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Abstract: While polymer microneedles may easily be fabricated by casting a solution in a 

mold, either centrifugation or vacuumizing is needed to pull the viscous polymer solution into 

the microholes of the mold. We report a novel process to fabricate polymer microneedles with 

a one-sided vacuum using a ceramic mold that is breathable but water impermeable. A polymer 

solution containing polyvinyl alcohol and polysaccharide was cast in a ceramic mold and 

then pulled into the microholes by a vacuum applied to the opposite side of the mold. After 

cross-linking and solidification through freeze-thawing, the microneedle patch was detached 

from the mold and transferred with a specially designed instrument for the drying process, 

during which the patch shrank evenly to form an array of regular and uniform needles without 

deformation. Moreover, the shrinkage of the patches helped to reduce the needles’ size to ease 

microfabrication of the male mold. The dried microneedle patches were finally punched to 

the desired sizes to achieve various properties, including sufficient strength to penetrate skin, 

microneedles-absorbed water-swelling ratios, and drug-release kinetics. The results showed 

that the microneedles were strong enough to penetrate pigskin and that their performance was 

satisfactory in terms of swelling and drug release.

Keywords: polymer microneedles, ceramic mold, polyvinyl alcohol, swelling

Introduction
Microneedle technology has been developing as a drug-delivery system for more 

than a decade.1 The principal advantage of microneedles is that they can provide a 

minimally invasive means of transporting molecules into the skin.2 This is particularly 

true for protein and peptide drugs, which are mostly administered by frequent injections 

due to their large molecular weight, short in vivo life, and poor tissue membrane 

permeability.3 Frequent injections are commonly used for many protein/peptide drugs 

in the treatment of chronic conditions, eg, insulin for diabetes and calcitonin for 

osteoporosis. Guided by this goal, practitioners have employed a number of specific 

strategies to use microneedles for transdermal delivery. Based on their structures 

and materials, microneedles may be classified into three categories: inorganic solid 

microneedles,4,5 hollow microneedles,6,7 and polymer microneedles.8–10 Among these 

microneedle technologies, polymer microneedles are the most feasible due to their 

uncomplicated fabrication and low cost.

Molding has been commonly used in the fabrication of polymer microneedles.8,11,12 

In brief, the drug-loaded polymer solution is pulled into microholes after casting on the 

surface of the female microneedle mold, which is made of polydimethylsiloxane.8,11–13 

Methods reported in achieving this process include centrifugation8 and vacuumizing,11,12 
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in which the bubbles in the microholes are exhausted to the 

surface of the polymer solution. However, centrifugation is 

restricted in its use due to size limitations of centrifuge rotors. 

In addition, polymer solutions used with a vacuum must 

be prepared in a low concentration or viscosity, which is a 

complicated operation. Furthermore, the low consistency of 

the polymer can make the drying process challenging, since 

deformation occurs when water is removed. Sullivan11 pre-

pared microneedles with polymerization of liquid monomer, 

which showed satisfactory fluidity. However, the introduc-

tion of a chemical initiator may damage the protein drug’s 

activity as well as human skin in treatment.

In this study, we report a novel fabrication method of 

polymer microneedles to solve the problems mentioned 

above. Chinese purple sand was used to prepare the female 

mold. Purple sand is a material that is commonly used in 

the production of traditional Chinese ceramic teapots and 

cups,14 and it has no adverse effects on the human body.15 

Besides its durability and characteristic hardness preventing 

deformation, the main reason for choosing purple sand as a 

female mold was its property of being breathable but water 

impermeable. The breathable property was used to pull the 

polymer solution into the microholes, with a vacuum under 

the female mold (Figure 1) to simplify the operation. The 

water impermeability was useful in preventing drug loss 

due to siphonage. With this female mold, we fabricated a 

microneedle patch using polyvinyl alcohol (PVA) solution, 

which was cross-linked and solidified by freeze-thawing to 

form microneedles. Free drying and fixed drying were used 

as two separate steps in the drying process. Free drying was 

used to adjust the intervals of the microneedles because of 

shrinking. This drying step solved the limitation of the size of 

the microholes in the mold, thus reducing the difficulty and 

cost of mold preparation. Fixed drying was used to remove 

the remaining water and make the needles sufficiently hard. 

Integrative and partial drug-loaded microneedles were fab-

ricated to ensure sustained release and fast-acting treatment, 

respectively (Figure 1).

Materials and methods
Materials
The purple sand was provided by Ceramics Research 

Institute (Yixing, China). The PVA, dextran, and sodium 

carboxymethylcellulose (CMC) used in this study were 

purchased from Sigma Corporation (St Louis, MO).

Molding
Thousands of hexagonal steel sticks were finished into 

needles with a tip angle of α and then cut into the same length 

(5 cm), as shown in Figure 2A. All needles were gathered and 

fixed in a steel bucket, followed by the nesting of a Teflon 

board. The board was made with an array of microholes to 

meet the needles’ tips. After fixing the board with screws, the 

core of the male mold was prepared (Figure 2B). According 

to the core’s size, a stainless shell and lid were prepared to 

form space for the purple sand. The shell was a combination 

of two semicolumns (Figure 2C), which could be separated 

when detaching the purple-sand mold.

Purple-sand mud was firstly prepared by blending dry 

purple sand and water in a ratio of 50:9. Forty-five grams of 

mud (with a particle size of 1–5 µm) was smoothly dispersed 

into the male mold, followed by a pressing of the lid at 400 

psi with a hand-operated hydraulic press (YS20; Qirui Tech, 

Suzhou, China). After separation from the shell, the purple-

sand mold was placed on an experiment table for 12 hours to 

air-dry. This adobe was transferred into an electric furnace 

Female mold
made of purple sand

Freeze-thawing

Detaching

For sustained release

For fast acting

Blank
membrane Freeze-thawing

Detaching

Drying

Drying

Figure 1 Full view of fabrication process of polymer microneedle patch. The patch was fabricated by casting polymer solution in mold, cross-linking to form needles through 
freeze-thawing, detaching, and drying.
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(SX-5-12; Botai Experimental Equipments, Shanghai, China) 

to remove the remaining water at a temperature of 300°C for 

2 hours. The final female mold product was obtained after 

calcinating it at a temperature of 920°C–1040°C for 3 hours 

and cooling it to room temperature (Figure 2D).

Preparation of the microneedle patches
Two types of microneedles were fabricated to meet different 

therapeutic needs. For sustained release, the microneedle was 

prepared as a whole patch, with the drug loaded both into the 

needles and a backing layer. For fast release, the drug was 

simply loaded into the needles.

The polymer solution used to fabricate the microneedle 

patch was a mixture of PVA, dextran, and CMC. The polymer 

powders were slowly added to water in a wide-mouth bottle 

with magnetic stirring to form a 20% solution. After it was 

sealed with silver paper, the solution was heated to boiling and 

cooled to room temperature to form a hydrophilic polymer 

solution. Insulin was added to the solution directly, and then 

the mixture was stirred for 2 hours to make sure the drug was 

well dispersed. For sustained-release microneedles, the solu-

tion was cast in the female mold and pulled into microholes 

with the help of a vacuum on the opposite side. The mold with 

the polymer solution was frozen in a −20°C refrigerator for 

2 hours and then thawed at 4°C for 1 hour. This freeze-thaw 

cycle was repeated twice (three cycles in all) to cross-link and 

solidify the polymer. A piece of undried microneedle patch 

was prepared after detaching it from the female mold.

For fast-acting microneedles, a blank backing mem-

brane was prepared. PVA and dextran powders were mixed 

(98:2) and added into a round-bottom flask with water to 

form a 36% polymer solution. This solution was sealed and 

heated to boiling with power-driven simultaneous stirring. 

When cooled to about 60°C, the solution was poured onto 

a piece of quadrate glass board on the experimental table, 

followed by covering and pressing smoothly with another 

identical glass board to form the polymer membrane. 

The membrane’s thickness was controlled by adjusting the 

height of the supporters (1 mm was used in this study) at the 

four angles. After two freeze-thaw cycles, the membrane was 

cut into a circular shape to form a piece of blank backing 

layer. After casting and pulling the drug-loaded solution into 

the female mold, the backing layer was applied to the surface 

of the mold and pressed smooth. The next step was the same 

as for the sustained-release microneedles.

Drying
Both the free-drying step (step 1) and fixed-drying step 

(step 2) were carried out. In step 1, the microneedle patch 

was dried and shrunk to meet the size required. Subsequently, 

in step 2, the patch was fixed in a drying environment (low 

relative humidity and low pressure) to remove the remainder 

of the water. A special drying unit was prepared to carry 

out the drying process. A unit designed to dry one piece of 

patch was composed of three parts: bottom plate, a press 

board made of Teflon (press 1), and another press board 

made of stainless steel (press 2). Press 1 and press 2 were 

used to carry out step 1 and step 2, respectively (Figure 3). 

The bottom plate was made of a stainless-steel board with a 

round area removed and replaced by wire netting (Figure 3). 

The distance between the wire-netting surface and the plate’s 

upper surface was about 0.9 mm. Press 2 had the same shape 

as press 1, except for a welding ring (1.0 × 0.5 mm) used 

to fix the microneedle patch (Figure 3). Drying units can be 

integrated in a big plate, as in this study. We prepared each 

drying board with six drying units.

The undried microneedle patch was placed on the wire 

netting of a unit, with needles facing upward. After it was 

covered with press 1, the patch dried and contracted freely 

in still or flowing air. When it reached the desired size, the 

patch was fixed by press 2 and transferred into a vacuum-

drying oven for 12 hours. To investigate the effect of relative 

humidity and airflow rate in the drying process, microneedle 

patches were dried in environments with humidity of 50% 

A B C D

Purple sand mud

Figure 2 Fabrication of male mold of microneedles: (A) a single finished hexagonal steel stick; (B) thousands of steel sticks fixed into a steel bucket to form the core of the 
male mold; (C) the male mold with purple sand spreading smoothly; (D) the female mold prepared using the male mold.
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and 5% and airflow rates of 0 m/second and 1 m/second, 

respectively. The final microneedle product was gained by 

cutting the dried patch into a designated size.

Properties of the microneedles
Microneedle skin insertion
The hardness of the microneedles was determined by skin 

insertion. A piece of pigskin without subcutaneous fat 

was shaved and cleaned, and affixed under mild tension to 

a wooden plate. A microneedle patch with a diameter of 

12 mm was inserted by pressing against the backing layer 

with a thumb, using a force of approximately 1.5 N, and then 

removed immediately after the insertion. The microneedle 

insertion site on the skin surface was exposed for 10 minutes 

to trypan blue to dye the sites of stratum corneum perforation. 

After wiping residual dye from the skin surface with dry 

tissue paper, the skin and its tissue slice were viewed by 

microscopy (T1-SM; Nikon, Tokyo, Japan).

Swelling of the microneedles
The PVA microneedles have a property of swelling, which 

serves to open the diffusion channel for drug release when 

absorbing body fluid. To test the swelling of the microneedles, 

six blank patches were inserted into human arms and then 

covered with rigid tape (9860; 3M, St Paul, MN). The patches 

were detached from the skin and observed immediately at 

times of 1, 2, 3, 4, 5, and 6 hours.

In vitro release of insulin
The release kinetics of insulin from the fast-acting 

microneedle patches (n = 6) were examined by applying 

a patch to a piece of skin mounted in a Franz cell at 37°C. 

The microneedle patch was pressed onto the skin using the 

3M baking membrane. Insulin released into the receiving 

medium (pH 7.4 phosphate-buffered saline) in the Franz 

cell was determined using a Shimadzu (Kyoto, Japan) HPLC 

system equipped with a C-18 column (4.6 × 250 mm; Agilent 

Technologies, Santa Clara, CA). The receiving medium was 

replaced by a fresh medium and subjected to HPLC mea-

surement at 0.5, 1, 2, 3, 4, and 6 hours after release. Finally, 

the patch examined for release kinetics was cut into small 

pieces and suspended in the same releasing buffer at 37°C to 

collect the insulin remaining in the patch in order to assess 

the total insulin loading. The cumulative fractional release 

of insulin from the microneedle patches was calculated by 

dividing the measured amount at each sampling time by the 

total loaded insulin.

Results and discussion
Preparation of the female mold
The purple-sand mold’s breathability varied with different 

calcinating temperatures. As shown in Table 1, as the 

temperature increased, the mold became darker in color 

(Figure 4) and its breathability declined. The siphonage was 

serious with temperatures lower than 940°C (Table 1 and 

Figure 4A). The optimized temperature range for the female 

mold was 960°C–1000°C, in which the mold possessed good 

breathability and less siphonage.

The calcinating time was also important for properties of 

the female mold. Seven groups of adobes were calcinated in 

960°C for 1, 2, 3, 4, 6, 8, and 12 hours, respectively (Table 2). 

The ideal period for the female mold was 3–6 hours, and 

3 hours was commonly used to save time. As shown in 

Tables 1 and 2, the shrinkage of the mold (shrinkage-1) was 

also tested, which was useful in calculating the distribution 

of microneedles combined with the drying process.

Fabrication of the microneedle patches
An important step in the fabrication process was preparing the 

polymer solution. To reach the aim of obtaining a sufficient 

dosage encapsulated in the needles, insulin dispersed in 

the polymer solution was in a suspended form because 

Bottoming plate

Teflon
press board

Stainless steel
press board

Final patch

Fixed drying

Free drying

Figure 3 Drying process of microneedle patch. In the first step, the patch was dried 
with shrinking to adjust size and distance of needles. In the following step, the patch 
was completely dried with its size fixed.
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of the drug’s poor solubility. Each batch of microneedle 

patches was fabricated using a fresh drug-loaded polymer 

solution, each being stirred long enough to ensure uniform 

dispersion.

However, long stirring of the drug and the polymer solu-

tion produced many bubbles, which adversely affected the 

casting process and needle shape. A vacuum was used to try 

and eliminate the bubbles, but failed due to the high viscosity 

of the polymer solution. Moreover, a centrifugal method was 

also infeasible because of the drug deposition induced by 

centrifugal force. In our study, a spot of alcohol was added 

to the mixture, and this solved the problem. Alcohol was an 

ideal reagent due to its common use in insulin extraction. In 

addition, the alcohol had no effect on the microneedle patch 

because it was extracted completely in the drying process.

Drying
Drying boards designed for microneedle patches are shown 

in Figure 5. Six drying units were integrated in a steel plate 

with two protrusions to fix the press board. In the freeze-

drying step, shrinkage of the microneedle patch (shrinkage-2) 

was observed. In the static-air condition, the shrinking rate 

was negatively related to the relative humidity in the air 

(Figure 6A). Conversely, the drying rate accelerated with 

increased airflow rate (Figure 6B). Compared to relative 

humidity, the flowing air provided a better drying rate with 

light wind. However, the flowrate of the wind had to be 

controlled at a certain level since strong winds distorted the 

microneedle patch.

Shrinking the patches in the drying process provided an 

important advantage in controlling the needles’ intervals. The 

final intervals of the microneedles were calculated using the 

following formula: microneedle distance = needle distance 

of male mold × shrinkage-1 × shrinkage-2. Shrinkage-1 was 

constant when the calcinating parameters of purple sand were 

fixed. The difficulty level of preparing the male mold was 

decreased by the microneedle patch’s shrinking property. In 

brief, the flexible-sized hexagonal steel sticks used to form 

the male mold were selected, thereby reducing the  rejection 

rate and cost. Also, shrinking via drying maintained the 

needles’ shape. The microneedle patch dried using only step 2 

would produce needles with larger α-values because of water 

loss in the needle tip but a fixed size in the base. These short 

and blunt microneedles were ineffective in penetrating the 

skin’s epidermis.

Skin insertion
With the expectation that the microneedles should be suf-

ficiently hard, we inserted a piece of a microneedle patch 

with a diameter of 12 mm into pigskin and found that 

microneedles (0.8 mm in length and 0.3 mm in base) were 

embedded reliably into the skin using a force of about 

Table 1 Properties of purple-sand female mold calcinated at 
different temperatures (with calcinating time of 3 hours)

Temperature  
(°C)

920 940 960 980 1000 1020 1040

Colora + + ++ ++ ++ +++ +++
Breathabilityb +++ +++ ++ ++ + + +
Siphonagec +++ +++ ++ ++ ++ + +
Shrinkage-1 (%) 89.6 86.9 84.8 83.6 81.7 79.8 79.5

Notes: a+, yellow; +++, black. b+++, polymer solution can be pulled into microholes 
within 1 minute; ++, #5 minutes; +, .5 minutes. c+++, hydrophilic and diffused; 
++, hydrophilic; +, hydrophobic.

A B C

Figure 4 Siphonage of female molds prepared at different temperatures: (A) 940°C; (B) 980°C; (C) 1020°C.

Table 2 Properties of purple-sand female mold calcinated with 
different times (at 960°C)

Time  
(hours)

1 2 3 4 6 8 12

Colora + + ++ ++ +++ +++ +++
Breathabilityb +++ +++ ++ ++ + + +
Siphonagec +++ +++ ++ ++ ++ + +
Shrinkage-1 (%) 86.8 85.5 84.8 84.1 82.3 80.9 80.6

Notes: a+, yellow; +++, black. b+++, polymer solution can be pulled into microholes 
within 1 minute; ++, #5 minutes; +, .5 minutes. c+++, hydrophilic and diffused; 
++, hydrophilic; +, hydrophobic.
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A B C

Figure 5 Instruments used in microneedle-patch drying: (A) stainless plate with six drying units; (B) Teflon board (press 1) over the drying plate; (C) press 2 made of stainless 
steel with enough weight to fix microneedle patch.
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Figure 6 Shrinkage of microneedle patch in free-drying process: (A) effect of relative air humidity; (B) effect of airflow rate.
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Figure 7 Skin penetration by microneedles: (A) pigskin dyed with trypan blue after microneedle patch removed; (B) micrograph of tissue slice of the pigskin.

A B

1 mm

C

Figure 8 Swelling of microneedles after inserting into human skin: (A) before patching; (B) 1 hour after patching; (C) 3 hours after patching.
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5 N with one thumb. After treating the skin with a dye 

that selectively marks sites of skin penetration, we found 

that all of the microneedles in the patch inserted into the 

skin (Figure 7A). A histological test of skin pierced with 

microneedles showed penetration depths of approximately 

0.4 mm (Figure 7B), which was about half of the length of 

a microneedle. This can be explained by the deformation 

of the skin’s surface known to occur during microneedle 

insertion due to the skin’s viscoelasticity.16 The relatively 

wide base (300 mm) and large α-value of the needle tip 

contributed to this incomplete insertion. Further optimization 

of the microneedle’s shape, such as α-value, shrinkage-2, 

and needle distance, may increase the insertion depth. In 

addition, formulation factors and the preparation process 

can also be considered to improve the needles’ strength. For 

example, increasing the dextran concentration in the polymer 

solution and freeze-thaw cycles were effective methods to 

strengthen microneedles. However, as discussed below, par-

tial microneedle insertion may be adequate for the swelling 

property presented in this study.

Swelling
Compared to other hydrophilic microneedles,8,11 the PVA 

microneedle would not dissolve in the skin, but swelling and 

therefore diffusion channels were opened for drug release.17 

A sustained type of microneedle patch was prepared to 

test swelling. The results are shown in Figure 8, in which 

the needles were adequately swollen after embedding into 

human skin. The weight of the microneedle patch varied from 

40 mg to about 55 mg, and the swelling could be adjusted by 

adding some polymer additives. Take CMC, for example: 

when absorbing fluid, CMC dissociated into long chains 

with a negative charge, which were mutually exclusive and 

produced a large space to hold water. Other polymers such 

as dextran and polyvinylpyrrolidone were diluents to cross-

linking points. The polymer additives were effective in for-

mulation to control the drug-release rate, both for sustained 

microneedles and fast-acting microneedles.

In vitro release of insulin
To examine the release kinetics of insulin from PVA 

microneedle patches, the dry patches were applied to por-

cine skin that was mounted on Franz cells filled with buffer 

solution. As shown in Figure 9, 30% of the total insulin 

load was released within the initial 30 minutes, followed 

by an additional 26% of the loaded cargo being released 

within 4 hours of patching. Although the kinetics of insulin 
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Figure 9 In vitro release profile of insulin from microneedle patches to Franz cells 
(n = 6).

release to a Franz cell may not necessarily be the same as the 

release kinetics to the dermis layer, the rapid insulin release 

(Figure 9) to human skin should be sufficient. The diffusion 

resistance from dermis to subcutaneous tissue may be a 

concern for practical usage of this insulin patch. However, 

both the force-assisted hollow microneedle patches and the 

body fluid-triggered soluble microneedle patches have been 

found to be capable of offering comparable insulin uptake to 

subcutaneous injections.2,11 The insulin-release rate shown 

in Figure 9 is comparable to those from the two microneedle 

patches above. The microneedle system could also improve 

through further formulation optimization.

Conclusion
The purple-sand female mold was prepared to fabricate a 

PVA microneedle patch in this study. This mold had the 

advantage of being breathable but water impermeable, 

and in coordination with a vacuum on the opposite side, it 

perfectly met the demand of hydrophilic microneedle patch 

preparation. Moreover, in the process of drying the cross-

linked microneedle patch, we developed instruments for 

free drying and shrinking, which controlled the needle 

distance and thereby simplified the preparation of the 

male mold.

We fabricated microneedles by the physical method 

of freeze–thawing them in a solidified polymer solution. 

This process was simple and safe compared with chemical 

cross-linking, in which a cross-linking agent is added.11,18 

An insulin-loaded microneedle patch was prepared and 

characterized in terms of hardness, swelling, and in vitro 

release. The pharmacokinetics and pharmacodynamics are 

now ongoing, and will be reported in future.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1421

Scalable fabrication of polymer microneedles

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2012:7

Disclosure
The authors declare no conflicts of interest, financial or 

otherwise, in this work.

References
1. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated 

microneedles: a novel approach to transdermal drug delivery. J Pharm 
Sci. 1998;87(8):922–925.

2. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug 
Deliv Rev. 2004;56(5):581–587.

3. Bartus RT, Tracy MA, Emerich DF, Zale SE. Sustained delivery of proteins 
for novel therapeutic products. Science. 1998;281(5380):1161–1162.

4. Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and char-
acterization of silicon microneedles fabricated by wet etch technology. 
Microelectron J. 2005;36(7):650–656.

5. Chabri F, Bouris K, Jones T, et al. Microfabricated silicon microneedles 
for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150(5): 
869–877.

6. Shikida M, Hasada T, Sato K. Fabrication of a hollow needle structure 
by dicing, wet etching and metal deposition. J Micromech Microeng. 
2006;16:2230–2239.

7. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection 
into skin using hollow microneedles. J Invest Dermatol. 2006;126(5): 
1080–1087.

8. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal 
drug delivery. Biomaterials. 2008;29(13):2113–2124.

 9. Miyano T, Tobinaga Y, Kanno T, et al. Sugar micro needles as 
transdermic drug delivery system. Biomed Microdevices. 2005;7(3): 
185–188.

 10. Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein 
delivery with rapidly dissolving polymer microneedles. Adv Mater. 
2008;20(5):933–938.

 11. Sullivan SP, Koutsonanos DG, del Pilar Martin M, et al. Dissolving 
polymer microneedle patches for influenza vaccination. Nat Med.  
2010;16(8):915–920.

 12. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for 
 controlled-release drug delivery. Pharm Res. 2006;23(5):1008–1019.

 13. Kuo SC, Chou YA. Novel polymer microneedle arrays and PDMS 
micromolding. Tamkang J Sci Eng. 2004;7(2):95–98.

 14. Ting GU. Cultural implications of zisha pottery teapot. China Ceramic 
Industry. Mar 2011. Available from: http://en.cnki.com.cn/Article_en/
CJFDTOTAL-ZTCG201103016.htm. Accessed February 20, 2012.

 15. Yixing.com [website]. Are Yixing teapots healthy and safe? Available 
from: http://www.yixing.com/teapot_info.html?page=faq. Accessed 
February 20, 2012.

 16. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid 
infusion during microneedle insertion and retraction. J Control Release. 
2006;112(3):357–361.

 17. Jin T, inventor. Phase-transition polymeric microneedles: World 
Intellectual Property Organization patent WO/2010/040271. Apr 15, 
2010.

 18. Woolfson AD, Morrow DIJ, Morrissey A, Donnelly RF, McCarron PA, 
inventors. Delivery device and method. World Intellectual Property 
Organization patent WO/2009/040548. Apr 2, 2009.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

1422

Yang et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZTCG201103016.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZTCG201103016.htm
http://www.yixing.com/teapot_info.html?page
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


