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Abstract: The International Space Station provides an extraordinary facility to study the 

accelerated aging process in microgravity, which could be triggered by significant reductions 

in magnesium (Mg) ion levels with, in turn, elevations of catecholamines and vicious cycles 

between the two. With space flight there are significant reductions of serum Mg (P , 0.0001) 

that have been shown in large studies of astronauts and cosmonauts. The loss of the functional 

capacity of the cardiovascular system with space flight is over ten times faster than the course 

of aging on Earth. Mg is an antioxidant and calcium blocker and in space there is oxidative 

stress, insulin resistance, and inflammatory conditions with evidence in experimental animals 

of significant endothelial injuries and damage to mitochondria. The aging process is associated 

with progressive shortening of telomeres, repetitive DNA sequences, and proteins that cap and 

protect the ends of chromosomes. Telomerase can elongate pre-existing telomeres to maintain 

length and chromosome stability. Low telomerase triggers increased catecholamines while 

the sensitivity of telomere synthesis to Mg ions is primarily seen for the longer elongation 

products. Mg stabilizes DNA and promotes DNA replication and transcription, whereas low 

Mg might accelerate cellular senescence by reducing DNA stability, protein synthesis, and 

function of mitochondria. Telomerase, in binding to short DNAs, is Mg dependent. On Earth, 

in humans, a year might be required to detect changes in telomeres, but in space there is a 

predictably much shorter duration required for detection, which is therefore more reasonable 

in time and cost. Before and after a space mission, telomere lengths and telomerase enzyme 

activity can be determined and compared with age-matched control rats on Earth. The effect of 

Mg supplementation, both on maintaining telomere length and extending the life span, can be 

evaluated. Similar studies in astronauts would be fruitful.
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Commentary
It has been shown that about 60% of adults in the USA do not consume the estimated 

 average requirement of magnesium (Mg), yet widespread pathological conditions attrib-

uted to Mg deficiency have not been reported.1 One reason for this discrepancy may be 

that a significant Mg deficiency has not been recognized since only 1% of Mg is in the 

serum. In a study of geriatric outpatients, for example, serum Mg levels were within the 

normal range in all patients, whereas the intra-erythrocyte Mg measurements were low in 

57% of the patients.2 In another study, when measuring the total serum Mg concentration 

as subjects aged, there was no apparent change; however, when the intracellular free Mg 

concentration was measured, there was clearly a progressive decrease.3 After 6 months in 

space, there is a loss of Mg reservoirs, with 35% loss in some leg muscles4 and 1%–2% 

bone loss per month.5–10
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The International Space Station, at an initial cost of 

$100 billion and considerable cost to maintain, which has six 

laboratories powered by solar energy, provides an extraordi-

nary facility to study the accelerated aging process in space. 

This process could be triggered by significant reductions in 

Mg ion levels with, in turn, elevations of catecholamines and 

vicious cycles between the two. There is invariable malab-

sorption with microgravity.10

Despite the lack of sensitivity of the serum Mg, there 

are with microgravity significant reductions of serum Mg 

(P , 0.0001) that have been shown in large groups of both 

astronauts and cosmonauts.11 The loss of functional  capacity 

of the cardiovascular system, which complicates space flight, 

occurs over ten times faster than it does during the course 

of aging on Earth.12 There is increased vulnerability of the 

endothelium13 and the heart because of its high enzyme 

content and dense mitochondrial structure.6 Both aging and 

living in space induce the decline, not just of a single system, 

but of a composite of almost every body system.12

Permanent cardiac muscle injuries have been shown with 

reparative fibrosis in rats with Mg deficiencies.14 This would 

contribute to permanent injuries to the heart from both too 

much and too little exercise.6 Mg is an antioxidant and cal-

cium blocker15 and with microgravity and Mg ion deficiency 

there is oxidative stress, insulin resistance, and inflammatory 

conditions with cytokine elevations16 conducive to endothe-

lial injuries and shortening of the life span. Mg potentiates 

iron–transferrin binding, an important contribution to offset-

ting oxidative stress.17

The aging process is considered to be associated with 

progressive shortening of telomeres, repetitive DNA 

sequences, and associated proteins that cap and protect the 

ends of  chromosomes. Telomeres’ function in protecting 

chromosomes has been likened to the function of the plastic 

placed on the ends of shoelaces to keep them from unraveling. 

Telomerase adds telomeric repeats directly to nontelomeric 

sequences and can elongate pre-existing telomeres to maintain 

length and, therefore, chromosomal stability.18–20 Low telom-

erase activity is associated with increased catecholamines,18 

while the sensitivity of telomere synthesis to Mg ions is 

primarily seen for the longer elongation products.19,20

Mg stabilizes DNA – reducing the potential for oxidative 

stress21 and promoting DNA replication and transcription, 

whereas low Mg might accelerate cellular senescence by 

reducing DNA stability, protein synthesis, and the function 

of mitochondria.22,23

Mg is also essential in regulating .300 enzymes.8 

 Telomerase, in binding to short DNAs, is Mg-dependent.23 

It is involved in cell proliferation and genetic stability and 

DNA repair.23 Telomere dysfunction is associated with 

impairment in mitochondrial function,24 conducive particu-

larly to the vulnerability of the heart.6 Oxidative stress leads 

to accelerated telomere attrition, cell senescence, and, ulti-

mately, to the progression of atherosclerotic disease.21

On Earth, a year might be required to detect changes in 

telomere lengths in humans.25 The normal rat life span on 

Earth is about 3 years. With a predictably much shorter life 

span, studies in microgravity would be a more reasonable 

approach in terms of time and cost. Telomere lengths could 

be assessed pre- and postflight and compared with age-

matched control rats on Earth. Additionally, the effect of Mg 

supplementation, both on maintaining telomere length and 

extending the life span, could be evaluated. Before and after 

space mission studies on astronauts could also be fruitful.

Regarding specifically experimental animal studies 

in microgravity, there have been several Russian studies 

involving, for example, evaluations of the myocardium of 

rats, divided into those utilized as controls under normal 

laboratory conditions and those subjected to microgravity to 

determine the vulnerability of the myocardium.26,27 However, 

the exposure to microgravity has been for only relatively 

brief durations27 and up to 4 months using only hypokinesia 

studies.26 The Russians have shown, for example, in just 

13 days, atrophy of rat heart muscle fibers, metabolic dis-

turbances, and alterations in the structure of mitochondria.27 

In addition, these studies have shown suppression of myocar-

dial protein synthesis, impairment in the repair process, and 

diminished function and activity of enzyme systems.26

Clearly, research involving lengths of telomeres and 

telomerase measurements would involve studies during 

long missions of at least 6 months and duration of stay 

on the International Space Station for at least this time. 

Results from such studies would have important implica-

tions for human aging on Earth as well as providing a way 

of evaluating the risk and prevention of premature aging 

in astronauts spending extended periods of time in space. 

These risks, particularly regarding the endothelium from 

oxidative stress, are not necessarily related to the effects of 

radiation in space. With the exception of solar storms, there 

would be no dangerous radiation on the International Space 

Station; there were no significant radiation elevations during 

the Apollo missions.7

Corrections of Mg deficiencies – which are very com-

mon on Earth, particularly in the elderly who have reduced 

Mg intakes, and invariably occur in space – may prolong life 

in microgravity. For studies of this in space,  subcutaneous 
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administration of Mg will be required to supplement oral Mg, 

since there is  malabsorption, as well as close monitoring of 

Mg levels by serial studies. Since impairment in renal func-

tion is a contraindication to administering Mg supplements 

and the kidneys are vulnerable to injuries in microgravity, 

close monitoring is also necessary. At this time, however, 

there is no subcutaneous implantable, replenishable, silicon 

device available to administer Mg to astronauts.9,10

In microgravity, plasma norepinephrinelevels have been 

shown to be  approximately twice those in the supine position 

on earth.9 This is intensified by ischemia, which in turn triggers 

reductions in Mg ions with vicious cycles as noted above.

In addition, in microgravity, both experimental animals 

and humans will require an appropriate exercise program, 

focusing on avoiding very high catecholamine levels since 

catecholamines can undergo auto-oxidation which may in 

turn lead to injuries to telomeres.18 Since Mg is an anti-

oxidant, correcting Mg deficiencies is equally important 

in controlling vicious cycles with catecholamines and in 

turn ischemia.5,6 This would require serial intracellular Mg 

studies.

Regarding an exercise prescription, Ludlow et al28 has 

shown that a moderate amount of physical activity may 

provide a protective effect regarding telomere length in 

comparison with low and high exercise energy expenditures. 

This indeed supports my hypothesis that extraordinary, 

unremitting endurance exercise can injure a normal heart.5 

It also shows how difficult it will be to establish a suitable 

exercise program for experimental animals or astronauts in 

microgravity with the invariable problem of correcting Mg 

deficits.29 Treadmill exercise will be required for both rats 

and astronauts and there will need to be cautious  monitoring 

of heart rates and rhythm as rhese rates are higher in 

 microgravity with catecholamine elevations conducive to 

ventricular fibrillation. This is particularly the case when rates 

reach 85% of one’s predicted maximum heart rate.

There is another major problem with exercise in micro-

gravity that will require careful monitoring with core 

 temperature devices: it was first reported in 199530 that with 

exercise in space there are elevations of body temperature.31 

This could be triggered by the combination of loss of Mg in 

the sweat and through the kidneys, with the latter complicat-

ing increased angiotensin and aldosterone.8 In addition, there 

is loss of plasma volume through leaks in the endothelium 

with decreased thirst and a shift of fluid to the upper part of 

the body.10,11 There is a 40% reduction in the vessel dilator 

atrial natriuretic peptide,11 with Mg probably necessary both 

for its synthesis and release.10 With impairment in blood 

flow to the periphery, these core temperature elevations 

could trigger heat exhaustion or heat stroke. (On the Moon 

at noon it is 250°F.)

Before and after a space mission, telomere lengths and 

telomerase enzyme activity would be determined and com-

pared with age-matched control rats on Earth. Similar studies 

in astronauts would be valuable as well.

In summary, it is conceivable that corrections of signifi-

cant Mg ion reductions, with their associated catecholamine 

elevations and potential vicious cycles, will prolong life in 

microgravity; whether corrections of the very common and 

often unrecognized Mg deficits on Earth will prolong life 

remains to be seen.
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This paper was presented in part at the 3rd International 

Cardiology Congress, Beijing, China, December 4–6, 2011. 

The author reports no conflicts of interest in this work.
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