \)). However, similar to previous reports,\(^6,19\) methadone (10 \(\mu \)M) and single-walled carbon nanotubes (30 \(\mu \)g/mL) could significantly reduce the amplitude of \(I_{\text{K(erg)}} \) by 44% and 29%, respectively.

Effect of Fe\(_3\)O\(_4\) NPs on \(I_{\text{MEP}} \) in RAW 264.7 cells

Previous studies of the magnetic resonance imaging of lymph node have demonstrated that Fe\(_3\)O\(_4\) NPs can be effectively taken up by macrophages in the reticuloendothelial system.\(^2,20–24\) Therefore, we examined the effect of Fe\(_3\)O\(_4\) NPs on the \(I_{\text{MEP}} \) recorded from RAW 264.7 macrophages. RAW 264.7 is a macrophage-like, Abelson leukemia virus-transformed cell line known to possess the characteristics of macrophages.\(^13\) As shown in Figure 7, the properties of \(I_{\text{MEP}} \) in RAW 264.7 cells were characterized with the same voltage profile employed in GH\(_3\) cells. During whole-cell recordings, when membrane hyperpolarizations from –80 to –200 mV were applied to the cells, an irregular and transient inward current was elicited. In response to membrane hyperpolarization these inward currents comprised multiple small currents occurring asynchronously. When the bathing solution was replaced by NMDA\(^+\) solution, this current could still be induced, although the magnitude of inward currents was diminished. Unlike mechanosensitive ion currents,\(^5,25\) this type of inward current noted in RAW 264.7 cells is thus referred to as an \(I_{\text{MEP}} \).\(^11\) Interestingly, when these cells were exposed to Fe\(_3\)O\(_4\) NPs, the \(I_{\text{MEP}} \) amplitude was progressively diminished (Figure 7). For example, the addition of Fe\(_3\)O\(_4\) NPs (100 \(\mu \)g/mL) significantly decreased the \(I_{\text{MEP}} \) amplitude at –200 mV from 924 ± 55 to 403 ± 19 pA (\(n = 7 \)). The results were consistent with the observations made in GH\(_3\) cells. The Fe\(_3\)O\(_4\) NPs were capable of producing an inhibitory action on hyperpolarization-induced \(I_{\text{MEP}} \) in RAW 264.7 macrophages.

Effect of Fe\(_3\)O\(_4\) NPs on the production of superoxide in GH\(_3\) cells

Superoxide production is shown in Figure 8 and demonstrated that Fe\(_3\)O\(_4\) NPs produced a biphasic pattern in the
Interestingly, Fe$_3$O$_4$ NPs also increase the reactive oxygen species production to 8.15 ± 1.78 (3 mg/mL; $P = 0.01$) but not in the low-dose group (0.95 ± 0.49 [100 µg/mL]).

Discussion

In this study, aqueous dispersive Fe$_3$O$_4$ NPs were found to exert both excitatory and inhibitory effects on I_{MEP} in pituitary GH$_3$ cells. Lower concentrations of Fe$_3$O$_4$ NPs suppressed the amplitude of I_{MEP}, while higher concentrations of these NPs could increase I_{MEP}. However, the stimulation of I_{MEP} caused by Fe$_3$O$_4$ NPs was abolished in cells pretreated with AAPH (30 µM). AAPH is an azo compound that could generate free radicals. Superoxide production was significantly increased in the presence of Fe$_3$O$_4$ NPs. Thus it is conceivable that the stimulatory effect on I_{MEP} observed in GH$_3$ cells induced by the magnetite nanoparticles might be related to the production of free radicals.

Surface functionalization of nanomaterials is a key factor in their biological and physicochemical properties. Ferumoxtran-10-enhanced magnetic resonance imaging has also been used for improved detection of lymph node metastases in patients with advanced cancer. The labeling of cells with magnetoelectroporation was described to cause loss of cell viability. In our study, we provided a rationale for this observation as magnetite nanoparticles per se significantly affect the required electric profile for this activity. Therefore, the optimal condition for best poration efficiency and cell viability should be carefully adjusted. It has also been reported that manganese oxide NPs at higher concentrations could be toxic to cancer cells, including glioma cells, Caco-2 cells, and MCF-7 breast cancer cells. In our study, Fe$_3$O$_4$ NPs at the concentration of 3 mg/mL produced superoxide and stimulated the amplitude of I_{MEP} consistent with previous reports.

Previous Fourier transform infrared spectroscopy and zeta potential measurements showed the cationic surface of our magnetite NPs to be mostly decorated with NH_3^+. The positively charged surface enabled the nanoparticles to be adsorbed onto the negatively charged cell membrane and to react with I_{MEP} via an electrostatic interaction and local electromagnetic field perturbation. Furthermore, the synthesized Fe$_3$O$_4$ NPs were found to self-assemble into a rod-like configuration in aqueous solution. It is possible that Fe$_3$O$_4$ NPs may interact with the electropores with a surface charge that produced an electrostatic attraction for binding to the magnetite nanoparticles. The steric hindrance effect by the nanoparticles may block the transportation of cations through the pores and thereby lead to a decrease in I_{MEP} amplitude. The addition of these NPs does not affect $I_{\text{K(DR)}}$ or $I_{\text{K(erg)}}$. Whether the mechanisms through which NP-induced inhibition of I_{MEP} occurs are linked to the conformational transformation of NPs from spheres to rod shape, and to what extent the local perturbation in the electromagnetic field property affects I_{MEP} remain to be further delineated.

Based on the electrical properties of both I_{MEP} and MEP-induced channels, NP-induced effects on I_{MEP} in GH$_3$ and RAW 264.7 cells are unlikely to be linked to its action on mechanosensitive ion channels. In this study, we show that Fe$_3$O$_4$ NP-mediated decrease of I_{MEP} in GH$_3$ cells is not derived from the decrease in single-channel amplitude of MEP-elicited channels because neither the presence nor the absence of the NPs significantly affected single-channel conductance in these channels. We speculate that the Fe$_3$O$_4$ nanoparticles could modulate I_{MEP} by directly affecting the electrical properties of the channels.
NP-mediated inhibition of I_{MEP} described here could be attributed to the reduced probability of channel openings, the decrease in the number of MEP-elicited pores, or both.

The cytotoxicity of Fe$_3$O$_4$ had been previously investigated in our groups before. It demonstrated almost no cytotoxicity in the cell model. Application of a local electrical field could induce transient perturbation of membrane lipids and led to the generation of electroporated channels lined by negatively charged phospholipids. During the MEP process, Fe$_3$O$_4$ NPs could be transported into the cells via an accelerated process through charge–charge interaction between the lipid bilayer and the positively charged nanoparticles during the transient channel opening and recovery. Consequently, access of cations to the

Figure 6 No effect of Fe$_3$O$_4$ NPs on I_{MEP} in GH$_3$ cells. In these experiments, cells were bathed in a high-K$^+$, Ca$^{2+}$-free solution. Each cell was held at -10 mV and a 1-second long hyperpolarizing pulse from -10 to -90 mV at a rate of 0.01 Hz was applied. (A) Superimposed I_{MEP} obtained in the absence (a) and presence (b) of 100 µg/mL Fe$_3$O$_4$ NPs. The inset indicates the voltage protocol used. (B) Bar graph showing summary of the effects of Fe$_3$O$_4$ NPs (100 µg/mL), methadone (10 µM), and single-walled nanotubes (30 µg/mL) on I_{MEP} (mean ± standard error of the mean; $n = 5–7$ for each bar). The peak amplitude of I_{MEP} in response to membrane hyperpolarization from -10 to -90 mV was measured in each cell. I_{MEP} amplitudes obtained in different concentrations of NPs were measured at -200 mV.

Note: Significantly different from control.

Abbreviation: Fe$_3$O$_4$ NPs, magnetite nanoparticles; SWNT, single-walled nanotubes.

Figure 7 Effect of Fe$_3$O$_4$ NPs on I_{MEP} recorded from RAW 264.7 macrophages. The experiments were conducted in cells bathed in Ca$^{2+}$-free Tyrode's solution. (A) Original traces of I_{MEP} obtained in the absence and presence of Fe$_3$O$_4$ NPs. The current trace labeled (a) is control, and those labeled (b) and (c) were obtained in the presence of 30 µg/mL and 100 µg/mL Fe$_3$O$_4$ NPs, respectively. The inset indicates the voltage protocol used. (B) Bar graph showing summary of the effects of Fe$_3$O$_4$ NPs (30 µg/mL and 100 µg/mL) on I_{MEP} recorded from RAW 264.7 macrophages (mean ± standard error of the mean; $n = 6–10$ for each bar).

Note: Significantly different from control.

Abbreviation: Fe$_3$O$_4$ NPs, magnetite nanoparticles.
Figure 8 The effect of Fe₃O₄ NPs on superoxide production in GH3 cells. The graph showing summary of the effects of Fe₃O₄ NPs (100 µg/mL and 3 mg/mL) with or without GH3 cells (mean ± standard error of the mean; n = 4–5 for each bar).

Note: Significantly different from control.

Abbreviation: Fe₃O₄ NPs, magnetic nanoparticles.

The inhibitory effect of Fe₃O₄ NPs on I_{MEP} with a half-maximal inhibitory concentration (IC₅₀) value of 46 µM could derive from the direct binding of the nanoparticles to the pores of the MEP-induced channels. We also observed the inhibitory effect of Fe₃O₄ NPs on I_{MEP} in RAW 264.7 macrophages. Thus the magnetite NPs might also preferentially accumulate around the sites where MEP-elicited channels occurred. Additionally, how the surface functionalization of the magnetite NPs would affect the activity of MEP-elicited channels remains to be explored systematically.

Acknowledgments

This work was partially aided by a grant from the National Science Council (NSC-98-2320-B-006-MY3), and National Cheng Kung University Hospital (NCKUH-10104020), Taiwan, through a contract awarded to SN Wu and DB Shieh. The authors would like to thank Pei-Yu Wu for providing the nanoparticles to the pores of the MEP-induced channels. Additionally, how the surface functionalization of the magnetite NPs would affect the activity of MEP-elicited channels remains to be explored systematically.

Disclosure

The authors report no conflicts of interest in this work.

References

